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Brief historical overview

v

Renormalization Group (Kadanoff transformation) (1966)
Block Renormalization Group (BRG) method

Numerical Renormalization Group (NRG): Wilson(1975)
Density Matrix Renormalization Group (DMRG): White(1992)
Quantum chemistry version of DMRG (QC-DMRG):
White(1999),Mitrushenkov(2001),Chan(2002),Legeza(2002),
Reiher(2005),Zgid(2006),Yanai(2008),Xiang(2010),

Ma(2012), Wouters(2013)...
Matrix Product State (MPS):

Ostlund, Rommer(1995), Cirac, Verstraete(2004),
Oseledets(2009)
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Topics to be covered

1. Motivation and former approaches:
Model Hamiltonian, i.e., problem to solve
Problem in the language of tensor factorization
Change of basis and truncation
Block Renormalization Group (BRG)
Numerical Renormalization Group (NRG)

2. New algorithms in quantum chemistry with polynomial costs:
e Density matrix renormalization group (DMRG) white,1992
e Matrix Product State (MPS) Ostlund,1995; Verstraete,2004
e Tensor Network States (TNS) Marti,2010; Murg,2010; Chan,2013

3. One- and Two-orbital mutual information—Entanglement
e Optimizing the algorithms Legeza,2003; Rissler,2006
e Efficient construction of active spaces Legeza,2003
Remark: We give a technical introduction to low rank tensor factorization and do not
intend to present a detailed review of the field. Only some selected topics will be

covered due to time constraint.



» In ab initio calculations M atoms, N, electrons,
Coulomb-interaction with h=e=m=1
Ne,M

Ne 2 Ne
\VE Ze, 1 1
H = Y _ E - 4= E [
eyl L C I oyl L]
= =l,a= j=1

Hamilton-operator, where Z, is the charge of nucleus «, and
r denotes the positions of the nuclei and electrons.

» The ground state solution is often approximated in a
mean-field manner, where the explicit electron-electron
interaction is interchanged by an effective single-particle term.
The so called Hartree-Fock (HF) solution of the resulting
model often recovers the major part (99 %) of the total energy
and provides a good starting point for post-HF computations.

» The correlation energy can be defined as the difference of the
exact and the HF energy. The electron correlation, i.e., the
beyond mean-field behavior of the electrons, plays an
important role in the quantitative description of the chemical
properties.




Hamiltonian of the interacting electron system

» The system is described by the Hamiltonian, for example,

i i
H= E TijoCiyCjo + E Viikioo C,-TUCJ-U/ Cko' Clo

ijo ijkloo’

» Tj; denotes the one-electron integral comprising the kinetic
energy of the electrons and the external electric field of the
nuclei.

> Vijji stands for the two-electron integrals and contains the e-e
repulsion operator.

3. B 4yt bt o) L

Vijkl = d de X2¢,-(X1)¢j (Xz)_,i

X1 —Xo

Oy (X2)P(X1)

» Molecular integrals are calculated via one-electron basis of
atom-centered Gaussians

» Major aim: to obtain the desired eigenstates of H.



Molecular orbitals, configuration space

Molecular orbitals are obtained, e.g., in a suitable mean-field or
MCSCF calculation (for example using the MOLPRO program
package).

Example.: LiF (6/12)

A .
i 6 electrons on 12 orbitals

i

Each molecular orbital

Virtal orbitals can have four states

5 I using spin-orbit basis:

()] {

c

w I [0> empty
Ly . |¥> singly occupied with down spin
Ly HF orbitals |4 > singly occupied with up spin
Y

[v&> doubly occupied

» Two major approximations:
(1) selection of the finite number of basis states
(2) restricted number of configurations is taken into account



Corrections to the Hartree-Fock state
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6 electrons on 12 orbitals

» The full configuration interaction (full-Cl) wavefunction can
be expressed in terms of Slater determinants by removing one
(S), two (D), three (T) or four (Q) electrons form the HF orb.:

Vror = aoPscr + Z as®s + Z ap®p + Z ardr+....
S D T
» Correlation energy: Ecorr = Erct — Exr.

» Other expansions are also possible, e.g., Coupled Cluster (see
Schneider’s talk).



The problem in the language of tensor factorization

> Local tensor space A, with dimA = q, is denoted by e

» Operators for basis |n, o) with n = {0,1} and o = {], 1}

0 0 10 1 0
. _ _
= (o) on) (o )

» In a C* representation e represents a spin-orbital basis with

q = 4. Relevant orbital operators in the |=),| |),| 1), | 1)

basis:
0 00O 0 0 O
t_ 4 10 0 0O 1 0 O
cl=cleb=1] ¢ o o| d=Prec=17 ¢
0100 0 0 -1
1 000 1 0 0
0100 0 -1 0
I = bbb = 0010 , Ph= Phy®Phy = 0 0 -1
0 001 0O 0 O

o O O o
;/

— O O O



The problem in the language of tensor factorization

» We can put together two C* tensor spaces, i.e., form a
two-orbital system (ee)
» A2 = A @ A?) with dimA(?) = dimAMDdimA®) = ¢
{a1,02}

» Basis of the ee system: \¢(1’2) ) = \(b&ll)) ® \¢&22)>

i
)

-

{1,032} = (1 —1)g+ a2 I

0o

ap, a2 €{1,2,3,4} = {[=),[ 1), [ 1),[ 1)}
{alag} € {1,2,3,4...16}



The problem in the language of tensor factorization

» Relevant operators for the ee system (dimA(12) = 4 x 4):

d =cdel, d =rPad 1<l

d.=cel, d.=pPhed, PhePrcPh
h171 e h1’16
H=| + ..
hie1 ... hie1e

» Full diagonalization of H gives exact solution (full-Cl).
» The k't eigenstate of a two-orbital Hamiltonian is

ay,ap=1...q; k—l



Change of basis and truncation

» We can represent the Hamiltonian in the eigenbasis of the ee
system by a basis state transformation

» (Order eigenstates in a descending order, and) form an
operator from the corresponding eigenstates as:

\Ugl,2)
W(lvz)
o=| 2% |, oof=1

12
\UE’; )
» Transform operators to the new basis as H = OHOf
ch = OchOT, c;¢ = OczTiOT7 etc

» Idea of truncation: select M < g states only so OOt # 1.



o) =14) o) =11

Vi = Z Om2(a1-1)+az|Par) @ |Pay), a1, a2 € {1,2} = {], 1}

1,002

Example: two half-spins on ee,

o4l It 1L 1t s
V| 1 0 0 0 ;101
V| 0 1/vV2 1/¥2 0 || 0 1
V3| 0 1/V/2 —-1/v/2 0 || 0 0
V| 0 0 0 1 1 1
Take column 1 and 3 for | Take column 2 and 4 for 7
1 0 0 0
0 _1/ﬁ - (B [\L])m,al 1/\@ 0 - (B [T])m,al
0 0 0 1

In the literature A= BT is used.

wm - Z (A(z) [(X2])a1,m’¢041> ® |G>(\{2>



The problem in the language of tensor factorization

» For a system with N molecular orbitals: eee... e

> AL2-N) — N A with dimA®2-N) = [TV dimA() = gV

1,2,..,N 1,2,..,N 1 2 N)y .
> \US( ) = Zal...a;\/ Uil,az,...ozN,k‘(l)((;yl)) & |¢‘(3‘2)> ®...® |¢£¥N)>'
> Uéllizl\QN « is a tensor of order N corresponding to the kth

eigenstate of the N-orbital Hamiltonian

oy
Og )
Example: N =38 o, oy
Ol oy
Os

» Problem: dimension of U scales exponentially with N
— We need approximative methods



Idea of renormalization: Block Hamiltonians

BRG

S o &

» First we form two-orbital Hamiltonians (blocks) from every
two-orbitals and diagonalize them to obtain their eigenstates:

Wi =50, L, USD e) © 168
v =y 53 9 168 © %)
WD = 3 0 USD) 168)) @ 16l
WD =3 0 U 1680) © 168
a=1...gand k=1...¢°



Idea of renormalization: Truncation

» The original idea was that in each RG step we truncate the
Hilbert space of the blocks by keeping only g new states out
of the g eigenstates states.

» The original form of the Hamiltonian is retained, for lattice
models analytic solution is possible (flow equations,
fixed-point, etc (Example: ITF model))

» we can keep g < M < gV states but we loose analytic
solution, new operators appear (NRG)

> In general we keep dimension of the Hilbert space under
control but we loose information — approximate solution of
the problem

» Questions:
— how to choose which states to keep at each RG step?
— how many states to keep at each RG step?
— how accurate will be the truncated solution compared to the
full-Cl solution?



Numerical Renormalization Group (NRG) method

NRG

=] =

= =]e
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Energy Levels

i i+l i +2

» With exponentially decreasing hopping amplitude, t, = A\~"/2,
where ) is the discretization parameter.

» Lowest lying g < M < g" states are kept at each RG
iteration step (works due to separation of energy scales).

» Problems for lattice models with A\ — 1, blocks are formed
with open boundary condition, segmentation of the total

system



oo |m) =3 (A%a2])ayimlar) @ a2), ]

my,a
1M M PR m
ee Use the identity : |my) = Z(Al[al])l;m1|a1>,
o1 % &
.A1 m; my AZ m, m, A ms
cee  |ms)= Z (A*[a3]) myims; | m2) © [23),
1 2 3
my,a3

Transfer tensor:

My Aﬂ
)= S Aoy mi1)@la),
mj_1,&; :

Series of transfer tensors:

Imp) = Y (Aaa]. . Alla)agmlar - ai),

ag,...0y

For each molecular orbital we can assign a matrix: (A'[a/])m,_,:m,
and the wavefunction can be expressed as a product of matrices.



Tensor product approximations:

» Matrix Product State (MPS) representation:

q
W)= D ALAL AN Jan)az) o)

1,02, N

Ai[ma m]CIi

» We can call this a network. Matrix product state (MPS) /
Tensor Train (TT) Ostlund, Rommer (1995), Verstraete, Cirac (2004),
Oseledets (2009), Hackbusch (2009)



DMRG provides MPS wavefunction:

Density matrix renormalization group wavefunction: (White, 1992)

-0 |

—

T |
- |

-

Forward sweep

-t

Backward sweep

Vre) = D Yammaaldl) @ 165)) @ 165)) @ 168)
010420

where 4,0/, 1a,,,a, coefficients are determined by an iterative

diagonalization of the superblock Hamiltonian.

DMRG algorithm provides the optimized set of A; matrices.



DMRG Superblock configuration (1+1+1+r=N)

System block Environmnet block

with | orbitals with r orbitals

1.[=]e o[ & < < <] Formtensor space
M=q q q Mr(quG) Form Hamiltonian

and diagonalize

2o |l = = =

Form bi-partite

— = ~ — representation 1 DMRG
[ ol o & < <= <] Form system Iteration
Mxxq axMm, block reduced step

density matrix
Diagonalize reduced density matrix

4. | Truncate basis
Renormalize operators

E Sle o= = = =

M g q M,(=q") DMRG transforms
Forward sweep Single-particle basis states to
> multi-particle basis states
M, a 9 M=q .
Backward sweep Sweeping

]

_ X Similar to non-error free
M=q g ¢ M,<<q"* .
data compression




o Wb

M, MR

. Form and diagonalize the superblock Hamilton operator

Vra) = Y. Yaapianal 080650 Yol Yo|¢l))

QO 410420
where ¥, 10,,,a, coefficients are determined by an iterative
diagonalization of the superblock Hamiltonian.
Form a bi-partite representation |[Wrqg) = Zu w,-vjlqb(L))]qﬁ(Rb

Form reduced subsystem density matrix p Z wzﬂf

Diagonalize p — w, eigenvalues, |¢a ) elgenstates

Form O matrix using M selected |¢£j)> eigenstates
corresponding to the M largest wy,
Renormalize operators: ¢; = Oc;Of



Schmidt-decomposition for a bipartite system

> For a bipartite system: [Wr) =3 Yijloh) ® ](bf)

> Reduced density matrix: p(.L.’R) = ZJ. w,-jq/;f/j

i’

> If |W) pure state then for W) € A = AL @ AR

r<min(M,Mg)
wi= Y wle)elf).
i=1
> |ei), |fi) biorthogonal basis, and r is the Schmidt number
» If r =1 =-product state, for example, | [1T)| 1)
» If r > 1 =entangled state: non-local property of quantum
mechanics. Example: 1/v2(| L)1) — | 1) 1))

» Neumann entropy: s(p?) = =Tr(p?Inp?),y =L, R
> |W1) pure state — s(pb) = s(pF)
» In general, pb and pR are in mixed state



DMRG wavefunction in MPS form for the /| — e @ —r superblock

Vo= Z Z Z wmla/+1al+2mr

{a} m
X(B/[Oé/] e Bz[ag])ml;al
X(B/+3[O¢/+3] .. BNfl[aNfl])mr;aN X |C¥1 R C¥N>,

Connection to the Cl-type wavefunction (Marti, Reiher 2011)
V=2 Cuy®ap
{a}
Therefore, the Cl-coefficients in MPS form:

M, M,

C{a} = Zzwm’ama/umf

ml m"

X(Bileu] - .. Balaz]) miiay X (Bigslass] - - Bn—tlan—1])mran



Pictorial /diagrammatic description of the one-site DMRG

v

Component tensors by a dot (or vertex).

Each index or variable by a single line coming out of the vertex
Line connecting two tensors corresponds to an index over
which one has to sum. We call this contraction.

DMRG: on the level of operators; MPS: on the level of states.

v Yy

v

Tensor-Train MPS DMRG
101 (f 6 @ real site 6 x  Multisite tensorspace
|wo virtual site
8r ) core tensor
6l 4 4
[Offocoooo00d
al
2 2 2
= 2r %
¥
£ |00 I
T of 0 0
: o0 k
g -2r a
o -2 -2
_4l
loMoooco00009
-6 -4 -4
_gl
-10f R@ @ -6 -6
0 5 10 0 5 10 0 5 10

N or leafs N or leafs



Pictorial /diagrammatic description of the one-site DMRG

v

Component tensors by a dot (or vertex).

Each index or variable by a single line coming out of the vertex
Line connecting two tensors corresponds to an index over
which one has to sum. We call this contraction.

DMRG: on the level of operators; MPS: on the level of states.

v Yy

v

Tensor-Train MPS DMRG
6 6 @ real site 6 x  Multisite tensorspace
virtual site
|wo > core tensor
4 4 4

Go00ogeo00d)
2r 2 2
é QK 1
-2 -2 -2
co00Mo6600

W

Depth in the tree
o
o
o

0 5 10 0 5 10 0 5 10
N or leafs N or leafs



Pictorial /diagrammatic description of the one-site DMRG

v

Component tensors by a dot (or vertex).

Each index or variable by a single line coming out of the vertex
Line connecting two tensors corresponds to an index over
which one has to sum. We call this contraction.

DMRG: on the level of operators; MPS: on the level of states.

v Yy

v

Tensor-Train MPS DMRG
101 6 @ real site 6 x  Multisite tensorspace
|wo virtual site
[ ) core tensor
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Error sources and data sparsity

» In each DMRG step, the basis states of the system block are
transformed to a new truncated basis set by a unitary
transformation based on the preceding SVD

» This transformation depends on how accurately the
environment is represented and on the level of truncation

» Environmental error, degweep, is minimized by a successive
application of the sweepings

» Truncation error: deg = 1 — Zgﬂzl Wa

> For dcsweep — 0, 0E;el = Const X derr (O.L. and G. Fath, PRB
1996).

» DMRG is a variational method

» DMRG is a data-sparse representation of the wavefunction

sparsity = dim(Agg)/ dim(Apcr)



Target state

> In the MPS-based approaches, several eigenstates can be
calculated within a single calculation.

» Reduced density matrix of the target state, p, can be formed
from the reduced density matrices of the lowest n eigenstates

as
P= Py
Y

withy=1...n > py=1and Trp, = 1.

» Excited states corresponding to the action of given operators
can also be mixed (see Noack’s talk).



Example: targeting several states together
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Dynamic Block State Selection (DBSS) procedure

Optimal truncation scheme: ds7r < € fixed in advance

— M is chosen accordingly in every step

Example from 2002: DBSS approach applied on F» (D2p) (18/18)
Arct = (2N)!/[(2N — Ng)!N!] = 9075135300

ApMrc = M) x 4 x 4 x M, = 28800000 (M, = 1200, Mr = 1500)
sparsity~ 315

/\DMRG = M/ X 4 X 4 X Mr = 7680 (M/ = 120, Mr = 4)

sparsity> 1181658 O.L., Roder, Hess, Phys Rev B (2002)
2000 T T T T T

*X X M
§ 1500 - 5 - MI L]
% FZ, L=18, Mmin:256' TREm X=10 _x— M
2 10001 U
g 00
= 5 - |
o O
0 !
0 10 20 30 40 50 60 70
1072 T T T T T
S \a%vvavd v Ord:[151076165131214132114178189]‘
510" VWWW g
o VNG
2 \4
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A priory defined error margin for ground and excited states

One can define the required accuracy prior to the calculations

All parameters of the algorithm are adjusted dynamically based on
the strength of entanglement encoded in the wavefunction

o -
bl CH,, L=13,M_ =32, 1XS
LILTIILH b h Mn=32:
5 10° ag
N 4
s P g;g;ggg: £000008gEa
g x 107 O+ gttty
] * 102 TEE ETHak B FAREERRER
ool + 102 OOODOOD;XX,(Xxxxxxxxxxxxxx
o 10 00000005000000000
o0 5 10 15 30 35 40 45 50

25
lteration

Relative error

O.L., Sélyom, PRB (2003)



Part |lI
Entanglement based optimizations

» Block entropy —Entanglement
e Controlling accuracy
e Controlling convergence
o Kullback-Leibler relative entropy
» One- and Two-orbital mutual information—Entanglement
e Optimizing the algorithms
e Efficient construction of active spaces
e Entanglement and change of basis
e Correlation functions and entanglement
e |dentifying static, dynamic correlations
e Description of bond formation and breaking procedures



Block entanglement

00000000 0= [v) (¥

___________________

000000000

2N /
For critical 1 — d systems : sy(/) = %I” [ sin <7/T\/ >} te

Laflorencie, Sgrensen, Chang, Affleck, PRL (2006), O.L., Sélyom, Tincani, Noack,
PRL (2007)



Mutual information: entanglement correlation

0000000000 .-
0000000000 -

sB = —Tr(QBlngB)

A subsystem B subsystem

- == - o mm owm wmw

5”9 describes the entanglement of site p and g with the rest of the system.
P9 describes the mutual information between site p and g

1P9 = (SP + 59 — SPI)(1 — bpq)

O.L., Sélyom, PRB (2003): Quantum Chemistry,
O.L., Sélyom, PRL (2005): quantum phase transitions (QPT) with g = p 4 1.

Rissler, White, Noack, ECP (2005): Quantum chemistry, arbitrary p and q.



Block entropy profiles in quantum chemistry (LiF 6/12)

Non-optimized tensor topology

Optimized tensor topology
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s 2 3 5 6 7 9 10 s 2 3 5 6 7 9
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e Results as a function of sweepings indicated by different colors
e Mutual information: entropy reduction by forming enlarged
blocks:




Dynamic Block State Selection (DBSS) procedure

» To control the weight of retained information during the RG
procedure:

0 _

L L
1Y pkeptpliei)t + (1 - pkept)pl(OS)t s

(L)
kept
(1) from the remaining eigenvalues with

0™ ()
Trpkopt = Trplost =1
» The accessible information for such a binary channel would be

less than the Kholevo bound

where p is formed from the M largest eigenvalues of p(b)

and p

X S S(P) - pkepts(pkept) - (]- - pkept)s(plost) )

» In DMRG the atypical subspace is neglected — loss of
information.

> truncation scheme: x = S(p) — S(pkept) < € fixed in advance
— M is chosen accordingly in every step.
O.L., Sélyom, PRB(2004)



Entropy reduction by forming an enlarged system:

st(l) + siv1 + (l) = s.(1+ 1),

Obtained correlation in one RG step:

IL(I) = SL(/ + 1) — SL(/) — S5/+1

Entropy sum rule:

In case of truncation:

N—1 N
>IN+ s < (N-1)e
1=1 =1

Q. Real system

b. Real systemn

Relative error

ForL=N-2—r=M, = Mg

with (/) <0
1</<N-1
N
- E S/ .
=1
10"
o CH, 6/3)
O H,0 (8/24)
& H,0(10/41) 107
x F,(18/18) 3 %
% SnO (20/59) 10° g
8 2 )
E o4 <o
S10 g
g o 2 o
2.
x £ 10 =
o g o
g UJ10"@
[e]
107
107
10° 10° 10* 107 107 10° 10° 10° 107
X X

1, correlation functions



Effect of the environment block—efficient warmup

» New block states after SVD in each RG step depends on how
accurately the environment is represented.

> pM) £ pr, @ pr
» For a pure Vp: s, = sg

» Kullback-Leibler relative quantum entropy:

K(pLllor) = Tr(pLInprL — prinor),

where pr, and o, denote reduced density matrices of the left
block corresponding to two different right (environment)
blocks.

» K measures how the system (left) block reduced density
matrix changes as we change the environment.

» Optimize environment block based on Kullback-Leibler
entropy.



Example: LiF 6/12, orbitals 1,2,3 are the HF orbitals.

1B o= & & &5 &5 & & & &

M=q a ¢ M=16
M
ol = = @ = = o = =
Mxq axM,
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"

Consider  three
different M,
basis sets: R R o

,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,

The reduced density matrix of
the L = [ + 1 subsystem de- " s
pends on the basis states used
for the R = 1+r environment: s =sssses
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Efficient construction of the active space

The larger the entropy value for a given orbital the larger its

contribution to the total correlation energy. Example LiF (6/25):

02|97 oM 08 @ oM
[ w A Ko} * A
. = B o = B
0.15} | @ 4 B, 0.6 L 4 B
S N S Vi
T ooar| | wo4r ||
L I
L BN OF I
kit
005011} o i i oz 1)
R EEERERE Qo
P 9 edlE R C Q0%
bttt iigei il i@ ol sgoosget il i ooqak0
1 5 10 15 20 25 1 5 10 15 20 25
Orbital index Orbital index
r=3.05 r=13.7

CAS-vector = ordering sites with decreasing site entropy values.

Include orbitals with largest entropies in the expansion of the
active space.
Cl-based Dynamically Extended Active Space procedure




Change of basis and entanglement

N
=t Z (JO‘ J+1a '+1,ch,a> + Uznjanjvi

j=l,0 Jj=1
v o
H= Z CkaCkU N Z Ch11Cho Ckal Chi+ho—kst
k1,ka,k3

e(k) =, e~ t(r), where k; = (2mn)/N, —N/2 < n < N/2.
Tjj = —2tcos(ki)o(i — j) and Vi = (U/N)o(i +j — k —1)

e ke e

k

real space: U=0,s; =In4; U — oco,s; =1In2.
k-space: U=0,s;, =0; U — 00,s; = In4. 6.1, 1 sslyom, PRB (2003)



Entanglement pattern for a Be ring at r = 2.15 with
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E. Fertitta, B. Paulus, G. Barcza and O.L. (2014)



Basis states transformation applied to the Hamiltonian

There are two ways to implement the basis transformation: one
based on the state and the other based on the Hamiltonian.

H= Z T,Jc G + Z \/,Jk/c c ckcl,
ij ijkl
The function E(U) can be expressed as

E(U) = Z U)jj C G) +Z V(U)iji c,TcTckc/> with
ij ijkl

T(U) = UTU!
VU) = (UsU)V(Ue U).

The correlation functions <c;fcj> and (cTcTckc/> are calculated with

respect to the original state and are not dependent on the
parameters in U. With the function E(U) in this form, its gradient
can be calculated explicitly. Both quantities can be evaluated
efficiently for different parameter sets U.

Murg, Verstraete, O.L., Noack (2010)



One- (p;) and two-orbital (p; ;) reduced density matrix
|¢> = Z Cal,...,a,\, |051---04N> y

1, ON
> pij is calculated by taking the trace of |W) (V| over all local
bases except for c; and «;, the bases of sites i and J, i.e.,

pi,j([ai’ O‘j]’ [O‘:W O‘j]) = Z Cal:“war'v--aajv-waN ngkl,...,a},...,aj’.,...,,a,v

alv"'%""
QN

» In the MPS representation, calculation of pj; corresponds to
the contraction of the network except at sites / and j. The
computational cost scales as (N — 2)m3q>

» This can be decomposed as a sum of projector operators
based on the free variables a; and «;.

» pi and p;; can be constructed from operators describing
transitions between single-site basis states.



2-site density matrix and generalized correlation functions

Transitions between states of a q—dimensional local Hilbert space:

T = ®H®T ® ® I

j=i+1
where (’T(m))k,/ = 5(,+q[k,1])’m form=1...q¢%
Example spin-1/2 boson (gbit):

[+ LS
T, s
T [ 70 ;
i =0 R pEC) T s
L L 79| s+ I

pi | ++ | +% 4 | *%

+4 TOT®  T@TO)
+4 TG 72 @) T(1)
+4 T4)74)




Quantum chemistry (some 40 electrons on 40 orbitals)

Example: Task to determine the electronic structure of the
binuclear oxo-bridged copper clusters

bis(-ox0) i — n? : n? peroxo

"\
Cu/ Cu
\D/ 0

» CASSCEF calculations yield a qualitative wrong interpretation
of the energy difference between different isomers.

» Too large active space required to get qualitatively correct
picture for standard QC methods.

» open d shell problem

P K.H. Marti, I.Malkin Ondik, G. Moritz, and M. Reiher, J. Chem. Phys. 128, 014104 (2008).
Y. Kurashige, and T. Yanai, J. Chem. Phys. 130, 234114 (2009).
T. Yanai, Y. Kurashige, E. Neuscamman, and G.K.-L. Chan, J.Chem.Phys. 132, 024105 (2010).
G. Barcza, O. Legeza, K. H. Marti, and M. Reiher, Phys. Rev. A. 83, 012508 (2011).



Site entropy profile— highly entangled orbitals

bis(-ox0) w—n?: 1> peroxo
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Orbital index

3(1.769) 13(0.381) 14.(1.493) 25 (1.927) 3(1.936) 13 (0.070) 14 (1.988) 25 (1.958)

<>

26 (0.029) 34 (1.810) 35(0.567) 26 (0.028) 34 (1.942) 35 (0.550)




Entanglement picture of the two isomers

; 2. .2
bis( -oxo) [ —M° 1" peroxo
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> peroxo: orbital pairs 3—14 and 13-35 are highly entangled
— bonding and anti-bonding orbitals — the O—-O bond is intact

> bis(p-oxo): all five orbitals 3, 13, 14, 34, and 35 are entangled
— four equivalent Cu—O bonds

» O-0 bond breaking process — transition from the peroxo to the
bisoxo isomer

» Mutual information + DMRG — relative energy of the two-isomers



Entanglement localization, example for bis(x-ox0)

energetical ordering optimized ordering
o A, w 81 o A 28 4
A 3 N
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I~/ & 34| 20
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—mwl ook /0 A R 2
3 6 <71y 15 0 16" R 9,
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> Reordering orbitals by minimizing the entanglement distance:
laise = 22 1ij % [i = jI",

» Apply spectral graph theory: the vector x = (xi,...xy) is the
solution that minimizes F(x) = xfLx = > lij(xi — xj)?, with
S:xi=0and Y ;x?> =1, and the graph Laplacian is
L =D — [ with D,",' = Zj /,'J.

The second eigenvector of the Laplacian is the Fiedler vector.
Sorting elements of the Fiedler vector — optimal ordering.



Entanglement localization

0.8F
2 @ 4 9
2 0.6r o)
€
2 0.4f
8
g 02r 4
4] e PauBaaas aadad
0 20 30 40
Orbital index
1F T T — T T T T T
2 P
g |@ S aessaaad™ s
S 051 /
x
S
§ lossssse !
“ MWM
0
5 10 15 0 30 35 40

Mutual information

5 10 15 30

20 25
Left block length

35

40

Block entropy Orbital entropy

Mutual information

10 20 30 40

10 15 30 35 40

30 35 40

10 15 20 25
Left block length

» Height and width of S(/) can be reduced significantly.
» Comptational cost is proportional to >, S(/).



Sorting elements of the Fiedler vector — optimal ordering.

©p?009?09¢%0
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16111091718 1 2 3 4 5 62021 8 1913152423142212 7 13121 92314 6 212418 2 1911 5 162010 4 1722 7 3 8 15
Orbital index Orbital index

Mutual information and site entropy for the ground state of a ring
cluster built from six Be atoms at the equilibrium bond length
d = 2.15 and at a streched geometry d = 3.30.



Relative energy of the isomers: a notebook calculation

Energy

-541.36
-541.38

-541.4
-541.42
-541.44

-541.46

-541.48

-541.5
-541.52
-541.54

o

o

M__=64, CI=3, opt ORD, opt CAS, M__=64
min start

M. =64,x=10"", CI=3, opt ORD, opt CAS, M, =256 |

start

- —10-5 Cl= —c1o
M_ =256, x=10"", CI=3, opt ORD, opt CAS, Msm"—5127

— — — M=800 in Ref [?]

Fixed number of block states vs DBSS

Dynamic Block State Selection

method AE
Reference energies

CASSCF(16,14) 1

CASPT2(16,14) 6

) ; ’ ’ * bs-B3LYP 221
0 50 100 150 200 250 300 RASPT2(24,28) 120

Previously published DMRG energies

1], DMRG(26,44)[m=800] 78

2], DMRG(32,62)[m=2400] 149

3], DMRG(28,32)[m=2048]-SCF 107

3],DMRG(28,32)[m=2048]SCF/CT 113

st(l+1) — s/ +1) < x

» DBSS guarantees that the number of block
states are adjusted according to the

DMRG energies from this work

DMRG(26,44)[64/256/10 %] 111
DMRG(26,44)[256,/512/10 4] 115
DMRG(26,44)[256,/1024 /10 %] 113
DMRG(26,44)[256,/512/10~°] 113
DMRG(26,44)[256,/1024 /10 °] 113

M. Reiher et al, J. Chem. Phys. 128, (2008).
T. Yanai et al, J. Chem. Phys. 130, (2009).
G.K.-L. Chan et al, J.Chem.Phys. 132, (2010).

entanglement between the DMRG blocks and the

a priori defined accuracy can be reached.

» Dynamically Extended Active Space (CI-DEAS)



Part |V

Higher dimensional networks

» Tree Tensor Network State (TTNS) algorithm
e Multiply connected networks
e Structure of the network
e Optimization of the network topology
e TTNS study of the avoided crossing in LiF



Entanglement — Multiply connected networks
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Rissler, White, Noack, ECP (2006)
Murg, Verstraete, Schneider, Nagy, O.L. (2013)

» DMRG — Matrix product states, i.e. optimization along
one-spatial dimension

> Need for an algorithm that reflects the entanglement topology
of the problem — Tensor Network State (TNS) methods

» Use tensors A'[a]m,..m, where z is the coordination number



The two-dimensional network

A tree tensor network in which all sites in the tree represent
physical orbitals (red lines) and in which entanglement is
transferred via the virtual bonds that connect the sites (black

lines).

ke, e =TT sk <h =

4 AN

Example: each node is represented by a tensor of order z; and the
vertical line denotes the physical index «;. The central node is



Tree Tensor Network State (TTNS)
W)= > Caagloa,...,an).

Q,...,on

Cay...ay describe a tree tensor network, i.e., they emerge from
contractions of a set of tensors {A!, ..., AN}, where

AI [a]ml...mz ?

is a tensor at each vertex i of the network, with z virtual indices
my ... m, of dimension D and one physical index « of dimension g,
with z being the coordination number of that site.

W 2o (b)

m,
(d) mr(A(L}imZ

m,

(a) Vidal, Corboz (2009);
Murg, Verstraete, O.L., Noack (2010);

Nakatani, Chan (2013)




Structure of the network

e The coefficients C,,.. o, are obtained by contracting the virtual
indices of the tensors.

e The structure of the network can be arbitrary.
e The coordination number can vary from site to site.

e The only condition is that the network is bipartite, i.e., by
cutting one bond, the network separates into two disjoint parts.

e For z = 2, the one-dimensional MPS-ansatz used in DMRG is
recovered.

e Entanglement is transferred via the virtual bonds that connect
the sites.

e For z > 2 the number of virtual bonds required to connect two
arbitrary sites scales logarithmically with the number of sites N,
whereas the scaling is linear in N for z = 2.

e The maximal distance between two sites, 2/, scales
logarithmically with N for z > 2.



Tree Tensor Network State (TTNS)




Tensor topology optimization: Zu lii x d;}

lij is model dependent:

» depends on Tj; and Vjj interaction strengths

» depends on the choice of basis

» major aim: could we optimize basis on-the-fly (different
approaches are under investigations, Chan, Murg, Verstraete,
OL Krumnov, Eiser, Schneider); unsolved problem

d;j depends on the tensor topology
> a possible solution: TTNS with site dependent coordination

number z;.

) i ®) Number of sites in the tree:

o~
mz—~Aj}—m,

A
: —-1)A -2
N=1 gy o227 =2
—|—sz;(2 ) P—

The maximal distance between
two orbitals, 2A, scales loga-
rithmically with N for z > 2.



Tensor topology optimization: >, [ x dji (Ex. LiF 6/25)

Entanglement localization (MPS)

Energetical ordering (MPS)  d; = |i — J|
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Optimization of the sweeping

In case of the tree-network, there is more freedom to choose the
optimal sweeping procedure, i.e., to choose the optimal path
through which the network is traversed.

We sweep through the network by going recursively back and forth
through each branch. Therefore, according to the labeling of the
orbitals on the lattice shown in the figure one sweep goes through
the orbitals:
1234546437873291091192112131413151312
16 17 16 18 16 12 1 19 20 21 20 22 20 19 23 24 23 25 23 19.




TTNS study of the avoided
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