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Abstract

If you can define and compute an appropriate inner product, then you
can approximate a function of many variables by a sum of separable
functions using the alternating least squares (ALS) algorithm. In the
simplest case, the inner product just defines the ordinary least-squares
error. More exotic inner products allow one to regularize, incorporate
symmetries, or fit to data. Non-separable structures and operators
can be included as long as one can compute inner products involving
them. I will explain the central role of the inner product and describe
some fun ones I have worked with.
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Approximation by Sums of Separable Objects

Try to approximate

f (x1, x2, . . . , xd)≈

g(x1, x2, . . . , xd) =
r∑

j=1

g j(x1, x2, . . . , xd) =
r∑

j=1

d∏
i=1

g j
i (xi )

for xi ∈ Xi . If the domains Xi are finite, then these are “tensors”.

For fixed r , find {g j
i } to minimize the least-squares error function

E (g) = ‖f − g‖2 = 〈(f − g), (f − g)〉 = 〈f , f 〉 − 2〈f , g〉+ 〈g , g〉 .
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The Alternating Least Squares Algorithm

Make an initial guess for g .

Loop until happy:

Loop through the directions k = 1, . . . , d :

Solve a linear least-squares problem for new {g j
k}j

while fixing {g j
i } for i 6= k.

If E (g) stabilizes but is too large, then try again,
perhaps with larger r .
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Refresher on Ordinary Linear Least-Squares
If g is a linear combination of fixed elements with unknown coefficients
and we want to minimize

E (g) =

∥∥∥∥∥∥f −
∑
j

cjgj

∥∥∥∥∥∥
2

2

=

〈
f −

∑
j

cjgj , f −
∑
j

cjgj

〉
,

the solution is the orthogonal projection of f onto span{gj}, with
coefficients determined by the normal equations

〈span{gj}, (g − f )〉 = 0 ⇔
∑
j

〈gk , gj〉cj = 〈gk , f 〉 for all k .
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Each ALS Step is a Linear Least-Squares Problem
g is a linear combination of fixed elements with unknown coefficients

g =
r∑

j=1

d∏
i=1

g j
i (xi ) =

r∑
j=1

∫
g j
1(x̂1)δ(x1 − x̂1)

d∏
i=2

g j
i (xi )dx̂1 .

�
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�
�
�
�
�
�
�
�
��

���)

span{δ(x1 − x̂1)
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ALS Normal equations via inner products

r∑
j=1

∫ 〈
δ(x1 − x ′1)

d∏
i=2

gk
i (xi ), δ(x1 − x̂1)

d∏
i=2

g j
i (xi )

〉
g j
1(x̂1)dx̂1

=
r∑

j=1

(
d∏

i=2

〈
gk
i , g

j
i

〉)
g j
1(x ′1) =

〈
δ(x1 − x ′1)

d∏
i=2

gk
i (xi ), f

〉
for all k, x ′1.

If f =
Q∑

q=1

d∏
i=1

f qi (xi ) and we set A(k , j) =
d∏

i=2

〈
gk
i , g

j
i

〉
, then the solution is

g j
1 =

r∑
k=1

A−1(j , k)
Q∑

q=1

f q1

d∏
i=2

〈
gk
i , f

q
i

〉
.

We never needed to discretize in x1, choose a basis, etc.
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Regularization as a redefined inner product
For λ > 0 the regularized least-squares error is

Eλ(g) = Eλ(g1, . . . , g r ) = ‖f − g‖2 + λ

r∑
j=1

‖g j‖2 .

Using Eλ keeps the approximation problem well-posed and controls
loss-of-precision errors due to cancellations.
Defining an inner product on vectors of functions by

〈[a1(x1), a2(x2) . . . ], [b1(x1), b2(x2) . . . ]〉 =
∑
k=1

〈ak , bk〉 ,

Eλ is the ordinary least-squares error of approximating

[f , 0, . . . , 0] ≈
[
g ,
√
λg1, . . . ,

√
λg r
]

=
r∑

j=1

g j
(
e1 +

√
λej+1

)
.

We can use the framework we already have.
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Antisymmetric Inner Products
Electrons are (observed to be) fermions, which means wavefunctions for
the multiparticle Schrödinger equation must be antisymmetric: e.g.

f (x1, x2, . . . , xd) = −f (x2, x1, . . . , xd).

We can project a function onto its antisymmetric part by averaging over
all permutations with the proper signs by applying the antisymmetrizer

A =
1

d!

∑
p∈Sd

(−1)pPp,

where Sd is the permutation group on d elements.
Pose the approximation problem as

Af (x1, x2, . . . , xd) ≈ A
r∑

j=1

g j(x1, x2, . . . , xd) = A
r∑

j=1

d∏
i=1

g j
i (xi )

with error measure

E (g) = 〈A(f − g),A(f − g)〉 = 〈Af ,Af 〉 − 2〈Af ,Ag〉+ 〈Ag ,Ag〉 .
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Computing Antisymmetric Inner Products

The antisymmetric inner product between gk and g j can be computed via〈
A

d∏
i=1

gk
i ,A

d∏
i=1

g j
i

〉
=

〈
A

d∏
i=1

gk
i ,

d∏
i=1

g j
i

〉
=

∫
· · ·
∫

1

d!

∣∣∣∣∣∣∣∣
gk
1 (x1) · · · gk

1 (xd)
...

. . .
...

gk
d (x1) · · · gk

d (xd)

∣∣∣∣∣∣∣∣ g
j
1(x1) · · · g j

d(xd)dx1 · · · dxd

=
1

d!

∣∣∣∣∣∣∣∣
〈gk

1 , g
j
1〉 · · · 〈gk

1 , g
j
d〉

...
. . .

...

〈gk
d , g

j
1〉 · · · 〈gk

d , g
j
d〉

∣∣∣∣∣∣∣∣ .

With this inner product, we can again use the framework we already have.
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Fitting Data (regression)
Suppose f is only a data set

f = {(xn, yn) = (xn1 , · · · , xnd ; yn)}Nn=1 ,

so our approximation problem becomes

yn ≈
r∑

j=1

d∏
i=1

g j
i (xni ) for all n.

We can define a data-driven (pseudo) inner product

〈f , g〉 =
N∑

n=1

f (xn)g(xn)

and try to minimize

E (g) = 〈(f − g), (f − g)〉 = 〈f , f 〉 − 2〈f , g〉+ 〈g , g〉 .
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ALS with a Data-Driven Inner Product

Our ALS framework had us split

g j
1(x1) =

∫
g j
1(x̂1)δ(x1 − x ′1)dx̂1

and integrate ∫
f (x)δ(x1 − x ′1)dx̂1 ,

which no longer makes sense, since f is only known at some points.
Instead we have to write

g j
1(x1) =

M∑
m=1

c jmφm(x1)

in some basis {φm}Mm=1 with unknown coefficients c jm.
We can then run ALS and also get a g that we can evaluate anywhere.
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Properties of Materials
The data is f = {(σn, ρn)}Nn=1 where

σn is a material/molecular structure, which is an unordered set of
atoms a = (t, r), where t is a species type (e.g. t = Mo) and r is a
location in 3-dimensional space and

ρn = ρ(σn) is some useful physical property of σn.

Two structures are equivalent if one can be mapped to the other by a
translation and/or rotation.

-
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��	
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-
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We assume ρ is consistent, giving the same value to equivalent structures,
and require our approximation g to be consistent.
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Consistent Functions of Structures

For an ordered list of atoms, we can construct a function

g([a1, a2, . . .]) := g([a1, a2, . . . , ad ]) =
r∑

l=1

d∏
i=1

g l
i (ai ) .

To make g consistent, we map a structure to a set Vσ whose elements
(w , v) are a weight w and an ordered list of atoms v called a view, and
work with

Cg(σ) =
∑

(w ,v)∈Vσ

wg(v) .

We then define a pseudo inner product by

〈f , g〉 =
1

N

N∑
j=1

Cf (σj)Cg(σj)

and use the framework we already have.
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Conversion of a structure to its views (illustration)

-
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Including Potentials in Antisymmetric Inner Products

As a step in an iterative algorithm to construct an approximate
wavefunction, we need to compute antisymmetric inner products including
the nuclear potential operator

〈
Agk ,AVf q

〉
=

〈
A

d∏
i=1

gk
i (xi ),A

(
d∑

m=1

V (xm)

)
d∏

i=1

f qi (xi )

〉

and including the electron-electron potential operator

〈
Agk ,AWf q

〉
=

〈
A

d∏
i=1

gk
i (xi ),A

1

2

d∑
m=1

∑
n 6=m

1

‖xm − xn‖

 d∏
i=1

f qi (xi )

〉
.

These operators interfere with the antisymmetric inner product, but only
in a few variables at a time.
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Prototype Computation Involving W

Suppressing the k and q indexes and selecting the m = 1, n = 2 term, we
need to compute〈
A

d∏
i=1

gi (xi ),
1

‖x1 − x2‖

d∏
i=1

fi (xi )

〉
=

∫
· · ·
∫

1

‖x1 − x2‖
1

d!

∣∣∣∣∣∣∣∣
g1(x1) · · · g1(xd)

...
. . .

...

gd(x1) · · · gd(xd)

∣∣∣∣∣∣∣∣ f1(x1) · · · fd(xd)dx1 · · · dxd

=
1

d!

∫ ∫
f1(x1)f2(x2)

‖x1 − x2‖

∣∣∣∣∣∣∣∣
g1(x1) g1(x2) 〈g1, f3〉 · · · 〈g1, fd〉

...
...

...
. . .

...

gd(x1) gd(x2) 〈gd , f3〉 · · · 〈gd , fd〉

∣∣∣∣∣∣∣∣ dx1dx2 .
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Prototype Computation Involving W (continued)

Defining L(i , j) = 〈gi , fj〉 and


g̃1
...

g̃d

 = L−1


g1
...

gd

 we can multiply by

|L||L−1|, merge determinants, multiply matrixes, and get

|L|
d!

∫ ∫
f1(x1)f2(x2)

‖x1 − x2‖

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g̃1(x1) g̃1(x2) 0 · · · 0

g̃2(x1) g̃2(x2) 0 · · · 0

g̃3(x1) g̃3(x2) 1 · · · 0
...

...
...

. . .
...

g̃d(x1) g̃d(x2) 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
dx1dx2

=
|L|
d!

∫ ∫
f1(x1)f2(x2)

‖x1 − x2‖

∣∣∣∣∣ g̃1(x1) g̃1(x2)

g̃2(x1) g̃2(x2)

∣∣∣∣∣ dx1dx2 .
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Antisymmetric Inner Product Involving V or W

Suppressing k and q, we have

〈Ag ,AVf 〉 =
|L|
d!

d∑
m=1

∫
V (x)fm(x)g̃m(x)dx and

〈Ag ,AWf 〉 =
1

2

|L|
d!

d∑
m=1

∑
n 6=m

∫ ∫
fm(x)fn(y)

‖x − y‖

∣∣∣∣∣ g̃m(x) g̃m(y)

g̃n(x) g̃n(y)

∣∣∣∣∣ dxdy .

With these inner product formulas (and a little more work), we can again
use the fitting and ALS framework we already have.
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It gets worse: Including Geminals

The wavefunction has an ’inter-electron cusp’ whenever two variables
coincide. We will need to include such structure in our approximation,
with something like

g(x) = A
P∑

p=0

1

2

∑
m 6=n

wp(‖xm − xn‖)

 r∑
j=1

d∏
i=1

gp,j
i (xi ) .

With such structure in g and f and W, we have to compute
antisymmetric inner products like

∑
m 6=n

∑
u 6=v

∑
a 6=b

〈
Aw2(‖xm − xn‖)

d∏
i=1

gi (xi ),
1

‖xu − xv‖
w1(‖xa − xb‖)

d∏
i=1

fi (xi )

〉
.

The method we used for W lets us integrate out all variables except
xm, xn, xu, xv , xa, and xb.
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It gets even worse: Many Geminal Cases

The indexes are restricted by a 6= b, m 6= n, and u 6= v , but we can still
have overlaps such as a = m. Between 2 and 6 variables remain.
There are 8 distinct cases, which can be represented graphically as

z z z z z z
,

z z
,

z z z z z
,z z z z

,
z z z z

,
z z z

,

z z
z

z
, and








J
J
Jz z
z

.

Each case corresponds to a formula involving a determinant of function of
size up to 6× 6. To compute we expand all determinants and end up with
several hundred terms to compute. (We have to automate.)

We can then use our existing framework for ALS.
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It gets worse: Including Recursive Approximations

To handle extended quantum-mechanical systems without exponential
scaling, we will need another form, such as the recursive form

g(x) = A
r∑

j=1

K∏
k=1

 rk∑
jk=1

dk∏
ik=1

g j ,jk
k,ik

(xk,ik )

 .

We need to compute antisymmetric inner products like〈
A

K∏
k=1

 rk∑
jk=1

dk∏
ik=1

g jk
k,ik

(xk,ik )

 ,
K∏

k=1

 rk∑
qk=1

dk∏
ik=1

f qkk,ik
(xk,ik )

〉

without expanding out.

If successful, we can then use our existing framework for ALS.
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The Classical Center-of-Mass Principle

1

rrr rr
r

2

rrrrr -

1

rrr rr
r

v
���

Summaries

Approximate the gravitational potential energy between the two groups by

M1∑
i1=1

M2∑
i2=1

mi1
1m

i2
2

‖ri11 − ri22 ‖
≈

M1∑
i1=1

M2∑
i2=1

mi1
1m

i2
2

‖ri11 − r2‖

=

M1∑
i1=1

mi1
1

‖ri11 − r2‖

 M2∑
i2=1

mi2
2

 =

M1∑
i1=1

mi1
1

‖ri11 − r2‖
S2 ,

where r2 is the center of mass of group two.
This reduces the cost from O(M1M2) to O(M1 + M2).
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A Quantum Center-of-Mass Principle, schematic
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Summaries

Even when groups 1 and 3 do not directly interact, the presence of an
intermediate group couples them.

It will take a partial expansion of the determinant to decouple them.

Group 3 can then be summarized and the summary embedded in group 2.
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A Quantum Center-of-Mass Principle, formula sketch

r1∑
j1=1

r1∑
j̃1=1

r2∑
j2=1

r2∑
j̃2=1

r3∑
j3=1

r3∑
j̃3=1

a(j1, j̃1; j2, j̃2; j3, j̃3)

≈
r1∑

j1=1

r1∑
j̃1=1

r2∑
j2=1

r2∑
j̃2=1

r3∑
j3=1

r3∑
j̃3=1

(∑
α

b(j1, j̃1; j2, j̃2;α)c(α, j2, j̃2; j3, j̃3)

)

=

r1∑
j1=1

r1∑
j̃1=1

r2∑
j2=1

r2∑
j̃2=1

∑
α

b(j1, j̃1; j2, j̃2;α)

 r3∑
j3=1

r3∑
j̃3=1

c(α, j2, j̃2; j3, j̃3)


=

r1∑
j1=1

r1∑
j̃1=1

r2∑
j2=1

r2∑
j̃2=1

∑
α

b(j1, j̃1; j2, j̃2;α)S(α, j2, j̃2) .

This reduces the cost from O(r21 r
2
2 r

2
3 ) to O(r21 r

2
2 + r22 r

2
3 ).

For a chain of K groups, O(r2K ) reduces to O(r4K ).
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A Quantum Center-of-Mass Principle, core determinant

Using the non-overlap of groups 1 and 3, the determinant is

a(j1, j̃1; j2, j̃2; j3, j̃3) =∣∣∣∣∣∣∣∣
L11 L12 0

L21 L22 L23

0 L32 L33

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣


L11 L12 0

L21 L22 0

0 0 0

+


0 0 0

0 0 L23

0 L32 L33


∣∣∣∣∣∣∣∣

= |A12 + B23| ,

where the subscripts indicate which summation indices the blocks depend
upon.

To decouple groups 1 and 3 we need to expand out the determinant of a
sum of two matrices.
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Determinant of the Sum of Two Matrices

For N × N matrices A and B,

|A + B| =
N∑

k=0

∑
α⊂α0,β⊂α0
|α|=|β|=k

(−1)σ(α)+σ(β)|A[α0 \ α;α0 \ β]| |B[α;β]| ,

where α0 = {1, 2, . . . ,N}, α and β are ordered subsets, σ(α) is the sum of
the entries in α, α0 \ α is the complement of α in α0, and B[α;β] denotes
the matrix formed using rows α and columns β from B.

The expansions are unpleasant. The zeros in our matrices help.

The off-diagonal blocks L12, L21, L23, and L32 are expected to be low
rank, which shortens the sums needed.
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Conclusions and Comments

You can do a lot if you can find the right inner product.

Exotic inner products are harder (impossible?) for other
function/tensor approximations.

Since 〈(f − g), (f − g)〉 = 〈f , f 〉 − 2〈f , g〉+ 〈g , g〉, we can minimize
over g even if we cannot compute 〈f , f 〉. This situation arises e.g.
when f includes an operator like W.

ALS convergence is an issue.
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