Forecasting intraday-load curve using sparse learning methods

Dominique Picard

LPMA- Université Paris-Diderot-Paris 7

Collaborators : Mathilde Mougeot UPD, Vincent Lefieux RTE, Laurence Maillard RTE

Numerical methods for high dimensional problems

Pre-big data- framework, towards streaming machine learning

Pre-streaming machine learning

- Volume moderate
- Variety -moderate
- Velocity -small

Pre-streaming machine learning

- Volume moderate
 - smart (data-driven) organisation of the information
 - methods allowing increasing volume of data
- Variety -moderate
 - multidimensional functional data
- Velocity -small

We describe a forecasting pipeline i.e. chain of learning algorithms to achieve a final functional prediction.

Description of the problem

Intraday load curve during a week $_{ m Monday\ January\ 25^{th}}$ to $_{ m Sunday\ January\ 31^{th}}$

Intraday load curve forecasting -here 48h-

Forecasting pipeline

- Construction of a 'smart encyclopedia' of past scenarios out of a data basis using different learning algorithms.
- 2 Build a set of prediction experts consulting the encyclopedia.
- 3 Aggregate the prediction experts

Data basis

The past data basis

- Electrical consumption of the past
- Other 'shape variables': calendar data, functional bases
- Meteorological input

Electrical consumptions of the past

- Recorded every half hour from January 1st, 2003 to August 31th, 2010.
- For this period of time, the global consumption signal is split into N=2800 sub signals $(Y_1,\ldots,Y_t,\ldots,Y_N)$. $Y_t\in R^n$, defines the intra day load curve for the t^{th} day of size n=48.

Intraday load curve for seven days Monday January 25th to Sunday January 31th

Shape and seasonal effects

Figure: Intraday load curves for various days. 2010-02-03 winter: black dashed dot line, 2010-05-21 spring: red dashed line, 2009-10-23 autumn: green solid line, 2010-08-19 summer: blue dot line, 2010-01-01 public day: gray dot line.

Calendar and functional effects (endogenous)

Figure: autumn, winter, spring and summer

Calendar and functional effects (shape description)

- Consumption on day T can be explained by consumption of days t' < T of the past.
- can be explained by calendar values of the day T (monday,..., sunday, months, seasons,...
- Is a function of time and can be expressed in a standard dictionary of functions (wavelets, Fourier,..)

Functional aspect : dictionary

Figure: Functions of the dictionary. Constant (black-solid line), cosine (blue-dotted line), sine (blue-dashdot line), Haar (red-dashed line) and temperature (green-solid line with points) functions.

Meteorological inputs: Exogeneous variables

- A total of 371 (=2x39+293) meteorological variables
- recorded each day half-hourly over the 2800 days of the same period of time.

Temperature

 T^k for $k=1,\ldots,39$ measured in 39 weather stations scattered all over the French territory.

Cloud Cover:

 N^k for $k = 1, \dots, 39$ measured in the same 39 weather stations.

Wind:

 $W^{k'}$ for k' = 1, ..., 293 available at 293 network points scattered all over the territory.

Weather stations

Figure: Temperature and Cloud covering measurement stations. Wind stations

Brest- Lille- Marseille

Figure: Brest (blue line), Lille (red line) and Marseille (green).

Main issues

- Large dimension
- 2 Prediction requires to explain with a small number of predictable parameters
- 3 Most of the potentially explanatory variables (load curve, meteo, functions of the dictionary) are highly correlated

Reduced set of explanatory variables

For each t index of the day of interest, we register the daily electrical consumption signal $Y_{\rm t}$ and

$$Z_t = [[C]_t [M]_t]$$

 $[C]_t$ is the concatenation of the "calendar, functional, past-consumptions" variables and $[M]_t$ "meteo variables".

Sparse approximation on the learning set

Sparse Approximation of each consumption day on a learning set of days (2003-2010), using the set of potentially explanatory variables.

• For each day t of the learning set, we build an approximation \hat{Y}_t of the (observed) signal Y_t with the help of the set of explanatory variables (Z_t) :

•
$$\hat{Y}_t = G_t(Z_t)$$

$$G_t(Z_t) = Z_t \hat{\beta}_t$$

 $(*)\ {\it Sparse Approximation and Knowledge Extraction for Electrical Consumption Signals,\ 2012},$

M. Mougeot, D. P., K. Tribouley & V. Lefieux, L. Teyssier-Maillard

High dimensional Linear Models

$$Y = X\beta + \epsilon$$

- $\beta \in \mathbb{R}^k$ is the unknown parameter (to be estimated)
 - $\epsilon = (\epsilon_1, \dots, \epsilon_n)^*$ is a (non observed) vector of random errors. It is assumed to be variables i.i.d. $N(0, \sigma^2)$
 - X is a known matrix $n \times k$.

High dimension : $k >> n^t$

Forecasting procedure

Forecasting using the encyclopedia

- Construction of a set of forecasting experts.
- Aggregation of the experts.

Expert associated to the strategy \mathcal{M}

Forecasting experts

- Strategy: \mathcal{M} a function, data dependent or not, from \mathbb{N} to \mathbb{N} such that for any $d \in \mathbb{N}$, $\mathcal{M}(d) < d$ (purely non anticipative).
- Plug-in To the strategy \mathcal{M} we associate the expert $\tilde{Y}_t^{\mathcal{M}}$: the prediction of the signal of day t using forecasting strategy \mathcal{M} ,

$$\tilde{Y}_t^{\mathcal{M}} = G_{\mathcal{M}(t)}(Z_t) = Z_t \hat{\beta}_{\mathcal{M}(t)}$$

Examples of strategies: time depending

tm1: Refer to the day before: (The coefficients used for prediction are those calculated the previous day)

$$\mathcal{M}(d) = d - 1$$

$$\tilde{Y}_t^{tm1} = Z_t \hat{\beta}_{t-1}$$

tm7: Refer to one week before:

$$\mathcal{M}(\mathrm{d}) = \mathrm{d} - 7$$
 $ilde{\mathrm{Y}}_{\mathrm{t}}^{\mathrm{tm7}} = \mathrm{Z}_{\mathbf{t}} \hat{eta}_{\mathrm{t}-7}$

Experts introducing meteorological scenarios

• T: Find the day having the closest temperature indicators, regarding the sup distance (over the days, and over the indicators):

$$\mathcal{M}(d) = \mathrm{ArgMin}_t \ \sup_{k \in \{1, \dots, 6\}, \ i \in \{1, \dots, 48\}} \ |T_d^k(i) - T_t^k(i)|$$

• T_m: Find the day having the closest median temperature with the sup distance (over the days):

$$\mathcal{M}(d) = \operatorname{ArgMin}_{t} \sup_{i \in \{1, \dots, 48\}} |T_d^3(i) - T_t^3(i)|$$

MAPE error

For day t, the prediction MAPE error over the interval [0, T] is defined by:

$$\begin{aligned} \text{MAPE}(Y, \tilde{Y}_t^{\mathcal{M}})(T) &= \frac{1}{T} \sum_{i=1}^{T} \frac{|\tilde{Y}_t^{\mathcal{M}}(i) - Y_t(i)|}{Y_t(i)} \\ \text{MISE}(Y, \tilde{Y}_t^{\mathcal{M}})(T) &= \frac{1}{T} \sum_{i=1}^{T} |\tilde{Y}_t^{\mathcal{M}}(i) - Y_t(i)|^2 \end{aligned}$$

Prediction evaluation

M	mean	med	min	max
Naive	0.0634	0.0415	0.0046	0.1982
Apx	0.0129	0.0104	0.0023	0.0786
$ ext{tm1}$	0.0340	0.0281	0.0063	0.1490
$\mathrm{tm}7$	0.0327	0.0258	0.0054	0.2297
Τ	0.0306	0.0263	0.0058	0.1085
Tm	0.0329	0.0275	0.0047	0.2020
T/N	0.0347	0.0293	0.0056	0.1916
$\mathrm{Tm/N}$	0.0358	0.0300	0.0054	0.2156
T/G	0.0323	0.0271	0.0050	0.1916
T/d	0.0351	0.0278	0.0053	0.1916
T/c	0.0340	0.0259	0.0053	0.1937
Ns/G	0.0322	0.0251	0.0049	0.2078
N/d	0.0305	0.0239	0.0042	0.1449
N/c	0.0307	0.0237	0.0042	0.1990

Prediction evaluation-Comparing experts

Figure: Percentage of best predictor

Prediction evaluation-Comparing experts on days

Figure : Percentage of best predictor among days (1:monday, ... 7:sunday)

Prediction evaluation-Comparing experts

Figure : Percentage of best predictor among month

Aggregation of predictors: Exponential weights

(inspired by various theoretical results -see Lecue, Rigollet, Stolz, Tsybakov,...-)

$$\tilde{Y}_{d}^{wgt*} = \frac{\sum_{m=1}^{M} w_{d}^{m} \tilde{Y}_{d}^{m}}{\sum_{m=1}^{M} w_{d}^{m}}$$

with

$$\mathbf{w}_{\mathrm{d}}^{\mathcal{M}} = \exp(-\frac{1}{T\theta}\sum_{i=1}^{T}|\tilde{Y}_{\mathrm{d}}^{\mathcal{M}}(i) - Y_{\mathrm{t}}(i)|^{2})$$

 θ is a parameter, (often called temperature in physic applications, see the discussion below) T = Tpred.

(mape=0.7%).

Forecasting

(mape=0.7%).

Winter forecast

Figure: Forecast (solid blue line) and observed (dashed dark line) electrical consumption for a winter week from Monday February 1st to Sunday January 7th 2010.

Spring forecast

Figure: Forecast (solid blue line) and observed (dashed dark line) electrical consumption for a spring week from Monday June 14th to Sunday June 21th 2010.

Sparse methods- collinearitystructure

High dimensional Linear Models

$$Y = X\beta + \epsilon$$

- $\beta \in \mathbb{R}^k$ is the unknown parameter (to be estimated)
 - $\epsilon = (\epsilon_1, \dots, \epsilon_n)^*$ is a (non observed) vector of random errors. It is assumed to be variables i.i.d. $N(0, \sigma^2)$
 - X is a known matrix $n \times k$.

High dimension: $k \gg n^t$

(*) M. Mougeot, D. P., K. Tribouley, JRSS B 2012, B Stat. Methodol. vol 74

FBUND sparse reconstruction

M. Mougeo

FBUND sparse reconstruction

M. Mougeo

Genomic example

$$Y = \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 0 \end{pmatrix}$$

The matrix X : genomic

• X : expression of different genes behaves like $n \times p$ random variables i.i.d. N(0,1). (large random matrices)

Signal denoising

What is X in this case?

• Statistical learning, regression estimation

$$Y_i = f(t_i) + \epsilon_i + u_i, i = 1 \dots n$$

- ϵ'_i s are i.i.d. N(0, 1).
- u_i 's possibly random, not necessarily random nor iid but 'small'.
- t_i are observation times $(t_i = \frac{i}{n})$.
- f is the parameter to be estimated.

Using a dictionary

To estimate f, we consider a dictionary \mathcal{D} of size $\#\mathcal{D} = p$

$$\mathcal{D} = \{g_1, \dots g_p\}$$

and assume that f can be well fitted by this dictionary.

$$f = \sum_{\ell=1}^{p} \beta_{\ell} g_{\ell} + h \tag{1}$$

where hopefully h is a 'small' function (in absolute value).

Modeling

Which coincide with the following model:

$$Y = X\beta + u + \epsilon$$

if we put $u_i = h(t_i)$ and

$$X = \begin{pmatrix} g_1(t_1) & \dots & g_p(t_1) \\ \vdots & \vdots & \ddots & \vdots \\ g_1(t_n) & \dots & g_p(t_n) \end{pmatrix}$$

The dictionary problem

Of course sparsity is linked with the dictionary.

- Fourier Basis
- Wavelet basis
- Needlets
- Combination of 'bases'

Fourier basis

Haar wavelets

Conditions generally required to solve the problem

- 'Sparsity'. conditions on the vector β
- Conditions on the matrix X (not too high collinearities, RIP...

Restricted identity property

For $C \subset \{1, \dots p\}$, denote X_C the matrix X restricted to the raws which are in C and the associated Gram-matrix

$$M(\mathcal{C}) := \frac{1}{n} X_{\mathcal{C}}^{t} X_{\mathcal{C}}$$

Restricted identity property. means that $M(\mathcal{C})$ is almost the identity matrix for any \mathcal{C} small enough.

Example 1: RIP

 $RIP(m_0, \nu)$ assumes that

There exist $0 \le \nu < 1$ and $m_0 \ge 1$ such that :

$$\forall x \in R^m, \ \|x\|_{l_2(m)}^2(1-\nu) \le x^t M(\mathcal{C}) x \le \|x\|_{l_2(m)}^2(1+\nu),$$

Example 2: Coherence condition

•

$$M := \frac{1}{n} X^t X.$$

- $M_{ij} = 1$ for all j.
- Coherence.

$$\tau_n = \sup_{\ell \neq m} |M_{\ell m}| = \sup_{\ell \neq m} |\frac{1}{n} \sum_{i=1}^n X_{i\ell} X_{im}|$$

Coherence $\implies \text{RIP}(\lfloor \nu/\tau_n \rfloor, \nu)$

Sparsity conditions

Sparsity conditions

$$\# \{ \ell \in \{1, \dots, k\}, |\beta_{\ell}| \neq 0 \} \le S$$

$$\sum_{\ell} |\beta_{\ell}|^q \leq M, \quad 0 < q < 1 \text{ (B}_q(M)\text{)}$$

SMALL NUMBER OF BIG COEFFICIENTS

Penalization for sparsity

Many penalizations introduced historically in the regression framework (to put identification constraints on β)

• Ridge:
$$E(\beta, \lambda) = ||Y - X\beta||^2 + \lambda \sum_j \beta_j^2$$

• Lasso:
$$E(\beta, \lambda) = ||Y - X\beta||^2 + \lambda \sum_{j} |\beta_{j}|$$

• Scad:
$$E(\beta, \lambda) = ||Y - X\beta||^2 + \lambda \sum_{j} w_{j} g(\beta_{j})$$

Solutions based on:

 \rightarrow Convex Optimization for $l_2,\ l_1,$ non convex Opti. for Scad Candes & Tao (2007), Fan & Lv (2008, 2010), ... Many others...

Fast greedy methods : 2-step thresholding procedures

$$Y = X\beta + \epsilon$$
 $Y (n \times 1), X (n \times k)$

steps		compute	size
Step 1=pre-selection	Find b Leaders $b < n << k$	$X_{\rm b}$	(n, b)
Least squares	on Leaders	$\tilde{\beta} = (X_b^* X_b)^{-1} X_b^* Y$	(1, b)
Step 2=denoising	the coefficients	\hat{eta}	$(1, \hat{S})$

LOL: coefficient-wise: Step1

$$B = \{\ell, \; \mathcal{K}_\ell \geq \lambda_1\}, \qquad \mathcal{K}_\ell = |\frac{1}{n} \sum_{i=1}^N X_{i\ell} Y_i|$$

$$n = 250, p = 1000, X \text{ i.i.d. } \mathcal{N}(0, 1), S = 10$$

$$\text{cond}(B) = 170 \text{ cos } S$$

LOL: step 3

Structuring

$$Y = X\beta + \epsilon, X : N \times k$$

We decide to re-arrange the k predictors into p $(p \le k)$ groups of variables

$$X = [X_{\mathcal{G}_1}, \dots, X_{\mathcal{G}_p}]$$

where $\mathcal{G}_1, \ldots, \mathcal{G}_p$ is a partition of $\{1, \ldots, k\}$.

$$X_\ell = X_{(j,t)}, \; X_{\mathcal{G}_j} = [X_{(j,1)}, \ldots, X_{(j,|\mathcal{G}_j|)}]$$

- $j \in \{1, \dots, p\}$ is the index of the group \mathcal{G}_j
- t is the altitude (height) of ℓ inside the group \mathcal{G}_{j} .

Structured Sparsity

• Structured Sparsity

$$\begin{split} \sum_{j=1}^p w_j \|\beta\|_{\mathcal{G}_j,r}^q &= \sum_{j=1}^p w_j [\sum_{t=1}^T |\beta_{(j,t)}|^r]^{q/r} \leq (M)^q. \\ \text{if } w_j &= 1, \ r \geq q, \ \sum_{j=1}^p \|\beta\|_{\mathcal{G}_j,r}^q = \sum_{j=1}^p [\sum_{t=1}^T |\beta_{(j,t)}|^r]^{q/r} \leq \sum_{j,t} |\beta_{(j,t)}|^q \end{split}$$

- Structured sparsity generally less stringent than ordinary one
- Means we require a small number of 'big' groups

Example of structure: Wavelet-grouping

• Block thresholding (global blocks)

$$\beta = (\beta_{jk})$$

$$G_j = \{(j, k), 0 \le k \le 2^j\}, 0 \le j \le p$$

Size of $\mathcal{G}_{i} = 2^{j}$,

Sparsity = Besov(s, r, q)(M)

GR-LOL - step 1

The columns of X are again normalized

$$\frac{1}{n} \sum_{i=1}^{N} X_{i(j,t)}^{2} = 1, \ \forall \ (j,t).$$

"grouped correlation" search and thresholding:

$$\begin{split} \mathcal{K}_{(j,t)} &= |\frac{1}{n} \sum_{i=1}^{N} X_{i(j,t)} Y_i| \qquad \ \ \forall \ (j,t), \ 1 \leq j \leq p, \ 1 \leq t \leq T \\ \rho_j^2 &= \sum_{t=1,\dots,T} \mathcal{K}_{(j,t)}^2, \qquad \ T = \max |\mathcal{G}_j| \end{split}$$

GR-LOL - step1

• $\lambda(1)$ is tuning parameter

•

$$\mathcal{B} = \{j = 1, ..., p, \rho_j^2 \ge \lambda(1)^2\}$$
 (2)

• $\mathcal{G}_{\mathcal{B}} = \cup_{j \in \mathcal{B}} \mathcal{G}_{j}$.

GR-LOL - step2

OLS on the block-leaders by considering the new pseudo-linear model

$$Y = X_{\mathcal{G}_{\mathcal{B}}}\beta_{\mathcal{G}_{\mathcal{B}}} + \text{error.}$$

$$\hat{\beta}_{\mathcal{G}_{\mathcal{B}}} = \hat{\beta}(\mathcal{B}) \quad \text{and} \quad \hat{\beta}_{\mathcal{G}_{\mathcal{B}}^{c}} = 0$$

where

$$\hat{\beta}(\mathcal{B}) = [X_{\mathcal{G}_{\mathcal{B}}}^{t} X_{\mathcal{G}_{\mathcal{B}}}]^{-1} X_{\mathcal{G}_{\mathcal{B}}} Y.$$

GR-LOL - step3 Block-Thresholding

- $\lambda(2)$ is another tuning parameter.
- We apply the second threshold on the estimated coefficients

$$\forall \ell = (j,t) \in \{1,\ldots,k\}, \quad \hat{\beta}_\ell^* = \hat{\beta}_\ell \; \mathbb{I}\{\; \|\hat{\beta}\|_{\mathcal{G}_j,2} \geq \lambda(2)\,\}$$

•

$$\|\hat{\beta}\|_{\mathcal{G}_j,2}^2 := \sum_{0 \leq t \leq T} \hat{\beta}_{(j,t)}^2.$$

Boosting the convergence by grouping

$$Y = X\beta + \epsilon$$
 $Y (N \times 1), X (N \times k)$ p groups

- Calculate the (internal) correlations of the columns of the matrix X as well as their (external) correlation with the target Y.
- Put columns which are highly correlated (internal correlation) in different groups
- Gather the columns with typically close correlation to the target (external correlation)
- Make T (number of groups) as small as possible

Boosting the rates: cut off

- Divide the columns of X into two sets : S_1 : highly correlated, S_2 : weakly correlated.
- Put S₁ as 'group beginners' (each of them has smallest altitude in its group) to separate them.
- Choose the cut off between S_1 and S_2 .
- Fill the groups with affinity with the delegate in terms of $\mathcal{K}_l = |\frac{1}{n} \sum_{i=1}^N X_{il} Y_i|$: Gathering the columns with typically close correlation with the target

Back to electrical consumption

Figure: French consumption

${\bf Temperatures}$

Figure : Temperature spots

Dictionary

Figure: Functions of the dictionary. Constant (black-solid line), cosine (blue-dotted line), sine (blue-dashdot line), Haar (red-dashed line) and temperature (green-solid line with points) functions.

 ${
m Figure}:$ "Correlation" between the consumption signal and the various dictionary functions. The chosen delegates are tagged with a red star.

- For LOL, E = 1.86% (×24) selected functions: T-T-C-T-H-T-T-T-T-T-T-T-T-T-T-T-T-T-T-S-C and are meaningful functions (20:T), (2:C), (1:S), (1:H).
- Group LOL: E = 0.75%, 24 regressors / 8 groups THS-THH-TCS-TCST-HHTC-STSH. meaningful functions (8:T); (3:C); (5:S); (8:H).

Forecasting intraday-load curve using sparse learning

Approximation

Figure : Model of the consumption signal (black-solid line) using GROL (red-dashed line) and LOL (blue dot dashed line).

Pre-processing the explanatory variables

Reduced dictionary : endogeneous variables : patterns

- Represent sparsely each day on the dictionary (H, S, C).
- Use K-means algorithm to cluster this representation : 8 groups
- Define these groups into calendar boolean variables
- Define in each group the consumption 'pattern' of the group (simply the mean) $\operatorname{mean}_{G(t)}$

•

$$Z_t = [[C]_t [M]_t]$$

• Put $[C]_t = [mean_{G(t)}, Y_{t-7}]$

Reduced dictionary, groups of patterns

Table: Groups, 1...8, are defined using a calendar interpretation of clusters from Monday (day 1) to Sunday (day 7) and from January (month 1) to December (month 12) computed form January 1st to August 31th [?].

	Months											
Days	1	2	3	4	5	6	7	8	9	10	11	12
1	7	8	5	3	3	3	3	1	3	3	5	7
2	7	8	5	3	3	3	3	1	3	3	5	7
3	7	8	5	3	3	3	3	1	3	3	5	7
4	7	8	5	3	3	3	3	1	3	3	5	7
5	7	8	5	3	3	3	3	1	3	3	5	7
6	6	8	4	4	2	2	2	2	2	2	4	6
7	6	6	4	4	2	2	2	2	2	2	4	6

K-means algorithm

- Place K points into the space represented by the objects that are being clustered. These points represent initial group centroids.
- 2 Assign each object to the group that has the closest centroid.
- 3 When all objects have been assigned, recalculate the positions of the K centroids.
- 4 Repeat Steps 2 and 3 until the centroids no longer move.

Important features

- Number of clusters
- 2 Statibility of the algorithm

Reduced dictionary: Meteo variables

- Linear summary of the variables PCA 90% of the variance. Each variable separately.
- Non-linear summary: for each variable, (Max, Min, Med, Variance)

Convergence results

2-thresholding-step Procedures

$$Y = X\beta + \epsilon$$
 $Y (n \times 1), X (n \times p)$

steps		compute	size
Step 1=preselection	Find b Leaders $b < n << p$	X_b	(n, b)
least squares	on Leaders	$\tilde{\beta} = (X_b^* X_b)^{-1} X_b^* Y$	(1, b)
Step 2—denoising	the coefficients	\hat{eta}	(1,Ŝ)

GR-LOL - step 1

The columns of X are normalized

$$\frac{1}{n} \sum_{i=1}^{N} X_{i(j,t)}^{2} = 1, \ \forall \ (j,t).$$

"grouped correlation" search and thresholding:

$$\begin{split} \mathcal{K}_{(j,t)} &= |\frac{1}{n} \sum_{i=1}^{N} X_{i(j,t)} Y_i| \qquad \ \ \forall \ (j,t), \ 1 \leq j \leq p, \ 1 \leq t \leq T \\ \rho_j^2 &= \sum_{t=1,\dots,T} \mathcal{K}_{(j,t)}^2, \qquad \ T = \max |\mathcal{G}_j| \end{split}$$

GR-LOL - step1

• $\lambda(1)$ is tuning parameter

•

$$\mathcal{B} = \{j = 1, \dots, p, \ \rho_j^2 \ge \lambda(1)^2\}$$
 (3)

• $\mathcal{G}_{\mathcal{B}} = \cup_{j \in \mathcal{B}} \mathcal{G}_{j}$.

GR-LOL - step2

OLS on the block-leaders by considering the new pseudo-linear model

$$Y = X_{\mathcal{G}_{\mathcal{B}}}\beta_{\mathcal{G}_{\mathcal{B}}} + \text{error.}$$

$$\hat{\beta}_{\mathcal{G}_{\mathcal{B}}} = \hat{\beta}(\mathcal{B})$$
 (hence $\hat{\beta}_{\mathcal{G}_{\mathcal{B}}^{c}} = 0$)

where

$$\hat{\beta}(\mathcal{B}) = [X_{\mathcal{G}_{\mathcal{B}}}^{t} X_{\mathcal{G}_{\mathcal{B}}}]^{-1} X_{\mathcal{G}_{\mathcal{B}}} Y.$$

GR-LOL - step3 Block-Thresholding

- $\lambda(2)$ is another tuning parameter.
- We apply the second threshold on the estimated coefficients

$$\forall \ell = (j,t) \in \{1,\ldots,k\}, \quad \hat{\beta}_\ell^* = \hat{\beta}_\ell \; \mathbb{I}\{\; \|\hat{\beta}\|_{\mathcal{G}_j,2} \geq \lambda(2)\,\}$$

•

$$\|\hat{\beta}\|_{\mathcal{G}_j,2}^2 := \sum_{0 \leq t \leq T} \hat{\beta}_{(j,t)}^2.$$

GR-LOL - Tuning thresholds

Choose:

• Threshold λ_1 such that

GRLOL
$$\lambda(1) = \kappa_1 \left[\sqrt{\frac{T \vee \log p}{n}} \vee \tau^* \right]$$

LOL $\lambda_1 = \kappa_1 \left[\sqrt{\frac{\log p}{n}} \vee \tau^* \right]$

• Threshold λ_2 such that

GRLOL
$$\lambda(2) = \kappa_2 \left[\sqrt{\frac{T \vee \log p}{n}} \vee \tau^* \right]$$

LOL $\lambda_2 = \kappa_2 \left[\sqrt{\frac{\log p}{n}} \vee \tau^* \right]$
 $T := \max_{j} |\mathcal{G}_j|$

Concentration results

Loss Function

$$d(\hat{\beta}^*, \beta)^2 = \sum_{l=1}^{K} (\hat{\beta}_l - \beta_l)^2$$

Assumptions

Sparsity

$$\begin{split} \sum_{j=1}^{p} \|\beta\|_{\mathcal{G}_{j},1}^{q} &= \sum_{j=1}^{p} [\sum_{t=1}^{T} |\beta_{(j,t)}|]^{q} \leq (M)^{q}. \\ & (\beta \in B_{1,q}(M)) \end{split}$$

• Dimension: $p \le \exp(c'n)$, (c' constant)

Concentration results

$$\sup_{B_{1,q}(M)} \mathbb{E}d(\hat{\beta}^*, \beta)^2 \le D\left[\sqrt{\frac{T \vee \log p}{n}} \vee \tau^*\right]^{(2-q)}$$

$$\sup_{B_{1,0}(S)} \mathbb{E}d(\hat{\beta}^*, \beta)^2 \le DS\left[\sqrt{\frac{T \vee \log p}{n}} \vee \tau^*\right]^2$$

for some positive constant D

What is
$$\tau^*$$
?

Coherence.

• Let M be the $k \times k$ Gram matrix :

$$M := \frac{1}{n} X^* X.$$

• and the Coherence

$$\begin{split} \tau_n &= \sup_{\ell \neq m} |M_{\ell m}| = \sup_{\ell \neq m} |\frac{1}{n} \sum_{i=1}^N X_{i\ell} X_{im}| \\ &= \sup_{(j,t) \neq (j',t')} |M_{(j,t)(j',t')}| = \sup_{(j,t) \neq (j',t')} |\frac{1}{n} \sum_{i=1}^N X_{i(j,t)} X_{i(j',t')}| \end{split}$$

Splitting the coherence: multitask inspiration

We split the coherence $\tau_{\rm n}$ into $\gamma_{\rm BG}$ and $\gamma_{\rm BA}$ where

$$\gamma_{\mathrm{BG}} := \sup_{t} \sup_{j \neq j'} \left| M_{(j,t)(j',t)} \right|.$$

between groups-given altitude, sup over altitude

$$\gamma_{\mathrm{BA}} := \sup_{j,j'} \sup_{t \neq t'} \left| \mathrm{M}_{(j,t)(j',t')} \right| \quad \text{(small)}$$

different altitudes, no matter which groups

 τ^*

Let us define :

$$\tau^* = T \gamma_{BA} + \gamma_{BG}$$

where $T = \max_{j=1,...,p} \overline{\#\{\mathcal{G}_j\}}$.

Example

ST coefficients, all equal to γ .

$$\gamma_{\rm BA} = 0, \gamma_{\rm BG} = \gamma \ge \sqrt{\frac{\log k}{n}}$$

	LOL	GRLOL (opt)	GRLOL (worse)		
RATES	$ST[\gamma^2 + \frac{\log k}{n}]$	$S[\gamma^2 + \frac{T}{n} + \frac{\log k/T}{n}]$	$ST[\gamma^2 + \frac{T}{n} + \frac{\log k/T}{n}]$		

Boosting the rates: strategies for grouping

$$Y = X\beta + \epsilon$$
 $Y (N \times 1), X (N \times k)$

Question: how to group to obtain better rates, when possible?

$$\begin{aligned} & \left[\sum_{j=1}^{p} \left[\sum_{t=1}^{T} |\beta_{(j,t)}| \right]^{q} \right] & \left[\sqrt{\frac{T \vee \log p}{n}} \vee \left\{ T \; \gamma_{BA} + \gamma_{BG} \right\} \right] \\ & \downarrow & \downarrow & \downarrow \\ & & \mathsf{GATHERING} & \mathsf{WORKING} \text{ on } T \; \gamma_{BA} + \gamma_{BG} \end{aligned}$$

Boosting the rates

- Divide the columns of X into two sets : S_1 : highly correlated, S_2 : weakly correlated.
- Put S_1 as 'group beginners' (each of them has smallest altitude in its group) $\longrightarrow \gamma_{BA} << \gamma_{BG} = \gamma_{max}$
- Realize a 'good cut off S_1 and S_2 , ensuring :

$$T\gamma_{BA} \le \gamma_{BG}$$
, $\log p/n \le \gamma_{BG}^2$, $T/n \le \gamma_{BG}^2$

• Fill the groups with affinity with the delegate in terms of $\mathcal{K}_l = |\frac{1}{n} \sum_{i=1}^N X_{il} Y_i|$: indication of $\sum_{j=1}^p [\sum_{i=1}^J |\beta_{(j,t)}|]^q$ as small as possible