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Parametric model uncertainty :

A modelM involving uncertain input parameters D

Treat uncertainty in a probabilistic framework : D(θ) ∈ (Θ,Σ, dµ)

Assume D = D(ξ(θ)), where ξ ∈ RN with known probability law

The model solution is stochastic and solves :

M(U(ξ); D(ξ)) = 0 a.s.

Uncertainty in the model solution :

U(ξ) can be high-dimensional

U(ξ) can be analyzed by sampling techniques, solving multiple
deterministic problems (e.g. MC)

We would like to construct a functional approximation of U(ξ)

U(ξ) ≈
∑

k

uk Ψk (ξ)

O. Le Maître PGD for stochastic PDEs
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An example

Consider the deterministic linear scalar elliptic problem (in Ω)

Find u ∈ V s.t. : a(u, v) = b(v), ∀v ∈ V

where

a(u, v) ≡
∫

Ω

k(x)∇u(x) ·∇v(x)dx (bilinear form)

b(v) ≡
∫

Ω

f (x)v(x)dx (+ BC terms) (linear form)

ε < k(x) and f (x) given (problem data)

V (= H1
0 (Ω)) deterministic space (vector space).

O. Le Maître PGD for stochastic PDEs
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Stochastic elliptic problem

Conductivity k , source field f (and BCs) uncertain

Considered as random :

Probability space (Θ,Σ, dµ) :

E [h] ≡
∫

Θ

h(θ)dµ(θ), h ∈ L2(Θ, dµ) =⇒ E
[
h2
]
<∞.

Assume 0 < ε0 ≤ k a.e. in Θ× Ω, k(x , ·) ∈ L2(Θ, dµ) a.e. in Ω and
f ∈ L2(Ω,Θ, dµ)

Variational formulation : Find U ∈ V⊗ L2(Θ, dµ) s.t.

A(U,V ) = B(V ) ∀V ∈ V⊗ L2(Θ, dµ),

where A(U,V )
.

= E [a(U,V )] and B(V )
.

= E [b(V )].

O. Le Maître PGD for stochastic PDEs



Context
Proper Generalized Decomposition

Further improvements (linear models)
Application to the NS equation

Parametric Uncertainty
Galerkin formulation

Stochastic Galerkin problem

Stochastic expansion :

Let {Ψ0,Ψ1,Ψ2, . . .} be an orthonormal basis of L2(Θ, dµ)

W ∈ V⊗ L2(Θ, dµ) has for expansion

W (x , θ) =
+∞∑
α=0

wα(x)Ψα(θ), wα(x) ∈ V

Galerkin problem : (truncated)

Find {u0, . . . , uP} s.t. for β = 0, . . . , P∑
α

aα,β(uα, vβ) = bβ(vβ), ∀vβ ∈ V

with aα,β(u, v) :=
∫

Ω
E [kΨαΨβ ]∇u ·∇vdx , bβ(v) :=

∫
Ω
E [f Ψβ ] v(x)dx .

Large system of coupled linear problem, globally SPD.

O. Le Maître PGD for stochastic PDEs
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Stochastic parametrization

Parameterization using N independent R-valued r.v. ξ(θ) = (ξ1 · · · ξN)

Let Ξ ⊆ RN be the range of ξ(θ) and pξ its pdf

The problem is solved in the image space (Ξ,B(Ξ), pξ)

U(θ) ≡ U(ξ(θ)) Stochastic basis : Ψα(ξ)

Spectral polynomials (Hermite, Legendre, Askey scheme, . . . ) [Ghanem and

Spanos, 1991], [Xiu and Karniadakis 2001]

Piecewise continuous polynomials (Stochastic elements, multiwavelets,
. . . ) [Deb et al, 2001], [olm et al, 2004]

Truncature w.r.t. polynomial order : advanced selection strategy [Nobile et

al, 2010]

Size of dim SP - Curse of dimensionality

O. Le Maître PGD for stochastic PDEs
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Stochastic Galerkin solution

U(x , ξ) ≈
∑P
α=0 uα(x)Ψα(ξ)

Find {u0, . . . uP} s.t.
∑
α aα,β(uα, vβ) = bβ(vβ), ∀vβ=0,...P ∈ V

A priori selection of the subspace SP

Is the truncature / selection of the basis well suited ?

Size of the Galerkin problem scales with P + 1 : iterative solver

Memory requirements may be an issue for large bases

Paradigm :

Decouple the modes computation (smaller size problems, complexity
reduction)

Use reduced basis representation : find important components in U
(reduce complexity and memory requirements)

Proper Generalized Decomposition ∗

∗. Also GSD : Generalized Spectral Decomposition

O. Le Maître PGD for stochastic PDEs
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Separated representation

The rank-m PGD approximation of U is [Nouy, 2007, 2008, 2010]

U(x , θ) ≈ Um(x , θ) =
m<P∑
α=1

uα(x)λα(θ), λα ∈ SP, uα ∈ V.

Interpretation : U is approximated on

the stochastic reduced basis {λ1, . . . , λm} of SP

the deterministic reduced basis {u1, . . . , um} of V
none of which is selected a priori

The questions are then :

how to define the (deterministic or stochastic) reduced basis ?

how to compute the reduced basis and the m-terms PGD of U ?

O. Le Maître PGD for stochastic PDEs



Context
Proper Generalized Decomposition

Further improvements (linear models)
Application to the NS equation

Definition
Algorithms
An example

Optimal L2-spectral decomposition

POD, KL decomposition

Um(x , θ) =
m∑
α=1

uα(x)λα(θ) minimizes E
[
‖Um − U‖2

L2(Ω)

]
The modes uα are the m dominant eigenvectors of the kernel
E [U(x , ·)U(y , ·)] :∫

Ω
E [U(x , ·)U(y , ·)] uα(y)dy = βuα(x), ‖uα‖L2(Ω) = 1.

The modes are orthonormal :

λα(θ) =

∫
Ω

U(x , θ)uα(x)dx

However U(x , θ), so E [u(x , ·)u(y , ·)] is not known !

Solve the Galerkin problem in Vh ⊗ SP′<P to construct {uα}, and then
solve for the

{
λα ∈ SP}.

Solve the Galerkin problem in VH ⊗ SP to construct {λα}, and then solve
for the

{
uα ∈ Vh} with dimVH � dimVh.

See works by groups of Ghanem and Matthies.

O. Le Maître PGD for stochastic PDEs
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Alternative definition of optimality

A(·, ·) is symmetric positive definite, so U minimizes the energy functional

J (V ) ≡
1
2

A(V ,V )− B(V )

We define Um through

J (Um) = min
{uα},{λα}

J
( m∑
α=1

uαλα

)
.

Equivalent to minimizing a Rayleigh quotient

Optimality w.r.t the A-norm (change of metric) :

‖V‖2
A = E [a(V ,V )] = A(V ,V )

O. Le Maître PGD for stochastic PDEs
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Sequential construction :

For i = 1, 2, 3 . . .

J (λi ui ) = min
v∈V,β∈SP

J

βv +

i−1∑
j=1

λj uj

 = min
v∈V,β∈SP

J
(
βv + U i−1

)
The optimal couple (λi , ui ) solves simultaneously

a) deterministic problem ui = D(λi ,U i−1)

A(λi ui , λi v) = B(λi v)− A
(

U i−1, λi v
)
, ∀v ∈ V

b) stochastic problem λi = S(ui ,U i−1)

A(λi ui , βui ) = B(βui )− A
(

U i−1, βui

)
, ∀β ∈ SP

O. Le Maître PGD for stochastic PDEs
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Sequential construction :

For i = 1, 2, 3 . . .

J (λi ui ) = min
v∈V,β∈SP

J

βv +

i−1∑
j=1

λj uj

 = min
v∈V,β∈SP

J
(
βv + U i−1

)
The optimal couple (λi , ui ) solves simultaneously

a) deterministic problem ui = D(λi ,U i−1)∫
Ω
E
[
λ2

i k
]
∇ui ·∇vdx = E

[
−
∫

Ω
λi k∇U i−1 ·∇vdx +

∫
Ω
λi fvdx

]
, ∀v .

b) stochastic problem λi = S(ui ,U i−1)

E
[
λiβ

∫
Ω

k∇ui ·∇ui dx
]

= E
[
−β
(∫

Ω
k∇U i−1 ·∇ui dx +

∫
Ω

fui dx
)]

, ∀β.

O. Le Maître PGD for stochastic PDEs
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Sequential construction :

For i = 1, 2, 3 . . .

J (λi ui ) = min
v∈V,β∈SP

J

βv +

i−1∑
j=1

λj uj

 = min
v∈V,β∈SP

J
(
βv + U i−1

)
The optimal couple (λi , ui ) solves simultaneously

a) deterministic problem ui = D(λi ,U i−1)∫
Ω
E
[
λ2

i k
]
∇ui ·∇vdx = E

[
−
∫

Ω
λi k∇U i−1 ·∇vdx +

∫
Ω
λi fvdx

]
, ∀v .

b) stochastic problem λi = S(ui ,U i−1)

E
[
λiβ

∫
Ω

k∇ui ·∇ui dx
]

= E
[
−β
(∫

Ω
k∇U i−1 ·∇ui dx +

∫
Ω

fui dx
)]

, ∀β.

The couple (λi , ui ) is a fixed-point of :
λi = S ◦ D(λi , ·), ui = D ◦ S(ui , ·)

⇒ arbitrary normalization of one of the two elements.
Algorithms inspired from dominant subspace methods

Power-type, Krylov/Arnoldi, . . .
O. Le Maître PGD for stochastic PDEs
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Power Iterations

1 Set l = 1
2 initialize λ (e.g. randomly)
3 While not converged, repeat (power iterations)

a) Solve : u = D(λ,U l−1)
b) Normalize u
c) Solve : λ = S(u,U l−1)

4 Set ul = u, λl = λ

5 l ← l + 1, if l < m repeat from step 2

Comments :

Convergence criteria for the power iterations (subspace with dim > 1 or
clustered eigenvalues) [Nouy, 2007,2008]

Usually few (4 to 5) inner iterations are sufficient

O. Le Maître PGD for stochastic PDEs
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Power Iterations with Update

1 Same as Power Iterations, but after (ul , λl ) is obtained (step 4) update of
the stochastic coefficients :

Orthonormalyze {u1, . . . , ul} (optional)
Find {λ1, . . . , λl} s.t.

A

( l∑
i=1

uiλi ,
l∑

i=1

uiβi

)
= B

( l∑
i=1

uiβi

)
, ∀βi=1,...,l ∈ ×SP

2 Continue for next couple

Comments :

Improves the convergence

Low dimensional stochastic linear system (l × l)

Cost of update increases linearly with the order l of the reduced
representation

O. Le Maître PGD for stochastic PDEs
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Arnoldi, Full Update version

1 Set l = 0
2 Initialize λ ∈ SP

3 For l ′ = 1, 2, . . . (Arnoldi iterations)
Solve deterministic problem u′ = D(λ,U l )

Orthogonalize : ul+l′ = u′ −
∑l+l′−1

j=1 (u′, uj )Ω

If ‖ul+l′‖L2(Ω) ≤ ε or l + l ′ = m then break
Normalize ul+l′

Solve λ = S(ul′ ,U l )

4 l ← l + l ′

5 Find {λ1, . . . , λl} s.t. (Update)

A

( l∑
i=1

uiλi ,
l∑

i=1

uiβi

)
= B

( l∑
i=1

uiβi

)
, ∀βi=1,...,l ∈ SP

6 If l < m return to step 2.

O. Le Maître PGD for stochastic PDEs
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Summary
Resolution of a sequence of deterministic elliptic problems, with elliptic
coefficients E

[
λ2k

]
and modified (deflated) rhs

dimension is dimVh

Resolution of a sequence of linear stochastic equations
dimension is dim SP

Update problems : system of linear equations for stochastic random variables
dimension is m × dim SP

To be compared with the Galerkin problem dimension
dimVh × dim SP

Weak modification of existing (FE/FV) codes
(weakly intrusive)

O. Le Maître PGD for stochastic PDEs
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Example definition

D (Dogger)

L (Limestone)

M (Marl)

C (Clay)
z=200

z=0

z=295

z=595

z=695 z=695

z=595

z=200

z=0

z=350

x=
0

x=
25

,0
00

Rectangular domain 25,000×695 (m)

4 Geological layers : D (Dogger), C (Clay), L (Limestone) and M (Marl)

O. Le Maître PGD for stochastic PDEs
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Test case definition (cont.) : uncertain Dirichlet boundary conditions

D

C

L

M

h1

h2

h3

h5

Variation lineaire de h4 a h3

h6

h4

∆ Head (m) Expectation Range distribution
∆h1,2 +51 ±10 Uniform
∆h1,3 +21 ±5 Uniform
∆h1,6 -3 ±2 Uniform
∆h2,5 -110 ±10 Uniform
∆h3,4 -160 ±20 Uniform

Heads at boundaries are taken independent

O. Le Maître PGD for stochastic PDEs
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Example definition (cont.) : Uncertain conductivities

Layer ki median ki min ki max distribution
Dogger 25 5 125 LogUniform
Clay 3 10−6 3 10−7 3 10−5 LogUniform
Limestone 6 1.2 30 LogUniform
Marl 3 10−5 1 10−5 1 10−4 LogUniform

Conductivities are taken independent
Parameterization

9 independent r.v. {ξ1, . . . , ξ9} ∼ U[0, 1]9

Stochastic space SP : Legendre polynomial up to order No

dim SP = P + 1 = (9 + No)!/(9!No!)

O. Le Maître PGD for stochastic PDEs
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Deterministic discretization :
P− 1 finite-element

Mesh conforming with the geological layers

 0  200  400  600  800  1000  1200  1400
 0

 700

x

z

Ne ≈ 30, 000 finite elements

dim(Vh) ≈ 15, 000

Dimension of Galerkin problem : 8.2 105 (No = 2),
3.3 106 (No = 3)

O. Le Maître PGD for stochastic PDEs
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Convergence

Galerkin residual (left) and error (right) norms as a function of m (No = 3)
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CPU times (No = 3)
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Full separation

So far, deterministic / stochastic separation :

Um(x , ξ) = Um(x , ξ1, . . . , ξN) =
m∑

r=1

ur (x)λr (ξ1, . . . , ξN),

where λr (ξ) ∈ S.
Does not address high-dimensionality issue whenever N is large.

However, if the ξi are independent, S has a tensor product structure,

S = S1 ⊗ · · · ⊗ SN,

we can think of a decomposition of the form

Um(x , ξ) =
m∑

r=1

ur (x)λ1
r (ξ1) . . . λN

r (ξN),

where now λi
r (ξi ) ∈ Si .

O. Le Maître PGD for stochastic PDEs
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Full separation

Extension of the previous algorithms for the computation of

Um(x , ξ) =
m∑

r=1

ur (x)λ1
r (ξ1) . . . λN

r (ξN),

is straightforward :

same deterministic problems

stochastic and update problems for the (separated) λr are substituted
with alternated direction resolutions : iterations over sequence of
one-dimensional problems.

For instance, stochastic problem(s) in direction i : find λ ∈ Si such that

E
[(
λ1

r . . . λ . . . λ
N
r

)(
λ1

r . . . β . . . λ
N
r

)∫
Ω

k∇ur ·∇ur dx
]

= E
[
−
(
λ1

r . . . β . . . λ
N
r

)(∫
Ω

k∇U r−1 ·∇ur dx +

∫
Ω

fur dx
)]

, ∀β ∈ Si .

O. Le Maître PGD for stochastic PDEs
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Full separation

Clearly, using

Um(x , ξ) =
m∑

r=1

ur (x)λ1
r (ξ1) . . . λN

r (ξN),

we trade convergence with complexity reduction.

This can be mitigated using using a Rλ-rank approximation of the stochastic
coefficients :

Um(x , ξ) =
m∑

r=1

ur (x)

( Rλ∑
r ′=1

λ1
r,r ′(ξ1) . . . λN

r,r ′(ξN)

)
,

with a greedy-type approximation of low rank approximation of λr .

Extension of the algorithms is immediate

Rλ can be made rank dependent

Efficient implementation requires separated representation of the
operator.

O. Le Maître PGD for stochastic PDEs
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An example : diffusion

Independent random conductivities over 7 sub-domains, with same
distribution (log-normal) : N = 7

Si=1,7 = Π10(R), so dim S = 117
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Wave equation (Deterministic)

Consider the deterministic wave equation,

− ω2ρu(x)−∇ · (κ̃∇u(x)) = f (x), inΩ

u(x ∈ ∂Ω) = 0

ω is the frequency
ρ the density
κ̃
.

= κ(1− iβω) ∈ C the wave velocity with κ, β > 0
Let L2(Ω) = L2(Ω,C) with inner product and norm

(u, v)Ω = Re
(∫

Ω

u∗(x)v(x)dΩ

)
, ‖u‖2

L2(Ω) = (u, u)Ω,

The weak formulation : Find u ∈ H1
0 (Ω,C) such that

a(u, v)− b(v) = 0 ∀v ∈ H1
0 (Ω),

with the bilinear and linear forms

a(u, v) = Re
[
−ω2

∫
Ω

u∗vdΩ +

∫
Ω

κ̃∇u∗ ·∇v dΩ

]
, b(v) = Re

[∫
Ω

f ∗v dΩ

]
.

O. Le Maître PGD for stochastic PDEs
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Wave equation (Stochastic version)

Take now ω, ρ and κ as second order random variable defined on a
probability space P = (Θ,ΣΘ, µ).
We extend L2(Ω) and H1

0 (Ω) to L2(Ω,Θ) and H1
0 (Ω,Θ) by tensorization, and

we assume
U(x , θ) ∈ L2(Ω,Θ)⇔ E {(U(·),U(·))Ω} <∞.

Variational form of the stochastic wave equation
Find U ∈ H1

0 (Ω,Θ) such that

A(U,V )− B(V ) = 0, ∀V ∈ H1
0 (Ω,Θ),

where

A(U,V ) = E
{

Re
[
−ω2(θ)

∫
Ω

U∗(θ)V (Θ)dΩ +

∫
Ω

κ(θ)∇U∗(θ) ·∇V (θ) dΩ

]}
,

and

B(V ) = E
{

Re
[∫

Ω

f ∗V (θ) dΩ

]}
.

O. Le Maître PGD for stochastic PDEs
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PGD approximation

We seek for U ∈ H1
0 (Ω,Θ) = H1

0 (Ω)⊗ L2(Θ) has the separated form

U(x , θ) =
r=∞∑
r=0

ur (x)λr (θ), ur ∈ H1
0 (Ω), λr ∈ L2(Θ),

following the PGD approach based on the deterministic and stochastic
problems

uR = D(UR−1, λR) : A(UR−1 + uRλR , vλR)− B(vλR) = 0,∀v ∈ H1
0 (Ω) Deter. problem

λR = S(UR−1, uR) : A(UR−1 + uRλR , uRβ)− B(uRβ) = 0,∀β ∈ L2(Θ) Stoch. problem

and update problem :
given ur=1,...,R compute λr=1,...,R such that

A

( R∑
r=0

urλr , ur ′β

)
− B(ur ′β) = 0, ∀β ∈ L2(Θ) and r ′ = 1, . . . ,R.
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PGD-Arnoldi algorithm

Assume rank-R approximation has been obtained.
1 Initialization : set λ ∈ L2(Θ), l = 0
2 Arnoldi subspace generation :

Set w = D(UR , λ)
For r = 1, . . . ,R + l w ← (w , ur )Ω

If h = (w ,w)Ω < ε break
Set l ← l + 1, uR+l = w/h
Set λ = S(UR , uR+l )
Repeat for next Arnoldi vector

3 Update solution : set R ← R + l and solve

A

(
R∑

r=0

urλr , ur ′β

)
− B(ur ′β) = 0, ∀β ∈ L2(Θ) and r ′ = 1, . . . ,R.

4 Check residual to restart at step 1 or stop
Advantage : limited number of deterministic problem solves to generate the
deterministic basis.
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Stochastic parametrization

We introduce a finite set of N independnt real-valued r.v. ξ .
= (ξ1 . . . ξN) with

uniform distribution on Ξ
.

= 1N . The random frequency, density and stiffness
are parametrized using ξ,

(ω, κ, ρ)(θ) −→ (ω, κ, ρ)(ξ(θ)),

and U is sought in the image probability space :

H1
0 (Ω,Ξ) 3 U(x , ξ(θ)) ≈

R∑
r=1

ur (x)λr (ξ(θ)).

U(x , )̇ is expected to be smooth a.s. : need for a limited number of
spatial modes to span the stochastic solution space,

U(·, ξ) can exhibit steep and complex dependences with respect to the
input parameters.

The complexity of the mapping ξ ∈ Ξ 7→ U(·, ξ) ∈ H1
0 (Ω) reflects in the

stochastic coefficients λr (ξ) and calls for appropriate discretization at the
stochastic level.
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stochastic multi-resolution framework

Presently, we use piecewise polynomial approximations at the stochastic
level :

Ξ is adaptively decomposed into sub-domains through a sequence a
dyadic (1d) partitions

A tree structure is used to manage the resulting stochastic space

Multi-resolution analysis is used to control the local adaptation
(anisotropic refinement of the partition of Ξ)

Stochastic and update problems are solved independently over the
sub-domains (efficient parallelization)

(see [Tryoen, LM and Ern, SISC 2012])

Introduction
Spectral UQ

Stochastic hyperbolic systems
Stochastic adaptation

Tree data structure
Adaptive scheme
Burgers equation
Traffic equation

Adaptivity
Singularity curves are localized in ⌅ : stochastic adaptivity

Incomplete and anisotropic binary trees

Operators for multi-resolution analysis :
Prediction operator : define the solution in a stochastic space larger than the
current one (add new leafs and L2-injection).

Restriction operator : define the solution in a stochastic space smaller one the
current one (remove leafs and L2-projection).

Rely on recursive application of elementary (directional) operators, full
exploitation of the tree structure.

Le Maître Galerkin Method for Uncertain Conservation Laws
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PGD-Arnoldi with Adaptation at the Stochastic level

Given the approximation U r and a stochastic space Sr

1 Arnoldi iterations to generate orthonormal ur+1, . . . ur+l , using λ ∈ Sr

2 set r ← r + l
3 While not satisfying accuracy criterion, repeat

Solve the update problem for {λ1, . . . , λr} in Sr

Enrich adaptively Sr

4 Compute residual norm
5 If not converge restart at step 1.

Observe :

Same approximation space for all stochastic coefficients (ease
implementation and favor parallelization)

Continuous enrichment, no coarsening

Successive Arnoldi spaces generated using an coarse stochastic space !
(in fact robust)

Accuracy requirement should balance stochastic discretization and
reduced space errors.
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Example

log(κ) ∼ U[−4 : −2]

ω ∼ U[0.5, 1]

ρ = 1 and β = 0.05

Third order (Legendre) expansion.

r = 8 r = 13 r = 19 r = 26 r = 30

ω

log(κ)

ω

log(κ)

ω

log(κ)

ω

log(κ)

ω

log(κ)
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Example

Selected Arnoldi modes : real part (top) and imaginary part (bottom)
r = 1 r = 3 r = 5 r = 15 r = 25

r = 1 r = 3 r = 5 r = 15 r = 25
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Example

Residual Error # of sub-domains
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Stochastic Navier-Stokes equations

Consider the steady, incompressible Navier-Stokes equations

U(θ)∇U(θ) = −∇P(θ) + ν(θ)∇2U(θ) + f (θ) in Ω,

∇ · U(θ) = 0 in Ω,

U(θ) = 0 on ∂Ω.

in a bounded (2d) domain Ω.
In view of PGD of the solution, we need to consider (mainly)

1 non-linear character (increases when ν ↓ 0)
2 enforcement of the divergence free constraint
3 stabilization (upwinding) due to the convective term

None of these will be really address here, simply numerical experiments !
[Tamellini, LM, Nouy, SISC, 2014]
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Weak form

Deterministic space V = H1
0,div (Ω).

Weak formulation : Find U ∈ X .
= V⊗ S such that

E
{∫

Ω

[(U(θ)∇U(θ)) · V (θ) + ν(θ)∇U(θ) ∇V (θ)− F (θ) · V (θ)] dx
}
∀V ∈ X.

The deterministic problem u = D(λ,Um) writes : ∀v ∈ V∫
Ω

(
E
{
λ3
}

u∇u + u∇ūm(λ) + ūm(λ)∇u
)
· vdx +

∫
Ω
E
{
νλ2

}
∇u∇vdx

=

∫
Ω
E
{
λ(F − Um∇Um)

}
· vdx −

∫
Ω
E
{
νλ∇Um}∇vdx .

where ūm(λ) = E
{
λ2Um}.

Stochastic problem λ = S(u,Um) writes : ∀β ∈ S

E
{
λ2β

}∫
Ω

(u∇u · u)dx + E
{
λβ

∫
Ω

(u∇Um + Um∇u) · udx
}

+

∫
Ω
E {νλβ}∇u∇udx

= E
{
β

∫
Ω

(F − Um∇Um) · udx
}
− E

{
β

∫
Ω
ν∇Um∇udx

}
.
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Complexity

Resolution of a sequence of deterministic problems, NS + Lin. term and
deflated rhs

dimension is dimVh

Resolution of a sequence of quadratic stochastic equations
dimension is dim S

Update problems : system of quadratique equations for stochastic
random variables

dimension is m × dim S
To be compared with the Galerkin problem dimension

dimVh × dim S

Weak modification of existing (FE/FV) codes
(weakly intrusive)
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Stochastic discretization :
Parametrization of ν(θ) and F (θ) using N i.i.d. random variables :

ξ = {ξ1, . . . , ξN} ∼ N(0, I2).

Wiener-Hermite polynomials for the basis for S

λ(θ) =
∑
α

λαΨα(ξ(θ)),

Truncature to (total) polynomial degree No :

dim S =
(No + N)!

No!N!
.
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Case of a deterministic forcing and a random (Log-normal) viscosity :

 0.0025  0.005  0.0075  0.01

pd
f

ν

pν

ν(θ) =
1

200
exp

(
σν√

N

N∑
i=1

ξi (θ)

)
(+10−4), ξi ∼ N(0, 1) i.i.d .

Same problem but for parametrization involving N Gaussian R.V.
Galerkin solution for N = 1 and No = 10 (Wiener-Hermite expansion)

-6
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Mean and standard deviation of UG rotational.
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First PGD-Arnoldi modes for N = 1 and No = 10
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Convergence of PGD solution N = 1 and No = 10
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Convergence with rank of resiudal and error norms ; POD coefficients at m = 15 (right)
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Norms of the POD coefficients at m = 15 (left), residual norm (center), |λ|’s norm
(right).

PGD captures the essential features of the stochastic solution
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Stochastic forcing F : Hodge’s decomposition

F (x , θ) ≈ F N(x , ξ(θ)) = f 0 +
N∑

k=0

√
γk f k (x)ξk (θ).

KL modes of the forcing :
scale = 1 scale = 5 scale = 5 scale = 5 scale = 15

scale = 15 scale = 15 scale = 15 scale = 25 scale = 25

Forcing modes for L = 1, σ/f 0
ω = 0.2
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First PGD-Arnoldi modes
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Results at ν = 1/50 : No = 3, N = 11, P = 364
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Residual (left), ‖Um − UG‖ (center) and norm of POD modes for m = 45
(right).

Essentially < 50 Navier-Stokes solves !
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Residual computation :

computation of the residual in H1
0,div (Ω)

need to reconstruct the pressure

2 alternatives : apply PGD to the pressure unknown, given the reduced
velocity approximation, or recycle the pressure fields associated to the
enforcement of the divergence-free constraint during the Arnoldi process
as a reduced pressure basis.
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Comparison of different error measures of the PGD solution at ν = 1/10,
1/50 and 1/100 (from left to right).
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Thanks for your attention
(and to the organizers !)
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