A Parametrized-Background Data-Weak Formulation for Variational Data Assimilation: Dimension Reduction by Experimental Observation

Y Maday, AT Patera, JD Penn, M Yano

Massachusetts Institute of Technology and LJLL, Université Pierre et Marie Curie

Numerical Methods for High-Dimensional Problems École des Ponts Paristech Marne-la-Vallée, France

April 17, 2014

JD Penn

Apparatus & Diagnostics Conception Implementation Calibration Data Acquisition Robotics

\updownarrow Mathematical Modeling and Data Reduction \updownarrow

Mathematical Formulation Computational Methods Conception Algorithms Implementation Numerical Analysis

M Yano

Acknowledgments

Collaborators

JD Penn*	JL Eftang	Y Maday*
K Smetana	DBP Huynh	O Mula
T Taddei*	DJ Knezevic	EM Rønquist
M Yano*	T Tonn	
	S Vallaghé	

 $^{^{0}\}mathsf{Thanks}$ also to Debra Blanchard for assistance in the design and preparation of the slides, figures, and graphics.

Chaire d'Excellence, Fondation Sciences Mathématiques de Paris Host: Professor Yvon Maday Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie

AFOSR/Office of Secretary of Defense

Office of Naval Research

MIT-Singapore International Design Center

Sponsors

Objective

Objective

Given

a physical system,

we wish to integrate

a parametrized mathematical model, and M experimental observations,

to estimate the (assumed) deterministic field

 $u^{\text{true}} \in \mathcal{U}(\Omega), \quad \Omega \subset \mathbb{R}^d,$

and associated outputs of interest.

Desiderata

We shall *insist* upon weak formulation \rightarrow actionable theory: *a priori* error bounds; a posteriori error estimates; $\mathcal{O}(M^{\cdot})$ computational complexity \rightarrow real-time; simple implementation \rightarrow broad dissemination; general applicability \rightarrow "industrial" relevance. We *aspire* to accurate state estimation for modest M.

Our Proposal

We shall *insist* upon weak formulation \rightarrow actionable theory: *a priori* error bounds; a posteriori error estimates; $\mathcal{O}(M^3)$ computational complexity \rightarrow real-time; simple implementation \rightarrow broad dissemination; general applicability \rightarrow "industrial" relevance. We *aspire* to accurate state estimation for modest M. Parametrized-Background Data-Weak (PBDW) Formulation for Variational Data Assimilation

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces
- Relation to Prior Work

Preliminaries

- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces
- Relation to Prior Work

State Space

Introduce

a spatial domain $\Omega \in \mathbb{R}^d$; a Hilbert space $\mathcal{U}(\Omega)$ with inner product (w, v) and norm $||w|| = \sqrt{(w, w)^1}$; a dual space \mathcal{U}' and duality pairing $\langle \cdot, \cdot \rangle_{\mathcal{U}' \times \mathcal{U}}$; a Riesz operator $R_{\mathcal{U}}: \mathcal{U}' \to \mathcal{U}$ such that for $\ell \in \mathcal{U}'$, $(R_{\mathcal{U}}\ell, v) = \ell(v), \forall v \in \mathcal{U}$. Assume: real fields; $H_0^1(\Omega) \subset \mathcal{U} \subset H^1(\Omega)$.

¹In practice, we replace \mathcal{U} by a finite element approximation space $\mathcal{U}^{\mathcal{N}} \subset \mathcal{U}$ of dimension \mathcal{N} .

Projection and Complement

Given $\mathcal{Q} \subset \mathcal{U}$, define

projection operator $\Pi_{\mathcal{Q}} : \mathcal{U} \to \mathcal{Q}$ $(\Pi_{\mathcal{Q}} w, v) = (w, v), \quad \forall v \in \mathcal{Q};$

orthogonal complement $\mathcal{Q}^{\perp} \subset \mathcal{U}$

 $\mathcal{Q}^{\perp} \equiv \{ w \in \mathcal{U} \, | \, (w, v) = 0, \, \forall v \in \mathcal{Q} \}.$

Given

a physical system in configuration \mathcal{C} , we wish to integrate a parametrized mathematical model, and M experimental observations. to estimate the field $u^{\mathrm{true}}[\mathcal{C}] \in \mathcal{U}(\Omega), \quad \Omega \subset \mathbb{R}^d,$ and desired output(s)

 $\ell^{\mathrm{out}}_{\cdot}(u^{\mathrm{true}}[\mathcal{C}]) \in \mathbb{R}$, for given $\ell^{\mathrm{out}}_{\cdot} \in \mathcal{U}'$.

Formulation: PBDW

Preliminaries

• Unlimited-Observations Statement

- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces
- Relation to Prior Work

(Prior) Background Spaces \mathcal{Z}_N

Introduce hierarchical subspaces

 $\mathcal{Z}_1 \subset \mathcal{Z}_2 \subset \cdots \subset \mathcal{Z}_N \subset \cdots \subset \mathcal{Z}_{N_{\max}} \subset \cdots \subset \mathcal{U};$

such that

as
$$N \to \infty$$
, $\inf_{w \in \mathcal{Z}_N} \| u^{\text{true}} - w \| \to \epsilon$

for ϵ an acceptable tolerance.

The spaces \mathcal{Z}_N are constructed from our (prior) best knowledge of the problem.

Example: Choose \mathbb{Z}_N as the span of N snapshots on a "best-knowledge-model" parametric manifold.

Minimization Statement

Find
$$(u_N^* \in \mathcal{U}, z_N^* \in \mathcal{Z}_N, \eta_N^* \in \mathcal{U})$$
 such that
 $(u_N^*, z_N^*, \eta_N^*) = \underset{\substack{u_N \in \mathcal{U} \\ z_N \in \mathcal{Z}_N \\ \eta_N \in \mathcal{U}}}{\operatorname{arg inf}} \|\eta_N\|^2$

subject to

$$(u_N, v) = (\eta_N, v) + (z_N, v), \quad \forall v \in \mathcal{U}, (u_N, \phi) = (u^{\text{true}}, \phi), \quad \forall \phi \in \mathcal{U}.$$

Minimizer

1. From $(u_N^*, \phi) = (u^{\text{true}}, \phi), \forall \phi \in \mathcal{U}$. we deduce $u_N^* = u^{\text{true}}$ — "state estimate". 2. From $(u_N^*, v) = (\eta_N^*, v) + (z_N^*, v), \forall v \in \mathcal{U},$ we deduce $\eta_N^* = u^{\text{true}} - z_N^*$. 3. From $(u_N^*, z_N^*, \eta_N^*) = \arg \inf_{\eta_N \in \mathcal{U}} \|\eta_N\|^2$, $u_N \in \mathcal{U}$ $z_N \in \mathbb{Z}_N$ we conclude: $z_{N}^{*} = \prod_{\mathcal{Z}_{N}} u^{\text{true}}$ — "deduced background"; $\eta_N^* = u^{\text{true}} - \prod_{\mathcal{Z}_N} u^{\text{true}} \equiv \prod_{\mathcal{Z}_n^{\perp}} u^{\text{true}}$ — "update."

Note that η_N^* "completes" a deficient prior space \mathcal{Z}_N .

Euler-Lagrange Equations: Saddle Problem

Find
$$(\eta_N^* \in \mathcal{U}, z_N^* \in \mathcal{Z}_N)$$
 such that
 $(\eta_N^*, q) + (z_N^*, q) = (u^{\text{true}}, q), \quad \forall q \in \mathcal{U},$
 $(\eta_N^*, p) = 0, \quad \forall p \in \mathcal{Z}_N,$
and set $u_N^* = \eta_N^* + z_N^*.$

Solution confirms update-background decomposition

$$u_N^* = \eta_N^* + z_N^* = \underbrace{\prod_{\mathcal{Z}_N^\perp} u^{ ext{true}}}_{ ext{update}} + \underbrace{\prod_{\mathcal{Z}_N} u^{ ext{true}}}_{ ext{deduced background}} = u^{ ext{true}}.$$

Euler-Lagrange Equations: Saddle

Find
$$(\eta_N^* \in \mathcal{U}, z_N^* \in \mathcal{Z}_N)$$
 such that
 $(\eta_N^*, q) + (z_N^*, q) = (u^{\text{true}}, q), \quad \forall q \in \mathcal{U},$
 $(\eta_N^*, p) = 0, \quad \forall p \in \mathcal{Z}_N,$

and set $u_N^* = \eta_N^* + z_N^*$.

Solution confirms update-background decomposition

We achieve $u_N^* = u^{\text{true}}$, but we cannot experimentally evaluate $(u^{\text{true}}, q), \ \forall q \in \mathcal{U}$.

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces
- Relation to Prior Work

Observation Functionals: General \rightarrow Local

Introduce general observation functionals

$$\ell_m^{\mathrm{o}} \in \mathcal{U}', \quad m = 1, \dots, M_{\max},$$

such that we interpret

 $O_m[\mathcal{C}]$: perfect experimental observation m $\equiv \ell_m^{
m o}(u^{
m true}[\mathcal{C}])$.

(Formulation stable *perfect* \rightarrow *imperfect*: inf-sup.)

Local observation functionals: $\{\ell_m^{\mathrm{o}}\}_{m=1}^{M_{\mathrm{max}}}$ defined by

a "center" parameter: $x_m^{
m c}\in \Omega$,

a "spread" parameter: $arphi_m=arphi\in\mathbb{R}_{\geq 0}$,

for $m = 1, \ldots, M_{\text{max}}$.

Observation Functionals: Local \rightarrow Gaussian

Update Spaces: $\{\mathcal{U}_M\}_{M=1}^{M_{\max}}$ — Experimentally Observable

Introduce hierarchical spaces $M = 1 \dots, M_{\max}, \dots$

$$\mathcal{U}_M = \mathsf{span}\{q_m \equiv R_\mathcal{U}\ell_m^\mathrm{o}\}_{m=1}^M;$$

recall $R_{\mathcal{U}}\ell \in \mathcal{U}$ is the Riesz representation of $\ell \in \mathcal{U}'$.

Then, for $q_m (\in \mathcal{U}_M)$, $(u^{\text{true}}, q_m) = (u^{\text{true}}, R_{\mathcal{U}} \ell_m^{\text{o}}) = \ell_m^{\text{o}}(u^{\text{true}}) = O_m$ is an experimental observation; hence, $\forall q \in \mathcal{U}_M$, $(u^{\text{true}}, q) = (u^{\text{true}}, \sum_{m=1}^M \alpha_m q_m) = \sum_{m=1}^M \alpha_m \ell_m^{\text{o}}(u^{\text{true}})$ $= \sum_{m=1}^M \alpha_m O_m$

is a weighted sum of experimental observations.

Constrained Minimization: Statement

Find
$$(u_{N,M}^* \in \mathcal{U}, z_{N,M}^* \in \mathcal{Z}_N, \eta_{N,M}^* \in \mathcal{U})$$
 such that
 $(u_{N,M}^*, z_{N,M}^*, \eta_{N,M}^*) = \underset{\substack{u_{N,M} \in \mathcal{U} \\ z_{N,M} \in \mathcal{Z}_N \\ \eta_{N,M} \in \mathcal{U}_M}}{\arg \inf \|\eta_{N,M}\|^2}$

subject to

$$(u_{N,M}, v) = (\eta_{N,M}, v) + (z_{N,M}, v), \quad \forall v \in \mathcal{U}, (u_{N,M}, \phi) = (u^{\text{true}}, \phi), \quad \forall \phi \in \mathcal{U}_M.$$

Euler-Lagrange Equations: Discrete Saddle Problem

$$\begin{array}{l} \mbox{Find } (\eta^*_{N,M} \in \mathcal{U}_M, z^*_{N,M} \in \mathcal{Z}_N) \mbox{ such that } \\ (\eta^*_{N,M}, q) + (z^*_{N,M}, q) = \underbrace{(u^{\rm true}, q), \quad \forall q \in \mathcal{U}_M}_{\mbox{ weighted sum of observations }}, \\ (\eta^*_{N,M}, p) = 0, \quad \forall p \in \mathcal{Z}_N; \\ \mbox{then set } \\ \underbrace{u^*_{N,M}}_{\mbox{state estimate }} = \underbrace{\eta^*_{N,M}}_{\mbox{update estimate }} + \underbrace{z^*_{N,M}}_{\mbox{deduced-background estimate }} . \\ \end{array}$$

Discrete observation-optimality saddle is of size M + N.

(Equivalent) Least Squares Formulation

Define deduced background estimate $z^*_{N,M} \in \mathcal{Z}_N$ by

$$z_{N,M}^* = \arg \inf_{z \in \mathcal{Z}_N} \|\Pi_{\mathcal{U}_M}(u^{\mathrm{true}} - z)\|^2 ,$$

which yields normal equations

 $(\Pi_{\mathcal{U}_M} z_{N,M}^*, v) = (\Pi_{\mathcal{U}_M} u^{\text{true}}, v), \forall v \in \mathcal{Z}_N ;$

define update estimate $\eta^*_{N,M} \in \mathcal{U}_M$ by

$$\eta_{N,M}^* = \Pi_{\mathcal{U}_M}(u^{\text{true}} - z_{N,M}^*) ;$$

form state estimate $u^*_{N,M} \in \mathcal{U}$ as

There is *no* reference to any mathematical model in the PBDW saddle problem; connection to the mathematical model² is through the background spaces Z_N , $1 \le N \le N_{\text{max}}$. Implications:

applicability to wide class of problems; simplicity of implementation.

²The model might be a (deterministic) partial differential equation, or we might also consider particle or stochastic descriptions.
The PBDW formulation is furthermore a problem in (constrained) approximation effected as

a *projection* with respect to observations; *no* boundary conditions required over $\partial \Omega$.

Implications: flexibility in choice of data-assimilation spatial domain $\Omega \subset \mathbb{R}^d$ (or manifold); regularity hypotheses on $u^{\text{true}} \Rightarrow$ space \mathcal{U} .

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces
- Relation to Prior Work

Construct spaces

$$\begin{aligned} \mathcal{Z}_{N_{\max}} &\equiv \operatorname{span}\{\zeta_n, \ n = 1, \dots, N_{\max}\} \quad (\Rightarrow \ \mathbf{Z}) \\ \mathcal{U}_{M_{\max}} &\equiv \operatorname{span}\{q_m, \ m = 1, \dots, M_{\max}\} \quad (\Rightarrow \ \mathbf{U}). \end{aligned}$$

SADDLE.Offline $_{N_{\max},M_{\max}}$: Form

 $\texttt{ONLINEMATRICES}_{N_{\max},M_{\max}} \equiv \{\mathbf{A},\mathbf{B},\mathbf{l}^{\mathrm{out},\mathbf{U}},\mathbf{l}^{\mathrm{out},\mathbf{Z}}\}$

where

$$\mathbf{A}_{mm'} \equiv (q_{m'}, q_m), \qquad \mathbf{B}_{mn} \equiv (\zeta_n, q_m),$$
$$\mathbf{l}_m^{\text{out}, \mathbf{U}} \equiv \ell^{\text{out}}(q_m), \qquad \mathbf{l}_n^{\text{out}, \mathbf{Z}} \equiv \ell^{\text{out}}(\zeta_n),$$
for $m, m' = 1, \dots, M_{\text{max}}, n = 1, \dots, N_{\text{max}}.$

Online Stage: Procedure $\mathcal{C} \to u_{N,M}^*[\mathcal{C}], \ell^{\text{out}}(u_{N,M}^*[\mathcal{C}])$ Collect observations: $\mathbf{l}^{\text{obs}}[\mathcal{C}] \in \mathbb{R}^M$ such that $\mathbf{l}_{m}^{\mathrm{obs}}[\mathcal{C}] = O_{m}[\mathcal{C}] \equiv \ell_{m}^{\mathrm{o}}(u^{\mathrm{true}}[\mathcal{C}]), \quad m = 1, \dots, M.$ SADDLE.Online_{N.M}: \leftarrow ONLINEMATRICES_{N,M} Find $\boldsymbol{\eta}^*[\mathcal{C}] \in \mathbb{R}^M$ and $\mathbf{z}^*[\mathcal{C}] \in \mathbb{R}^N$ such that $\begin{bmatrix} \mathbf{A}_{1:M,1:M} & \mathbf{B}_{1:M,1:N} \\ \mathbf{B}_{1:M,1:N}^{H} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\eta}^*[\mathcal{C}] \\ \mathbf{z}^*[\mathcal{C}] \end{bmatrix} = \begin{bmatrix} \mathbf{l}^{\text{obs}}[\mathcal{C}] \\ \mathbf{0} \end{bmatrix};$ compute state and output as $u_{N,M}^*[\mathcal{C}] = \mathbf{U}_{:,1:M} \boldsymbol{\eta}^*[\mathcal{C}] + \mathbf{Z}_{:,1:N} \mathbf{z}^*[\mathcal{C}] ,$ $\ell^{\mathrm{out}}(u_{N,M}^*[\mathcal{C}]) = \mathbf{l}_{1\cdot M}^{\mathrm{out},\mathbf{U}} \boldsymbol{\eta}^*[\mathcal{C}] + \mathbf{l}_{1\cdot N}^{\mathrm{out},\mathbf{Z}} \mathbf{z}^*[\mathcal{C}] ,$ respectively.

Online Stage: Operation Count

Data acquisition $\mathcal{C} \to \mathbf{l}^{\mathrm{obs}}[\mathcal{C}]$: *M* observations.

Solution of saddle for $\eta^*[\mathcal{C}]$, $\mathbf{z}^*[\mathcal{C}]$: $\mathcal{O}((N+M)^3)$ FLOPS.

Rendering of full state $u_{N,M}^*[\mathcal{C}]$ (if desired): $\mathcal{O}(\mathcal{N})$ FLOPS,

where \mathcal{N} is the dimension of $\mathcal{U}^{\mathcal{N}}(\subset \mathcal{U})$.

Evaluation of output(s) $\ell^{\text{out}}_{\cdot}(u^*_{N,M}[\mathcal{C}])$: $\mathcal{O}(N+M)$ FLOPS

(for each output of interest).

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces
- Relation to Prior Work

Problem Statements: Unlimited, Limited

Unlimited observations: find $(\eta_N^* \in \mathcal{U}, z_N^* \in \mathcal{Z}_N)$ s.t. $(\eta_N^*, q) + (z_N^*, q) = (u^{\text{true}}, q), \quad \forall q \in \mathcal{U},$ $(\eta_N^*, p) = 0, \quad \forall p \in \mathcal{Z}_N.$ Limited observations: find $(\eta_{N,M}^* \in \mathcal{U}_M, z_{N,M}^* \in \mathcal{Z}_N)$ s.t. $(\eta_{N,M}^*, q) + (z_{N,M}^*, q) = (u^{\text{true}}, q), \quad \forall q \in \mathcal{U}_M,$

 $(\eta_{N,M}^*, p) = 0, \quad \forall p \in \mathcal{Z}_N .$

Standard saddle in weak form

 \Rightarrow apply variational PDE analysis techniques.

A Priori Analysis: Field

Contributions to Error Bound

The bound for the state error

$$\left(1+\frac{1}{\beta_{N,M}}\right)\inf_{\eta\in\mathcal{U}_M\cap\mathcal{Z}_N^{\perp}}\left\|\Pi_{\mathcal{Z}_N^{\perp}}u^{\mathrm{true}}-\eta\right\|$$

depends on

- 1. the stability constant: $eta_{N,M}$;
- 2. the background *primary* approximation: $\inf_{z \in \mathcal{Z}_N} \|u^{\text{true}} - z\| = \|\Pi_{\mathcal{Z}_N^{\perp}} u^{\text{true}}\| ;$
- 3. the update *secondary* approximation:

$$\inf_{\eta \in \mathcal{U}_M \cap \mathcal{Z}_N^{\perp}} \| \Pi_{\mathcal{Z}_N^{\perp}} u^{\text{true}} - \eta \|.$$

Proposition 2. The inf-sup constant (singular value) $\beta_{N,M} \equiv \inf_{w \in \mathcal{Z}_N} \sup_{v \in \mathcal{U}_M} \frac{(w,v)}{\|w\| \|v\|}$ is a non-increasing function of background span (N), a non-decreasing function of observable span (M); furthermore. $\beta_{N,M} = 0$ for M < N $(\mathcal{Z}_N \cap \mathcal{U}_M^{\perp} \neq 0).$

Observability

The inf-sup constant $\beta_{N,M}$ is related to the observability of *our estimation* of the physical system C. Note that

> $\beta_{N,M}$ large \Rightarrow good (primary) state estimate: \mathcal{Z}_N must also retain approximation properties;

> $\beta_{N,M}$ small \neq unobservable *physical system*: \mathcal{Z}_N may contain spurious (unstable) elements.

Pictorial Projections: dim $(\mathcal{U}) = 3$: Inf-Sup

Pictorial Projections: dim $(\mathcal{U}) = 3$: Inf-Sup

The space \mathcal{U}_M provides stability — and secondary approximation. The RoleS of \mathcal{U}_M : Stability and Approximation

Space \mathcal{Z}_N must provide primary approximation: $\inf_{z \in \mathcal{Z}_N} \|u^{\text{true}} - z\|.$ Space \mathcal{U}_M must provide, for given \mathcal{Z}_N , primary stability: $\beta_{N,M} \equiv \inf_{w \in \mathcal{Z}_N} \sup_{v \in \mathcal{U}_M} \frac{(w,v)}{\|w\| \|v\|} > 0;$ secondary approximation: $\inf_{\eta \in \mathcal{U}_M \cap \mathcal{Z}_N^{\perp}} \| \Pi_{\mathcal{Z}_N^{\perp}} u^{\text{true}} - \eta \|;$

recall also \mathcal{U}_M must be experimentally observable.

Online Cost Considerations

Note that for good background spaces $\{\mathcal{Z}_N\}_{N=1}^{N_{\text{max}}}$ we may choose N small (for approximation) and hence subsequently choose M(>N) small (for stability³).

Implication: faster Online response $\mathcal{C}
ightarrow \mathrm{l}^{\mathrm{obs}}[\mathcal{C}].$

³Note if secondary approximation is important,

M is not dictated solely by stability considerations.

A Priori Analysis: Output Functional

Introduce linear (or nonlinear) output functional: $\ell^{out} \in \mathcal{U}'$.

Proposition 3. Output error satisfies $\begin{aligned} |\ell^{\text{out}}(u^{\text{true}}) - \ell^{\text{out}}(u^*_{N,M})| &= |(u^{\text{true}} - u^*_{N,M}, \psi - \Pi_{\mathcal{U}_M}\psi)| \\ &\leq ||u^{\text{true}} - u^*_{N,M}|| ||\psi - \Pi_{\mathcal{U}_M}\psi|| \end{aligned}$ for $\psi = R_{\mathcal{U}}\ell^{\text{out}} \in \mathcal{U}.$

Output error "superconverges" with M.

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces
- Relation to Prior Work

Experimental Indicators: Post-Assimilation Measurements

Define assessment centers $\{\xi_i^{\rm c} \in \Omega, 1 \le j \le J\}$ distinct from observation centers $\{x_m^{\rm c} \in \Omega, 1 \le m \le M\}$ $\ell^{\rm a} \sim \ell^{\rm o}$ such that we interpret $A_{j}[\mathcal{C}]$: perfect experimental assessment j $\equiv \text{Gauss}(u^{\text{true}}[\mathcal{C}]; \xi_i^{\text{c}}, \varphi)$. Then define, for given N, M, and J, $E_{\text{avg}}[\mathcal{C}] \equiv \sqrt{\frac{1}{J} \sum_{j=1}^{J} (A_j[\mathcal{C}] - \text{Gauss}(u_{N,M}^*[\mathcal{C}]; \xi_j^{\text{c}}, \varphi))^2}$

as an $(L^2(\Omega)$ -ish) estimate of the error in the state.

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates

Construction of Spaces

- Best-Knowledge Model
- Background Spaces Z_N
- Update Spaces \mathcal{U}_M
- Convergence Scenario
- Relation to Prior Work

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces • Best-Knowledge Model
 - Background Spaces Z_N
 - Update Spaces \mathcal{U}_M
 - Convergence Scenario
- Relation to Prior Work

Best-Knowledge (bk) Model: Parametrization

Introduce

parameter P-tuple μ , and parameter domain $\mathcal{D} \subset \mathbb{R}^P$, and associated bk parametrized form $\mu \in \mathcal{D} \rightarrow G^{\mu} : \mathcal{U} \times \mathcal{U} \rightarrow \mathbb{R}$

(linear in second argument).

In principle, μ , \mathcal{D} , and G^{μ} need not admit any physical or mechanistic interpretation; in practice, we benefit from disciplinary knowledge. Best-Knowledge (bk) Manifold

Define the bk field

$$\mu \in \mathcal{D} \ \rightarrow \ u^{\mathrm{bk},\mu} \in \mathcal{U}$$

as solution of

$$G^{\mu}(u^{\mathsf{bk},\mu},v) = 0, \quad \forall v \in \mathcal{U} ;$$

introduce bk parametric manifold

 $\mathcal{M}^{\mathrm{bk}} \equiv \{ u^{\mathrm{bk},\mu} \, | \, \mu \in \mathcal{D} \}$

to characterize the set of bk fields.

Best-Knowledge (bk) Model Error

Introduce best-fit-over-manifold operator

 $F_{\mathcal{M}^{\mathrm{bk}}}: \mathcal{U} \to \mathcal{M}^{\mathrm{bk}}$

such that

$$F_{\mathcal{M}^{\mathsf{bk}}} w = \operatorname*{arg inf}_{v \in \mathcal{M}^{\mathsf{bk}}} \| w - v \|$$

Define model error as

$$\begin{aligned} \epsilon_{\mathrm{mod}}^{\mathrm{bk}}(u^{\mathrm{true}}) &\equiv \|u^{\mathrm{true}} - F_{\mathcal{M}^{\mathrm{bk}}} u^{\mathrm{true}}\| \\ &\equiv \inf_{w \in \mathcal{M}^{\mathrm{bk}}} \|u^{\mathrm{true}} - w\|. \end{aligned}$$

Goal: minimize model error $\epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}})$ through choice of parametrized model $[\mathcal{D}, G^{\mu}]$. Imperfections of Best-Knowledge Model

Three feasibility considerations

available information: conservation laws; constitutive relations: constitutive "constants": experimental cost: calibration of G^{μ} ; computational cost: solution of $G^{\mu}(u^{\mathrm{bk},\mu},v)=0$; constrain our choice of best-knowledge model.

In practice, u^{true} may be quite far from \mathcal{M}^{bk} .

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces
 - Best-Knowledge Model
 - Background Spaces \mathcal{Z}_N
 - Update Spaces \mathcal{U}_M
 - Convergence Scenario
- Relation to Prior Work

Manifold $PROCESS_N^Z$

Invoke $\operatorname{PROCESS}_{N}^{\mathbb{Z}}(\mathcal{M}^{\operatorname{bk}})$: 1. $\operatorname{PROCESS}_{N}^{\mathbb{Z}} \equiv \operatorname{POD}_{N}(\mathcal{M}^{\operatorname{bk}})$; or 2. $\operatorname{PROCESS}_{N}^{\mathbb{Z}} \equiv \operatorname{WEAKGREEDY}_{N}(\mathcal{M}^{\operatorname{bk}})$; or 3. $\operatorname{PROCESS}_{N}^{\mathbb{Z}} \equiv \operatorname{TAYLOR}_{N}^{\mu_{0}}(\mathcal{M}^{\operatorname{bk}})$; or :

to form spaces \mathcal{Z}_N for $1 \leq N \leq N_{\max}$.

Goal: minimize *best-fit-over-* \mathcal{Z}_N error,

$$\epsilon_N^{ t bk}(u^{ ext{true}}) \equiv \inf_{w \in \mathcal{Z}_N} \|u^{ ext{true}} - w\|$$
 ,

for given $N (\rightarrow \text{cost})$.

Model Error and Discretization Error — Contributions

The
$$\mathcal{Z}_N$$
 best-fit error may be bounded as
 $\epsilon_N^{bk}(u^{true}) \equiv \inf_{w \in \mathcal{Z}_N} \|u^{true} - w\|$
 $\leq \|u^{true} - \Pi_{\mathcal{Z}_N} F_{\mathcal{M}^{bk}}(u^{true})\|$
 $\leq \|u^{true} - F_{\mathcal{M}^{bk}}(u^{true})\| + \|F_{\mathcal{M}^{bk}}(u^{true}) - \Pi_{\mathcal{Z}_N} F_{\mathcal{M}^{bk}}(u^{true})\|$
 $\leq \inf_{\substack{w \in \mathcal{M}^{bk} \\ \text{model error} \notin [\mathcal{D}, G^{\mu}]}} + \sup_{\substack{w \in \mathcal{M}^{bk} \\ \text{discretization error} \notin PROCESS_N^{\mathcal{Z}}}} \|u^{true} - u\|$
 $\leq \underbrace{\epsilon_{mod}^{bk}(u^{true})}_{\text{best fit of } u^{true} \text{ over manifold}}} + \underbrace{\epsilon_{disc,N}^{bk}}_{\text{best fit of manifold over } \mathcal{Z}_N}$

Model and Discretization Errors — Picture

Role of Parameter

Parametrization of bk model

 $\mu \in \mathcal{D} \quad \Rightarrow \quad G^{\mu}$

induces

manifold \mathcal{M}^{bk} , then background spaces $\{\mathcal{Z}_N\}_{N=1}^{N_{\text{max}}}$,

and ultimately (with \mathcal{U}_M)

state estimate $u_{N,M}^*$.

Note we provide *no* parameter estimate $\mu_{N,M}^*$: parametrization μ , \mathcal{D} serves only in $\operatorname{PROCESS}_N^{\mathcal{Z}}(\mathcal{M}^{\operatorname{bk}})$.

PROCESS^{\mathcal{Z}} Example: WEAKGREEDY_N — Prerequisite

Introduce reduced basis (RB) approximation

 $\mu \to u_{N, {\rm Galerkin}}^{{\rm bk}, \mu}$

solution of

$$G^{\mu}(u_{N,\text{Galerkin}}^{\text{bk},\mu},v) = 0, \quad \forall v \in \mathcal{Z}_N$$

and a posteriori error estimate $\Delta_N^{bk,\mu}(u_{N,Galerkin}^{bk,\mu})$ such that

$$\underbrace{\|u^{\mathrm{bk},\mu} - \Pi_{\mathcal{Z}_N} u^{\mathrm{bk},\mu}\|}_{\text{discretization error }(\mu)} \leq \|u^{\mathrm{bk},\mu} - u^{\mathrm{bk},\mu}_{N,\mathrm{Galerkin}}\| \\ \lesssim \Delta_N^{\mathrm{bk},\mu}, \quad \forall \mu \in \mathcal{D} \ .$$

Both $u_{N,\text{Galerkin}}^{\text{bk},\mu}$, $\Delta_N^{\text{bk},\mu}$ admit rapid many-query evaluation.

Role of Reduced Basis Approximation

The reduced basis approximation $\mu \in \mathcal{D} \to u_{N \, \text{Galerkin}}^{\text{bk},\mu}$ only serves in the Offline stage to define a residual which then serves to evaluate the error estimator $\Delta_N^{bk,\mu}$ required by WEAKGREEDY_N $\rightarrow \mathcal{Z}_N$.

In PBDW, the reduced basis approximation does not appear in the Online stage.

$PROCESS_N^Z$ Example: WEAKGREEDY_N — Picture

$PROCESS_N^Z$ Example: WEAKGREEDY_N — Picture

$PROCESS_N^Z$ Example: WEAKGREEDY_N — Picture

PROCESS^{\mathcal{Z}} Example: WEAKGREEDY_N — Picture

 $u^{\mathrm{bk},\hat{\mu}_2}$: element of $\mathcal{M}^{\mathrm{bk}}$ least well represented by $\mathcal{Z}_{N=1}$

PROCESS^{\mathcal{Z}} Example: WEAKGREEDY_N — Picture

 $u^{\mathtt{bk},\hat{\mu}_2}:\hat{\mu}_2=rgsup_{\mu\in\mathbb{D}_{ ext{train}}}\Delta^{\mathtt{bk},\mu}_{N=1}$ (projection error *estimator*)
PROCESS^{\mathcal{Z}} Example: WEAKGREEDY_N — Picture

PROCESS^{\mathcal{Z}} Example: WEAKGREEDY_N — Algorithm

WEAKGREEDY_N:
$$[\mathcal{D}, G^{\mu}] \rightarrow \{\mathcal{Z}_N\}_{N=1}^{N_{\max}}$$

For $N = 1, \dots, N_{\max} - 1$,
1. $\hat{\mu}_{N+1} = \arg \sup_{\mu \in \mathbb{D}_{\operatorname{train}} \subset \mathcal{D}} \Delta_N^{\operatorname{bk}, \mu}$
2. $\zeta_{N+1} \equiv u^{\operatorname{bk}, \hat{\mu}_{N+1}}$
3. $\mathcal{Z}_{N+1} \equiv \operatorname{span}\{\mathcal{Z}_N, \zeta_{N+1}\}.$

Note that

$$\sup_{\mu\in\mathbb{D}_{\mathrm{train}}\subset\mathcal{D}}\Delta_N^{\mathrm{bk},\mu}\approx\epsilon_{\mathrm{disc},N}^{\mathrm{bk}}$$

WEAKGREEDY_N "minimizes" discretization error.⁴

 $^4 {\rm Recent}$ theory demonstrates comparable convergence of discretization error $\epsilon^{\rm bk}_{{\rm disc},N}$ and Kolmogorov N-width.

Many Parameters

In the case of many parameters,

 $\mu \in \mathcal{D} \subset \mathbb{R}^P, \; P \gg 1$,

the (standard) WEAKGREEDY_N algorithm may be

inefficient — large training set $\mathbb{D}_{\text{train}}$ \Rightarrow unacceptable Offline cost;

ineffective — large $N \iff \text{large } M$ for desired $\epsilon_{\text{disc},N}^{\text{bk}}$ \Rightarrow unacceptable Online cost.

In some cases, the failure may be fundamental.

Generalization: Superdomains

Introduce bk domain $\Omega^{bk} \supset \Omega^5$ bk space $\mathcal{U}^{bk} = \mathcal{U}^{bk}(\Omega^{bk})$. Form bk background space $\mathcal{Z}_N^{bk} \subset \mathcal{U}^{bk}$ WEAKGREEDY_N $(\mathcal{M}^{bk}) \rightarrow \mathcal{Z}_N^{bk}$;

then form background space

$$\mathcal{Z}_N = \{ z \in \mathcal{U} \, | \, z = z^{\mathsf{bk}} |_{\Omega}, \ z^{\mathsf{bk}} \in \mathcal{Z}_N^{\mathsf{bk}} \}.$$

Focus data assimilation on $\Omega \subset \Omega^{bk}$ even if bk model is only well posed on $\Omega^{bk} \supset \Omega$.

⁵Note Ω may be a manifold of dimension d in $\Omega^{bk} \subset \mathbb{R}^{d'}, d' > d$.

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates

Construction of Spaces

- Best-Knowledge Model
- Background Spaces \mathcal{Z}_N
- $\bullet \ {\sf Update \ Spaces \ } {\mathcal U}_M$
- Convergence Scenario
- Relation to Prior Work

Design-of-Experiment $PROCESS_M^U$

Recall $\mathcal{U}_M = \operatorname{span} \{q_m \equiv R_{\mathcal{U}} \ell_m^{\mathrm{o}}\}_{m=1}^M$ for $\ell_m^{\mathrm{o}}(v) = \operatorname{Gauss}(v; x_m^{\mathrm{c}}, \varphi), \quad m = 1, \dots, M.$

Choose

 $\begin{array}{ll} \text{inner product } (\cdot, \cdot) \ \Rightarrow \ R_{\mathcal{U}} \text{, and} \\ \text{centers } \{x_m^{\mathrm{c}} \in \Omega\}_{m=1}^M \text{,} \end{array}$

to

- a) maximize $\beta_{N,M} \approx$ "E"-optimality, for stability of primary (background) approximation;
- b) minimize $\inf_{\eta \in \mathcal{U}_M \cap \mathcal{Z}_N^{\perp}} ||\Pi_{\mathcal{Z}_N^{\perp}} u^{\text{true}} \eta||$, for secondary approximation of unmodeled physics.

Objectives: Approximation vs Stability

Algorithms with objective stability

 $SGREEDY_M, \ldots$

often also provide reasonable secondary approximation.

Algorithms with objective secondary approximation,

UNIFORM, RANDOMUNIFORM, MAX-MIN, ...

often do not provide reasonable stability.

In any event, for $w\in H^2(\Omega\subset \mathbb{R}^d)$,

 $\inf_{q \in \mathcal{U}_M} \|w - q\|_{H^r(\Omega)} \approx (M^{-(2-r)})^{1/d}, \ r = 0, 1:$

secondary convergence is slow.

PROCESS^{\mathcal{U}} Example: Stability as Principal Objective SGREEDY_M: $\{\mathcal{Z}_N\}_{N=1}^{N_{\max}}, (\cdot, \cdot) \rightarrow \{\mathcal{U}_M\}_{M=1}^{M_{\max}}$ For $M = 1, \ldots, M_{\text{max}}$, 1. Set $N = \min\{N_{\max}, M\}$. 2. Compute the least-stable mode $w_{\inf} \equiv \underset{w \in \mathcal{Z}_N}{\operatorname{arg inf}} \sup_{v \in \mathcal{U}_{M-1}} \frac{(w, v)}{\|w\| \|v\|}.$ 3. Compute the associated supremizer $v_{\text{sup}} = \prod_{\mathcal{U}_{\mathcal{M}-1}} w_{\text{inf}}.$ 4. Identify the least well-approximated point $x^* = \arg \sup_{x \in \Omega} |(w_{\inf} - v_{\sup})(x)|.$ 5. Set $\mathcal{U}_M \equiv \operatorname{span}\{\mathcal{U}_{M-1}, R_{\mathcal{U}} \operatorname{Gauss}(\cdot; x^*, \varphi_m)\}$.

$\mathsf{PROCESS}^{\mathcal{U}}_M$ Example: Approximation as Principal Objective

Local observation functionals \Rightarrow *low-order* convergence.

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates

Construction of Spaces

- Best-Knowledge Model
- Background Spaces \mathcal{Z}_N
- Update Spaces \mathcal{U}_M

Convergence Scenario

• Relation to Prior Work

Roles of N, \mathcal{Z}_N and M, \mathcal{U}_M

Primary: As N increases for fixed $M~(\geq N)$ expect $\epsilon^{\rm bk}_{{\rm disc},N}\to 0$ rapidly, and

 $\|u^{\mathrm{true}}-u^*_{N,M}\| o \epsilon^{\mathrm{bk}}_{\mathrm{mod}}(u^{\mathrm{true}})$ rapidly;

 \mathcal{Z}_N provides approximation, and \mathcal{U}_M provides stability.

Secondary: As M increases for fixed $N = N_{\text{plateau}} \equiv \{N \mid \epsilon_{\text{disc},N}^{\text{bk}} \ll \epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}})\}$ expect

 $\epsilon_{\mathrm{mod}}^{\mathrm{bk}}(u^{\mathrm{true}}) \to 0$ slowly, and $\|u^{\mathrm{true}} - u_{N,M}^*\| \to 0$ slowly;

 \mathcal{U}_M provides approximation (of unmodeled physics,...).

Formulation: PBDW

- Preliminaries
- Unlimited-Observations Statement
- Limited-Observations Statement
- Offline-Online Computational Procedure
- A Priori Error Analysis
- A Posteriori Error Estimates
- Construction of Spaces
- Relation to Prior Work

Connections ...

0. PBDW \sim Data-Projection Reduced Basis (RB)

PBDW — $\mathcal{Z}_N \oplus \mathcal{U}_M$; RB — \mathcal{Z}_N and G^{μ} , Galerkin.

1. $PBDW \supset GEIM$ inf-sup \equiv Lebesgue

for any given \mathcal{Z}_N , and N = M.

2. PBDW \supset Gappy-POD

 $\operatorname{POD}_N(\mathcal{M}^{\operatorname{bk}}) \to \mathcal{Z}_N \text{ and } u^*_{N,M} \equiv z^*_{N,M} \in \mathcal{Z}_N.$

... Connections

3. PBDW \supset Stable Least Squares Estimation

 $\mu \equiv \mu_{\text{DIRICHLET}} \text{ and } u^*_{N,M} \equiv z^*_{N,M} \in \mathcal{Z}_N.$

- 4. PBDW \supset linearized Structured Total Least Squares TAYLOR^{μ_0}_N(\mathcal{M}^{bk}) $\rightarrow \mathcal{Z}_N$.
- 5. PBDW \subset Variational Data Assimilation (3d-VAR) background (prior) covariance $\leftarrow (I - \prod_{\mathbb{Z}_N})^{-1}$.

Contributions

- PBDW provides
 - 1. rigorous error estimation:
 - a priori bounds;
 - a posteriori estimates;
 - computational and experimental efficiency: optimal background spaces (WEAKGREEDY_N, ...); optimal sensor locations (SGREEDY_M, ...); O(M³) Online complexity;
 - 3. simplicity and generality: bk model restricted to Offline stage ($\rightarrow \mathbb{Z}_N$).

Selected (Extended) References...

0. RB (Reduced Basis) Methods

P Binev, A Cohen, W Dahmen, R DeVore, G Petrova, and P Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. SIAM J Math Anal, 43:1457-1472, 2011.

B Haasdonk and M Ohlberger. Reduced basis method for finite volume approximations of parametrized linear evolution equations. Mathematical Modelling and Numerical Analysis, 42(2):277–302, 2008.

G Rozza, DBP Huynh, and AT Patera. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive PDEs. Archives Computational Methods in Engineering, 15(3):229–275, 2008.

K Willcox and J Peraire. Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40(11):2323–2330, 2002.

1. GEIM (Generalized Empirical Interpolation Method)

Y Maday and O Mula. A generalized empirical interpolation method: application of reduced basis techniques to data assimilation. Analysis and Numerics of Partial Differential Equations (Springer INdAM Series), 4:221-235, 2013.

... Selected (Extended) References...

2. Gappy-POD (Proper Orthogonal Decomposition)

R Everson and L Sirovich. Karhunen-Loève procedure for gappy data. J. Opt. Soc. Am. A, 12:1657–1664, 1995.

K Willcox. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Computers & Fluids, 35(2):208–226, 2006.

3. Stable Least Squares Estimation

A Cohen, M Davenport, and D. Leviatan. On the stability and accuracy of least-squares approximations. Foundations of Computational Mathematics, 13:819–834, 2013.

4. Structured Total Least Squares

GH Golub and CF van Loan. An analysis of the total least squares problem. SIAM J. Numer. Anal, 17(6):883–893, 1980.

B de Moor. Structured total least squares and L_2 approximation problems. Linear Algebra and its Applications, 188,189:163–205, 1993.

... Selected (Extended) References

5. Variational Data Assimilation

L Azzimonti, F Nobile, L Sangalli, and P Secchi. Mixed finite elements for spatial regression with PDE penalization. MOX-Report No. 20/2013 (see also MOX-Report No. 19/2013).

ZL Li and IM Navon. Optimality of variational data assimilation and its relationship with the Kalman filter and smoother. QJRM, 127:661–683, 2001.

AC Lorenc. A global three-dimensional multivariate statistical interpolation scheme. Mon. Wea. Rev., 109:701–721, 1981.

M Yano, JD Penn, and AT Patera. A model-data variational formulation for simulatenous estimation of state and bias. CR Acad Sci Paris Series I, 351(23-24):937-941, 2013.

Raised-Box Acoustic Resonator

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation
- Error Analysis

Raised-Box Acoustic Resonator

• Physical System

- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation
- Error Analysis

Overview

Raised-Box Specifications

Speaker Detail

Raised-Box Acoustic Resonator

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation
- Error Analysis

Experimental Apparatus

Robotic Microphone

Data Acquisition Protocol

Step 1: Take data at desired frequency(s) at single spatial position: .3s .

Step 2: Move microphone to new spatial position: 3s .

Experimental ingredients⁶:

mic calibration relative to reference: control of environmental conditions: T_0^{\dim}, \ldots ; specification of mic location (observation center); REGRESSION on time-periodic mic signal (voltage) $\tilde{p}_t^{\dim}(x)$; introduce relative error in complex pressure $\tilde{p}^{\dim}(x) \in \mathbb{C}$

of magnitude $\approx 5\%$: effectively "exact."

⁶Note \sim denotes an *experimental measurement*.

System Configuration

We define the measured wavenumber as $\tilde{k}\equiv \frac{2\pi\tilde{\textbf{f}}^{\dim}\tilde{r}_{\mathrm{spk}}^{\dim}}{\tilde{c}_{\mathrm{o}}^{\dim}}$

(equivalently, measured nondimensional frequency).

We then denote our system configuration as

 $\mathcal{C}(ilde{k},t_0,\ldots)pprox\mathcal{C}_{ ilde{k}}$;

we assume the system configuration is

sensibly constant

for associated set of observations and assessments, $\cdot [\mathcal{C}_{\tilde{k}}]$.

Observations and Assessments: Impedance Normalization

We normalize our observations and assessments as

$$\begin{split} O_m[\mathcal{C}_{\tilde{k}}] &= \frac{\tilde{p}^{\dim}(x_m^c)}{\tilde{\rho}_0^{\dim}\tilde{c}_0^{\dim}V_{\mathrm{spk}}^{\dim,\mathrm{bk}}(\tilde{k})}[\mathcal{C}_{\tilde{k}}] \\ &\equiv \operatorname{Gauss}(u^{\mathrm{true}}[\mathcal{C}_{\tilde{k}}]; x_m^c, \varphi = \cdot) \\ A_j[\mathcal{C}_{\tilde{k}}] &= \frac{\tilde{p}^{\dim}(\xi_j^c)}{\tilde{\rho}_0^{\dim}\tilde{c}_0^{\dim}V_{\mathrm{spk}}^{\dim,\mathrm{bk}}(\tilde{k})}[\mathcal{C}_{\tilde{k}}] \\ &\equiv \operatorname{Gauss}(u^{\mathrm{true}}[\mathcal{C}_{\tilde{k}}]; \xi_j^c, \varphi = \cdot) \\ \text{for } 1 \leq m \leq M \text{ and } 1 \leq j \leq J, \text{ respectively.} \end{split}$$

Note $V^{\dim,bk}$ is the speaker diaphragm bk model.

Raised-Box Acoustic Resonator

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation
- Error Analysis

Spatial Domains

 Ω : raised box

 Ω^{bk} : full domain

Note lengths non-dimensionalized by speaker radius, $r_{\rm spk}^{\rm dim}$.

Parametrization: $\mu \equiv (k, \gamma) \in \mathcal{D}_k \times \mathcal{D}_\gamma \equiv \mathcal{D} \subset \mathbb{R} \times \mathbb{C}$

Introduce $\mu_1 \equiv k$, nondimensional wavenumber,

$$\mu \equiv k \equiv \frac{2\pi \mathbf{f}^{\dim} r_{\rm spk}^{\dim}}{c_0^{\dim}}$$

and associated domain

 $\mathcal{D}_k \equiv [0.3, 0.7]$

equivalent in dimensional terms to

in 648Hz $\lesssim f^{\dim} \lesssim 1512$ Hz at $T_0^{\dim} \approx 25^{\circ}$ C.

Introduce $\mu_2 \equiv \gamma$, speaker velocity correction factor, for $\gamma \in \mathcal{D}_{\gamma} \equiv \mathbb{C}$ (amplitude and phase).

bk Speaker Model (*Calibrated*): $V_{ m spk}^{ m dim,bk}$

Electromechanical Harmonic Oscillator:

Inputs: spk voltage — amplitude, phase, frequency. Output: spk diaphragm velocity (uniform).

bk Acoustic Model (Air): Parametrized Helmholtz Equation

Given $\mu \equiv (k, \gamma) \in \mathcal{D}$, find complex field over $\Omega^{\mathtt{bk}}$

$$u^{\mathbf{b}\mathbf{k},\mu} \equiv \frac{p^{\dim}}{\rho_0^{\dim} c_0^{\dim} V_{\mathrm{spk}}^{\dim,\mathbf{b}\mathbf{k}}(k)}$$

solution of

$$G^{\mu}(u^{\mathrm{bk},\mu},v)=0, \quad \forall v\in \mathcal{U}^{\mathrm{bk}},$$

for weak form

$$\begin{split} G^{\mu}(w,v) &= ik\gamma \int_{\Gamma_{\rm spk}} 1 \ \bar{v}ds - \int_{\Omega} \nabla w \cdot \nabla \bar{v}dx \\ &+ k^2 \int_{\Omega} w \bar{v}dx - \left(ik + \frac{1}{R_{\rm rad}}\right) \int_{\Gamma_{\rm rad}} w \bar{v}ds \end{split}$$

and space $\mathcal{U}(\Omega^{\mathtt{bk}})\equiv H^1(\Omega^{\mathtt{bk}}).$

94

bk Model Imperfections

There are many sources of bk model error

imprecision in location: *asymmetry* non-rigid diaphragm motion nonlinearity in response pressure loading . . .

elastic modes Rayleigh damping fasteners and joints ...

farfield (radiation) effects . . .

some of which shall prove significant.

cousti
Helmholtz Discretization: $\mathcal{U}^{\mathrm{bk}} ightarrow (\mathcal{U}^{\mathrm{bk}})^{\mathcal{N}}$

raised box

full domain

(Continuous) Galerkin: \mathbb{P}^3 finite elements.

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation
- Error Analysis

State Space and Inner Product

Recall

 $\Omega\subset \Omega^{\rm bk}$

is the interior of raised-box acoustic chamber.

Define (over complex fields) $\mathcal{U}(\Omega) \equiv H^1(\Omega)$

with inner product

$$(w,v) \equiv \int_{\Omega} \nabla w \cdot \nabla \bar{v} dx + \kappa^2 \int_{\Omega} w \bar{v} dx$$

and associated induced norm; choose $\kappa = 0.5$.

Background Spaces: $\{\mathcal{Z}_N\}_{N=1}^{N_{\text{max}}}$ — Definition

Introduce bk manifold

$$\mathcal{M}^{\mathrm{bk}} = \{ u^{\mathrm{bk}, \mu} \mid \mu \in \mathcal{D} \}$$

and invoke

$$\mathsf{WeakGreedy}_{N_{\max}} \to \mathcal{Z}_N^{\mathsf{bk}}, \quad N = 1, \dots, N_{\max},$$

to form

$$\mathcal{Z}_N = \{ z \in \mathcal{U} \mid z = z^{\mathsf{bk}}|_{\Omega}, z^{\mathsf{bk}} \in \mathcal{Z}_N^{\mathsf{bk}} \},\$$

for $N = 1, ..., N_{\max} = 8$.

Note from linearity we may perform WEAKGREEDY_N over $(k, \gamma) \in \mathcal{D}_k \times \{1\}$. Background Spaces: $\{Z_N\}_{N=1}^{N_{\text{max}}}$ — Convergence

Discretization error (estimate) $\gamma = 1$

 $\sup_{\mu \in \mathcal{D}} \Delta_N^{\mathsf{bk},\mu} \gtrsim \epsilon_{\mathrm{disc},N}^{\mathsf{bk}} \equiv \sup_{w \in \mathcal{M}^{\mathsf{bk}}} \|w - \Pi_{\mathcal{Z}_N} w\|$ decreases rapidly with N.

Update Spaces $\{\mathcal{U}_M\}_{M=1}^{M_{\max}}$ — Definition

SGREEDY_M^{discrete}($Z_{N_{max}}$) identifies $\{x_m^c\}_{m=1}^{M_{max}}$

to construct update spaces $M=1,\ldots,48=M_{ ext{max}}$

 $\mathcal{U}_M \equiv \operatorname{span}\{R_{\mathcal{U}}\operatorname{Gauss}(\cdot; x_m^{\mathrm{c}}, \varphi = 0.2)\}_{m=1}^M.$

Update Spaces $\{\mathcal{U}_M\}_{M=1}^{M_{\max}}$ — PROCESS $_{M_{\max}}^{\mathcal{U}}$

Stability: effect of $\text{PROCESS}_{M}^{\mathcal{U}}$ on $\beta_{N,M}$.

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation
- Error Analysis

ROP Data Acquisition: $\mathcal{C}_{\tilde{k}} \rightarrow l^{obs}[\mathcal{C}_{\tilde{k}}]$

Elapsed time: $3.3M ext{ s} (M ext{ observations})$.

(In video we observe 10 frequencies at each mic center.)

PBDW Data Assimilation: $l^{obs}[\mathcal{C}_{\tilde{k}=.69}] \rightarrow u^*_{N=7,M=12}[\mathcal{C}_{\tilde{k}=.69}]$

Elapsed time: 0.1 ms (assimilation) + 0.8 s (rendering).⁷

⁷We may un-normalize our state estimate to obtain the pressure: $p_{N,M}^{*\dim}[\mathcal{C}_{\tilde{k}}] = (u_{N,M}^{*}(\tilde{\rho}\,\tilde{c})_{0}^{\dim}V_{\mathrm{spk}}^{\dim,\mathrm{bk}}(\tilde{k}))[\mathcal{C}_{\tilde{k}}].$

Engineering Analysis: $u_{N=7,M=12}^*[\mathcal{C}_{\tilde{k}=.69}] \rightarrow I_{\text{avg}}[\mathcal{C}_{\tilde{k}=.69}]$

Sound Intensity: $I_{\text{avg}}(x) \equiv \Re\{\frac{-i}{4\pi\rho_0^{\dim}\mathfrak{f}^{\dim}} p_{N,M}^{*\dim} \nabla \overline{p}_{N,M}^{*\dim}\}.$

Response Time (Online)

Best-knowledge model (12 core, 64GB RAM ws): $\mu \equiv (k, \gamma) = (\tilde{k}, 1), (\rho, c)_0^{\dim} = (\tilde{\rho}, \tilde{c})_0^{\dim}$ $\rightarrow u^{\text{bk}, \mu} \quad 20 \text{ s.}$

PBDW state estimation: N = 7, M = 12

data acquisition: ROP $C_{\tilde{k}} \rightarrow \mathbf{l}^{\text{obs}}[C_{\tilde{k}}] = \{O_m[C_{\tilde{k}}]\}_{m=1}^M$ 40 s

data assimilation: PBDW (laptop) SADDLE.Online_{N,M} : $\mathbf{l}^{\text{obs}}[\mathcal{C}_{\tilde{k}}] \rightarrow u^*_{N,M}[\mathcal{C}_{\tilde{k}}]$ 0.0001 s

Total:

40 s.

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation

• Error Analysis

- Preliminaries
- Accuracy
- Convergence: Case I x_2 -Symmetric Resonance, $C_{\tilde{k}=0.557}$
- Convergence: Case II x_2 -Antisymmetric Resonance, $C_{\tilde{k}=0.479}$

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation
- Error Analysis
 - Preliminaries
 - Accuracy
 - Convergence: Case I x_2 -Symmetric Resonance, $C_{\tilde{k}=0.557}$
 - Convergence: Case II x_2 -Antisymmetric Resonance, $C_{\tilde{k}=0.479}$

Assessment Centers

Choose assessment centers $\{\xi_m^c\}_{j=1}^{J=36}$:

Recall observations and assessments are

mutually exclusive: $\xi_j^c \notin \{x_m^c\}_{m=1}^{M_{\text{max}}}, \quad j = 1, \dots, J.$

A Posteriori Indicators Précisés

We shall compare $j=1,\ldots,J$ $P^{\mathsf{bk}}(j;\tilde{k}) \equiv \mathsf{Gauss}(u^{\mathsf{bk},\mu=(k,1)};\xi_i^{\mathrm{c}},0.2)$, $P_{N,M}^*(j;\tilde{k}) \equiv \text{Gauss}(u_{N,M}^*[\mathcal{C}_{\tilde{k}}];\xi_j^c,0.2)$, $P^{\mathrm{true}}(j;\tilde{k}) \equiv A_{i}[\mathcal{C}_{\tilde{k}}]$ $\equiv \text{Gauss}(u^{\text{true}}[\mathcal{C}_{\tilde{k}}];\xi_{i}^{\text{c}},\cdot)$, where $\mathcal{C}_{\tilde{k}}$ specifies the experimental configuration.

We also evaluate for given N, M, and J,

 $E_{\text{avg}}[\mathcal{C}_{\tilde{k}}] \equiv \sqrt{\frac{1}{J} \sum_{j=1}^{J} |P^{\text{true}}(j; \tilde{k}) - P^*_{N,M}(j; \tilde{k})|^2}$

as an estimate of the error in the state.

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation

• Error Analysis

- Preliminaries
- Accuracy
- Convergence: Case I x_2 -Symmetric Resonance, $C_{\tilde{k}=0.557}$
- Convergence: Case II x_2 -Antisymmetric Resonance, $\mathcal{C}_{\tilde{k}=0.479}$

Frequency Response: $\xi_{i}^{c} = (2.67, 2.67, 4.50)$

Resonances: Simple Dirichlet Box

Frequency Response: $\xi_j^c = (9.33, 2.67, 4.50) \ (M = 12)$

Frequency Response:
$$\xi_{j}^{c} = (9.33, 2.67, 4.50) \ (M = 48)$$

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation

• Error Analysis

- Preliminaries
- Accuracy
- Convergence: Case I x_2 -Symmetric Resonance, $\mathcal{C}_{ ilde{k}=0.557}$
- Convergence: Case II x_2 -Antisymmetric Resonance, $C_{\tilde{k}=0.479}$

Frequency Response: Amplitude

Inevitable actual speaker asymmetry unimportant: bk model symmetric Neumann condition on $\Gamma_{\rm spk}$ does excite relevant symmetric resonance; $u^{\rm true}$ close to $\mathcal{M}^{\rm bk}$, model error $\epsilon_{\rm mod}^{\rm bk}(u^{\rm true})$ small.

Convergence Scenario

Primary: As N increases for fixed $M (\geq N)$ expect $\epsilon_{\text{disc }N}^{\text{bk}} \rightarrow 0$ rapidly, and $\|u^{\text{true}} - u^*_{NM}\| \to \epsilon^{\text{bk}}_{\text{mod}}(u^{\text{true}}) \approx 0$ rapidly; \mathcal{Z}_N provides approximation, and \mathcal{U}_M provides stability. Secondary: As *M* increases for fixed $N = N_{\text{plateau}} \equiv \{N \mid \epsilon_{\text{disc }N}^{\text{bk}} \ll \epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}})\} \approx N_{\text{max}}$ expect $\epsilon_{\rm mod}^{\rm bk}(u^{\rm true}) \rightarrow 0$ slowly, and $||u^{\text{true}} - u^*_{NM}|| \rightarrow 0$ slowly; \mathcal{U}_M provides approximation (of unmodeled physics).

119

A Posteriori Error Indicators

⁸Note
$$(\frac{1}{J}\sum_{j=1}^{J} |P^{\text{true}}(j; \tilde{k} = 0.557)|^2)^{1/2} = 0.415.$$

Best-Fit-Over-Manifold: $\epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}}) = \|u^{\text{true}} - \mathcal{F}_{\mathcal{M}^{\text{bk}}}u^{\text{true}}\|$

Explanation of State: Modeled vs Unmodeled — Energy

Little energy is contained in update field $\eta_{N,M}^*$.

Explanation of State: Modeled vs Unmodeled — Fields

- Physical System
- Robotic Observation Platform
- Best-Knowledge Model
- PBDW Formulation
- Real-Time In Situ State Estimation

• Error Analysis

- Preliminaries
- Accuracy
- Convergence: Case I x_2 -Symmetric Resonance, $C_{\tilde{k}=0.557}$
- Convergence: Case II x_2 -Antisymmetric Resonance, $C_{\tilde{k}=0.479}$

Frequency Response: Amplitude

Inevitable actual speaker asymmetry important: bk model symmetric Neumann condition on $\Gamma_{\rm spk}$ does not excite relevant x_2 -antisymmetric resonance; $u^{\rm true}$ not close to $\mathcal{M}^{\rm bk}$, model error $\epsilon_{\rm mod}^{\rm bk}(u^{\rm true})$ not small.

Convergence Scenario

Primary: As N increases for fixed $M (\geq N)$ expect $\epsilon_{\text{disc }N}^{\text{bk}} \rightarrow 0$ rapidly, and $||u^{\text{true}} - u^*_{NM}|| \rightarrow \epsilon^{\text{bk}}_{\text{mod}}(u^{\text{true}}) \not\approx 0$ rapidly; \mathcal{Z}_N provides approximation, and \mathcal{U}_M provides stability. Secondary: As *M* increases for fixed $N = N_{\text{plateau}} \equiv \{N \mid \epsilon_{\text{disc }N}^{\text{bk}} \ll \epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}})\} \approx 1$ expect $\epsilon_{\rm mod}^{\rm bk}(u^{\rm true}) \rightarrow 0$ slowly, and

 $\|u^{\mathrm{true}} - u^*_{N,M}\| o 0$ slowly;

 \mathcal{U}_M provides approximation of unmodeled physics.

A Posteriori Error Indicators

⁹Note $(\frac{1}{J}\sum_{j=1}^{J} |P^{\text{true}}(j; \tilde{k} = 0.479)|^2)^{1/2} = 0.0529.$

Best-Fit-Over-Manifold: $\epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}}) = \|u^{\text{true}} - \mathcal{F}_{\mathcal{M}^{\text{bk}}}u^{\text{true}}\|$

Explanation of State: Modeled vs Unmodeled — Energy

Significant energy is contained in update field $\eta_{N,M}^*$.

Explanation of State: Modeled vs Unmodeled — Fields

Update field $\eta^*_{N,M}$ captures x_2 -antisymmetric resonance — or in any event makes a courageous effort. Design of Experiment: $\{\mathcal{U}_M\}_{M=1}^{M_{\max}}$

Stability: effect of $\operatorname{PROCESS}_M^{\mathcal{U}}$ on error in state.
PBDW for Infinite-Dimensional Parametrizations: An Extracted Domain Approach

- Synthetic Truths
- Best-Knowledge Model
- PBDW Formulation
- State Estimation: 11-Dimensional Truth
- State Estimation: Infinite-Dimensional Truth

Acknowledgement

This more recent development is indebted to prior work of, and discussions with, Albert Cohen. UPMC LJLL. Albert Cohen. UPMC LJLL. Markus Noisternig, Gerard Assayag, IRCAM, Paris. (ATP: And super-human efforts by Dr Masa Yano.)

PBDW for Infinite-Dimensional Parametrizations: An Extracted Domain Approach

• Synthetic Truths

- Best-Knowledge Model
- PBDW Formulation
- State Estimation: 11-Dimensional Truth
- State Estimation: Infinite-Dimensional Truth

General Form: Configuration

Consider configurations

 $\mathcal{C} \equiv \{k, Z_{\text{wall}}, Z_{\text{hole}}\}$

characterized by

wavenumber: $k \in \mathbb{R}_{>0}$ wall impedance field: $Z_{\text{wall}} \in L^{\infty}(\tilde{\Gamma}_{\text{wall}})$ hole impedance: $Z_{\text{hole}} \in \mathbb{C}$.

General Form: Truth Solution

The synthetic truth $u^{\text{true}}[\mathcal{C}] \in H^1(\tilde{\Omega})$ satisifes $G^{\text{true}}[\mathcal{C}](u^{\text{true}}[\mathcal{C}], v) = 0, \quad \forall v \in H^1(\tilde{\Omega})$ for the weak form

$$\begin{split} G^{\text{true}}[\mathcal{C}](w,v) &\equiv ik \int_{\tilde{\Gamma}_{\text{spk}}} \bar{v} ds - \int_{\tilde{\Omega}} \nabla w \cdot \nabla \bar{v} dx \\ &+ k^2 \int_{\tilde{\Omega}} w \bar{v} dx - \int_{\tilde{\Gamma}_{\text{wall}}} \frac{ik}{Z_{\text{wall}}(s)} w \bar{v} ds \\ &- \int_{\tilde{\Gamma}_{\text{hole}}} \frac{ik}{Z_{\text{hole}}} w \bar{v} ds. \end{split}$$

Case 1. Piecewise-Constant $Z \in L^{\infty}(\tilde{\Gamma}_{wall})$ Truth

Random piecewise-constant wall-impedance field:

		Case 1A	Case 1B
	Z_1	-1.4	40 - 0.98i
	Z_2	1.1	11 - 6.16i
	Z_3	0.1	10 + 0.03i
	Z_4	-2.28 + 0.62i	
	$Z_{\rm hole}$	∞	-1.34 + 0.31i
scienal parametrization: 11 (real) par			

High-dimensional parametrization: 11 (real) parameters.

Case 2. Vibroacoustics $Z \in L^{\infty}(\tilde{\Gamma}_{wall})$ Truth

PBDW for Infinite-Dimensional Parametrizations: An Extracted Domain Approach

- Synthetic Truths
- Best-Knowledge Model
- PBDW Formulation
- State Estimation: 11-Dimensional Truth
- State Estimation: Infinite-Dimensional Truth

Spatial and Parameter Domains

Spatial Domain: $(u^{\mathrm{bk},\mu}, u^*_{N,M}) \Omega^{\mathrm{bk}} \equiv \Omega \subset \tilde{\Omega} (u^{\mathrm{true}}).$

Parameter domain:

 $\mu \equiv (k,g) \in \mathcal{D}_k \times \mathcal{D}_g \equiv \mathcal{D} \quad ,$

for wavenumber $k \in \mathcal{D}_k \equiv \mathbb{R}_{>0}$, and boundary trace: $g \in \mathcal{D}_q \equiv H^{1/2}(\Gamma_{\mathrm{bnd}})$.

Parametrized Best-Knowledge Solutions

Given $\mu \equiv (k,g) \in \mathcal{D}$, we seek $u^{\mathrm{bk},(k,g)}$ in space $H^{1}_{(g)}(\Omega) \equiv \{ w \in H^{1}(\Omega) \mid w|_{\Gamma_{\mathrm{bnd}}} = g \},$

such that

$$G^{(k,g)}(u^{\mathrm{bk},(k,g)},v) = 0, \quad \forall v \in H^1_{(0)}(\Omega)$$

for weak form

$$egin{aligned} G^{(k,g)}(w,v) &\equiv -\int_{\Omega}
abla w \cdot
abla ar{v} dx + k^2 \int_{\Omega} w ar{v} dx \\ &-rac{ik}{Z^{
m bk}_{
m hole}} \int_{\tilde{\Gamma}_{
m hole}} w ar{v} ds \ ; \end{aligned}$$

we take $Z_{\text{hole}}^{\text{bk}} \to \infty$ in the best-knowledge model.

PBDW for Infinite-Dimensional Parametrizations: An Extracted Domain Approach

- Synthetic Truths
- Best-Knowledge Model
- PBDW Formulation
- State Estimation: 11-Dimensional Truth
- State Estimation: Infinite-Dimensional Truth

Background Space Dirichlet Boundary Representation

Express the trace $g \in L^\infty(\Gamma_{\mathrm{bnd}})$ as

$$g(\theta) \equiv \sum_{n=1}^{\infty} \alpha_n g_n(\theta)$$

for $\alpha_n \in \mathbb{C}$, $n = 1, \dots,$, and
$$g_n(\theta) = \begin{cases} \cos(\lfloor n/2 \rfloor \pi \theta), & n = 1, 3, 5, \dots, \\ \sin(\lfloor n/2 \rfloor \pi \theta), & n = 2, 4, 6, \dots. \end{cases}$$

We presume g sufficiently smooth, say

 $\alpha_n \lesssim \exp(\lfloor n/2 \rfloor)$

(or more generally, smooth family of functions).

\mathcal{Z}_N Design Criterion

We wish to construct

$$\mathcal{Z}_{N}^{\text{ideal}} \equiv \underset{\substack{\mathcal{W}\\ \dim(\mathcal{W})=N}}{\operatorname{arg inf}} \int_{\mathcal{D}_{k}} \sum_{n=1}^{\infty} \inf_{w \in \mathcal{W}} \| u^{\mathtt{bk},(k,\gamma_{n}g_{n})} - w \|^{2} dk,$$

for Dirichlet boundary weights

$$\begin{split} \gamma_n &\equiv \exp(\lfloor n/2 \rfloor) \\ \text{and the norm } \| \cdot \| \text{ induced by} \qquad \kappa = 1.0 \\ (w,v) &\equiv \int_{\Omega} \nabla w \cdot \nabla \bar{v} dx + \kappa^2 \int_{\Omega} w \bar{v} dx. \end{split}$$

Algorithmic embodiment: POD or POD-Greedy.

\mathcal{Z}_N Construction: POD-Greedy

Introduce an error estimate $\Delta_{N_{L}N_{L}}^{bk,(k,g)}$ such that $\|u^{\mathsf{bk},(k,g)} - \Pi_{\mathcal{W}_{N_{k}},N_{k},g} u^{\mathsf{bk},(k,g)}\| \lesssim \Delta_{N_{k},N_{k},g}^{\mathsf{bk},(k,g)}.$ $\mathsf{POD-Greedy}_{N_{\mathrm{max}}}: \ (\Xi_k \subset \mathcal{D}_k), (N_{\mathrm{bc}} < \infty) \to \{\mathcal{Z}_N\}_{N=1}^{N_{\mathrm{max}}}$ Construct $\mathcal{W}_{N_k N_{bc}}$: for $N_k = 1, \ldots$ 1. $\hat{k}_{N_k} = \underset{k \in \Xi_k}{\operatorname{arg sup}} \underset{n=1,...,N_{\operatorname{bc}}}{\operatorname{sup}} \Delta^{\operatorname{bk},(k,\gamma_n g_n)}_{(N_k-1)N_{\operatorname{bc}}}$ 2. $\mathcal{W}_{N_k N_{bc}} \equiv$ $\mathsf{span}\{\mathcal{Z}_N, u^{\mathsf{bk}, (\hat{k}_{N_k}, \gamma_1 g_1)}, \dots, u^{\mathsf{bk}, (\hat{k}_{N_k}, \gamma_{N_{\mathrm{bc}}} g_{N_{\mathrm{bc}}})}\}$ Apply POD: $\text{POD}_N(\mathcal{W}_{N_k N_{bc}}) \to \mathcal{Z}_N, \quad N = 1, \dots, N_{\max}$

Greedy Convergence: $\mathcal{D}_k \equiv [0.5, 1.0]$

Training set:

wavenumber: $\Xi_k = \{0.50, 0.51, 0.51, ..., 1.00\}$ boundary conditions: $N_{\rm bc} = 20$.

Selected parameter values: $\hat{k} = \{1.0, 0.5, 0.81\}.$

POD-Greedy \mathcal{Z}_N : $\mathcal{D}_k \equiv [0.5, 1.0]$

n = 12

n = 11

n = 13

n = 14

n = 15 147

\mathcal{U}_M Construction: SGREEDY

Invoke

 $\operatorname{SGREEDY}_M(\mathcal{Z}_{N_{\max}}) \to \mathcal{U}_M, \quad M = 1, \ldots, M_{\max} = 30.$

PBDW for Infinite-Dimensional Parametrizations: An Extracted Domain Approach

- Synthetic Truths
- Best-Knowledge Model
- PBDW Formulation
- State Estimation: 11-Dimensional Truth
- State Estimation: Infinite-Dimensional Truth

Case 1A: Field $\tilde{k} = 1.0$

Perfect μ -bk model since $Z_{\text{hole}} = Z_{\text{hole}}^{\text{bk}}$:

 $u^{\mathrm{true}} = u^{\mathrm{bk},(k,g)}$ for some $(k,g) \in \mathcal{D};$

model error $\epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}}) = 0$, discretization error $\epsilon_{\text{disc }N}^{\text{bk}} \neq 0$.

Case 1A: Convergence

Model error $\epsilon^{bk}(u^{true}) = 0$ since $u^{true} \in \mathcal{M}^{bk}$: \mathcal{Z}_N provides rapid convergence for small N even though the truth is high-dimensional.

Case 1B: Field $\tilde{k} = 1.0$

Imperfect μ -bk model since $Z_{\text{hole}} \neq Z_{\text{hole}}^{\text{bk}}$:

 $u^{ ext{true}}
eq u^{ ext{bk},(k,g)}$ for any $\widetilde{(}k,g) \in \mathcal{D};$

model error $\epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}}) \neq 0$, discretization error $\epsilon_{\text{disc},N}^{\text{bk}} \neq 0$.

Case 1B: Convergence

Finite model error $\epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}})$ since $u^{\text{true}} \notin \mathcal{M}^{\text{bk}}$: $\mathcal{Z}_{N \to \infty}$ does *not* provide convergence; $\mathcal{U}_M(=\mathcal{U}_{M \ge N})$ required for stability *and* convergence.

Role of Observations

The set of (synthetic) observations effectively perform projection $u^{\text{true}} \rightarrow u^*_{N,M}$; *implicitly* identify Dirichlet conditions; ensure stability of primary $(z_{N,M}^* \in \mathcal{Z}_N)$ approximation; provide secondary approximation $(\eta_{NM}^* \in \mathcal{U}_M)$: deficiency in best-knowledge model (Z_{hole}); deficiency in background space \mathcal{Z}_N .

In short: observations effect dimension reduction.

PBDW for Infinite-Dimensional Parametrizations: An Extracted Domain Approach

- Synthetic Truths
- Best-Knowledge Model
- PBDW Formulation
- State Estimation: 11-Dimensional Truth
- State Estimation: Infinite-Dimensional Truth

Case 2A: Field $\tilde{k} = 1.0$

Perfect μ -bk model since $Z_{\text{hole}} = Z_{\text{hole}}^{\text{bk}}$:

 $u^{ ext{true}} = u^{ extbf{bk},(k,g)}$ for some $(k,g) \in \mathcal{D};$

model error $\epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}}) = 0$, discretization error $\epsilon_{\text{disc},N}^{\text{bk}} \neq 0$.

Case 2A: Convergence

Model error $\epsilon^{bk}(u^{true}) = 0$ since $u^{true} \in \mathcal{M}^{bk}$: \mathcal{Z}_N provides rapid convergence for small N even though the truth is infinite-dimesional.

Case 2B: Field $\tilde{k} = 1.0$

Imperfect μ -bk model since $Z_{\text{hole}} \neq Z_{\text{hole}}^{\text{bk}}$:

 $u^{ ext{true}}
eq u^{ ext{bk},(k,g)}$ for any $\widetilde{(}k,g) \in \mathcal{D};$

model error $\epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}}) \neq 0$, discretization error $\epsilon_{\text{disc},N}^{\text{bk}} \neq 0$.

Case 2B: Convergence

Finite model error $\epsilon_{\text{mod}}^{\text{bk}}(u^{\text{true}})$ since $u^{\text{true}} \notin \mathcal{M}^{\text{bk}}$: $\mathcal{Z}_{N \to \infty}$ does *not* provide convergence; $\mathcal{U}_M(=\mathcal{U}_{M \ge N})$ required for stability *and* convergence.

Ongoing and Future Work

Methodology

Treatment of

time-dependent problems (parabolic, hyperbolic); nonlinear problems.

Consideration of

spatial and temporal filters;

adaptive methods;

noisy experimental observations;

advanced greedy procedures;

parameter estimation;

domain decomposition frameworks;

non-variational (e.g., stochastic) bk models.

Physical Phenomena

Acoustics

Elasticity

Conduction heat transfer

Fluid flow

Electromagnetism

Multi-field phenomena:

vibroacoustics, natural convection,...

Extended References

Extended References ...

Data Assimilation and Kalman Filter

L Azzimonti, F Nobile, L Sangalli, and P Secchi. Mixed finite elements for spatial regression with PDE penalization. MOX-Report No. 20/2013 (see also MOX-Report No. 19/2013).

RE Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82(Series D):35–45, 1960.

ZL Li and IM Navon. Optimality of variational data assimilation and its relationship with the Kalman filter and smoother. Q.J.R. Meteorol, 127:661–683, 2001.

AC Lorenc. A global three-dimensional multivariate statistical interpolation scheme. Mon. Wea. Rev., 109:701–721, 1981.

M Yano, JD Penn, and AT Patera. A model-data variational formulation for simultaneous estimation of state and bias. CR Acad Sci Paris Series I, 351(23-24):937–941, 2013.

... Extended References ...

Inverse Problems

J Antoni. A Bayesian approach to sound source reconstruction: optimal basis, regularization, and focusing. J. Acoust. Soc. Am. 131:2873–2890, 2012.

PE Barbone, AA Oberai, and I Harari. Adjoint-weighted variational formulation for a direct computational solution of an inverse heat conduction problem. Inv. Prob., 23:2325–2342, 2007.

Y Marzouk, HN Najm, and LA Rahn. Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. of Comp. Phys. 224:560–586, 2007.

SW Phillips, W Aquino, and WM Chirdon. Simultaneous inverse identification of transient thermal properties and heat sources using sparse sensor information. J. Eng. Mech-ASCE. 133:1341–1351, 2007.

A Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia, 2004.

... Extended References ...

Parameter Estimation and Design of Experiment

A Cohen, M Davenport, and D. Leviatan. On the stability and accuracy of least-squares approximations. Foundations of Computational Mathematics, 13:819–834, 2013.

G Franceschini and S Macchietto. Model-based design of experiments for parameter precision: state of the art. Chem. Eng. Sci., 63:4846–4872, 2008.

Bayesian Model Identification

MC Kennedy and A O'Hagan. Bayesian calibration of computer models. J. R. Statist. Soc. B. 63:425–464, 2001.

Least Squares Analysis

GH Golub and CF van Loan. An analysis of the total least squares problem. SIAM J. Numer. Anal, 17(6):883–893, 1980.

B de Moor. Structured total least squares and L_2 approximation problems. Linear Algebra and its Applications, 188,189:163–205, 1993.

... Extended References ...

Data Interpolation Methods ...

G Chardon, A Cohen, and L Daudet. On the stability and accuracy of least-squares approximations. Fond. Comput. Math., 13:819–834, 2013.

R Everson and L Sirovich. Karhunen-Loève procedure for gappy data. J. Opt. Soc. Am. A, 12:1657–1664, 1995.

Y Maday and O Mula. A generalized empirical interpolation method: application of reduced basis techniques to data assimilation. Analysis and Numerics of Partial Differential Equations (Springer INdAM Series), 4:221–235, 2013.

NC Nguyen and J Peraire. An interpolation method for the reconstruction and recognition of face images. In VISAPP 2007 Proceedings Second International Conference on Computer Vision Theory and Applications, Volume 2:91–96, 2007.
... Extended References ...

... Data Interpolation Methods

AT Patera and EM Rønquist. Regression on parametric manifolds: estimation of spatial fields, functional outputs, and parameters from noisy data. CR Acad Sci Paris, Series I, 350(9–10):543–547, 2012.

RB Platte. How fast do radial basis function interpolants of analytic functions converge? IMA J. of Numer. Anal. 31:1578–1597, 2011.

K Willcox. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Computers & Fluids, 35(2):208–226, 2006.

Acoustics & Sound Characterization

Markus Noisternig. Private communication. IRCAM, Paris, 2014.

... Extended References ...

Variational Analysis

W Dahmen, C Plesken, and G Welper. Double greedy algorithms: reduced basis methods for transport dominated problems. Mathematical Modeling and Numerical Analysis (M2AN), 48(3):623–663, 2014.

LF Demkowicz and J Gopalakrishnan. A class of discontinuous Petrov-Galerkin methods. Part I: the transport equation. Comput. Methods Appl. Mech. Engrg. (23-24):1558–1572, 2010.

A Quarteroni and A Valli. Numerical Approximation of Partial Differential Equations. Springer, New York, 1997.

M Yano and AT Patera, A space-time variational approach to hydrodynamic stability theory. Proceedings of the Royal Society A, 469(2155): Article Number 20130036.

... Extended References ...

Model Order Reduction ...

D Amsallem and C Farhat. Interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J, 46:1803–1813, 2008.

P Binev, A Cohen, W Dahmen, R DeVore, G Petrova, and P Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. SIAM J Math Anal, 43:1457-1472, 2011.

A Buffa, Y Maday, AT Patera, C Prud'homme, and G Turinici. A priori convergence of the greedy algorithm for the parametrized reduced basis method. Mathematical Modeling and Numerical Analysis, 46:595–603, 2012.

JL Eftang, AT Patera, and EM Rønquist. An "hp" certified reduced basis method for parametrized elliptic partial differential equations. SIAM Journal on Scientific Computing, 32(6):3170-3200, 2010.

B Haasdonk and M Ohlberger. Reduced basis method for finite volume approximations of parametrized linear evolution equations. Mathematical Modelling and Numerical Analysis, 42(2):277–302, 2008.

... Model Order Reduction

P Ladevèze, JC Passieux, and D Néron. The LATIN multiscale computational method and the proper generalized decomposition. Computer Methods in Applied Mechanics and Engineering, 199(21–22):1287–1296, 2010.

G Rozza, DBP Huynh, and AT Patera. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations — application to transport and continuum mechanics. Archives of Computational Methods in Engineering, 15(3):229–275, 2008.

K Willcox and J Peraire. Balanced model reduction via the proper orthogonal decomposition. AIAA J, 40(11):2323–30, 2002.

for more information see

augustine.mit.edu
(methodology/Seminar Presentations)