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Numerical methods for high dimensional problems



Pre-big data- framework,
towards streaming machine learning



e Volume - moderate
e Variety -moderate

e Velocity -small




e Volume - moderate

o smart (data-driven) organisation of the information
¢ methods allowing increasing volume of data

e Variety -moderate

e multidimensional functional data

e Velocity -small

We describe a forecasting pipeline i.e. chain of learning
algorithms to achieve a final functional prediction.




Description of the problem




Intra;day load curve durlng a Week Monday January 25th o Sunday January 31th
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Intraday load curve forecasting -here 48h-

20100602-3--20100603-4
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@ Construction of a > smart encyclopedia’ of past scenarios
out of a data basis using different learning algorithms.

@ Build a set of prediction experts consulting the
encyclopedia.

@ Aggregate the prediction experts




The past data basis

e Electrical consumption of the past
e Other ’shape variables’: calendar data, functional bases

e Meteorological input




o Recorded every half hour from January 15, 2003 to August
31t 2010.

e For this period of time, the global consumption signal is
split into N = 2800 sub signals (Y1,..., Y¢, ..., YN).
Y. € R", defines the intra day load curve for the t'* day of
size n = 48.




Intraday load curve for seven days monday sanuary 25" to Sunday January 31"
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Shape and seasonal effects

Intraday load curves for various days. 2010-02-03 winter:
black dashed dot line, 2010-05-21 spring: red dashed line, 2009-10-23
autumn: green solid line, 2010-08-19 summer: blue dot line,
2010-01-01 public day: gray dot line.
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Calendar and functional effects (endogenous)

autumn, winter, spring and summer
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e Consumption on day T can be explained by consumption of
days t' < T of the past.

e can be explained by calendar values of the day T
(monday,..., sunday, months, seasons,...

e Is a function of time and can be expressed in a standard
dictionary of functions (wavelets, Fourier,..)




Functional aspect : dictionary

Functions of the dictionary. Constant (black-solid line),
cosine (blue-dotted line), sine (blue-dashdot line), Haar (red-dashed
line) and temperature (green-solid line with points) functions.
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o A total of 371 (=2x39+293) meteorological variables
e recorded each day half-hourly over the 2800 days of the
same period of time.

Temperature:

T* for k = 1,...,39 measured in 39 weather stations scattered
all over the French territory.

Cloud Cover:

Nk for k = 1,...,39 measured in the same 39 weather stations.

Wind:

WK for k' = 1,...,293 available at 293 network points scattered
all over the territory.
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Figure . Temperature and Cloud covering measurement stations. Wind stations



Brest- Lille- Marseille

Brest (blue line), Lille (red line) and Marseille (green).
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@ Large dimension

@ Prediction requires to explain with a number of
predictable parameters

® Most of the potentially explanatory variables (load curve,
meteo, functions of the dictionary) are highly correlated




For each t index of the day of interest, we register the daily
electrical consumption signal Yy and

Zy = [[C]s [M]¢]

[C] is the concatenation of the "calendar,functional,
past-consumptions" variables and [M]; "meteo variables".




Sparse Approximation of each consumption day on a
learning set of days (2003-2010), using the set of potentially
explanatory variables.

e For each day t of the learning set, we build an
approximation Yy of the (observed) signal Yy with the help
of the set of explanatory variables (Zy):

L] ?t = Gt(Zt)
Ge(Ze) = Ze e

(*) Sparse Approximation and Knowledge Extraction for Electrical Consumption Signals, 2012,

M. Mougeot, D. P., K. Tribouley & V. Lefieux, L. Teyssier-Maillard




Y=X +¢

€ R is the unknown parameter (to be estimated)

e ¢=(€1,...,€)* is a (non observed) vector of random
errors. It is assumed to be variables i.i.d. N(0,0?)

e X is a known matrix n x k.




Forecasting using the encyclopedia

e Construction of a set of forecasting experts.

o Aggregation of the experts.




Forecasting experts

e Strategy : M a function, data dependent or not, from N to
N such that for any d € N, M(d) < d (purely non
anticipative).

e Plug-in To the strategy M we associate the expert S?;M:

the prediction of the signal of day t using forecasting
strategy M,

W= G (%) = ZtB./\/l(t)




tml: Refer to the day before: (The coefficients used for
prediction are those calculated the previous day)
M(d)=d-1
Y = Zofia

tm7: Refer to one week before:
M(d)=d-7 : a
YT = ZyBi




e T: Find the day having the closest temperature indicators,
regarding the sup distance (over the days, and over the
indicators):

M(d) = ArgMing supre(r, 6}, ief1,...483 | T5(1) — T¥(D)]

e T,,: Find the day having the closest median temperature
with the sup distance (over the days):

M(d) = ArgMing supseqs,. sy [T3(1) — T3 (i)




For day t, the prediction MAPE error over the interval [0, T] is

defined by:
~ T M i) — Y(i
MAPE(Y, ¥M)(T) = %Z [Y{ (;t(i)Y (i)
MISE(Y, YM)(T Z ITM@) — Yo (i) 2

Dominique Picard |\ Borecasting intraday-load curve using sparse learning



M mean med min max
Naive 0.0634 0.0415 0.0046 0.1982

tm1l 0.0340 0.0281 0.0063 0.1490
tm7 0.0327 0.0258 0.0054 0.2297
T 0.0306 0.0263 0.0058

Tm 0.0329 0.0275 0.0047 0.2020
T/N 0.0347 0.0293 0.0056 0.1916
Tm/N 0.0358 0.0300 0.0054 0.2156
T/G 0.0323 0.0271 0.0050 0.1916
T/d 0.0351 0.0278 0.0053 0.1916
T/c 0.0340 0.0259 0.0053 0.1937
Ns/G  0.0322 0.0251 0.0049 0.2078
N/d 0.0239 0.1449
N/c 0.0307 0.1990




Prediction evaluation-Comparing experts

Best Predictor Performance

Percentage of best predictor
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Prediction evaluation-Comparing experts on days

Ranking Predictor Performances per Day

Percentage of best predictor among days (1:monday, . ..
7:sunday)
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Prediction evaluation-Comparing experts

Percentage of best predictor among month
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(inspired by various theoretical results -see Lecue, Rigollet,
Stolz, Tsybakov,...-)

M
?(vivgt* _ > om=1 W4 Ym
M
Zm:l Wd

T

1 .
it = expl 5 L 190 - Ye(P)
=1l

with

0 is a parameter, (often called temperature in physic
applications, see the discussion below) T = Tpred.




(mape=0.7%).

20100602-3--20100603-4
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© tpred
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Forecasting

(mape=0.

20100602-3--20100603-4
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Winter forecast

Forecast (solid blue line) and observed (dashed dark line) electrical consumption

for a winter week from Monday February 15% to Sunday January 7th 2010.
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Spring forecast

Forecast (solid blue line) and observed (dashed dark line) electrical consumption

for a spring week from Monday June 14 to Sunday June 210 2010.

Dominique Picard Forecasting intraday-load curve using sparse learning



Sparse methods- collinearity-
structure
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Y=X+e¢€

€ R is the unknown parameter (to be estimated)

o e =(€1,...,€)* is a (non observed) vector of random
errors. It is assumed to be variables i.i.d. N(0,0?)

e X is a known matrix n x k.

(*) M. Mougeot, D. P., K. Tribouley, JRSS B 2012,B Stat. Methodol. vol 74




FBUND sparse reconstruction

FBund 20091207

1500
Trading time

M. Mougeot
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FBUND sparse reconstruction

FBund 20091207, S=11

1500
Trading time

M. Mougeot
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e X : expression of different genes
behaves like n x p random variables i.i.d. N(0,1). (large

random matrices)




Signal denoising

What is X in this case 7
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e Statistical learning, regression estimation

Yi:f(ti)+ei+ui, i=1...n

els are i.1.d. N(0,1).

u;’s possibly random, not necessarily random nor iid but
’small’.

t; are observation times (t; = 1).

f is the parameter to be estimated.
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To estimate f, we consider a dictionary D of size #D = p

D = {gi,...8}

and assume that f can be well fitted by this dictionary.

p
f=> Brge+h (1)

/=1

where hopefully h is a ’small’ function (in absolute value).




Which coincide with the following model:

Y=XB8+u+e
if we put u; = h(t;) and
gi(t1) ... gp(t1)
X = . . .
g1(ta) - gp(ta)




Of course sparsity is linked with the dictionary.
Fourier Basis

Wavelet basis

Needlets

Combination of ’bases’




Fourier basis
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Haar wavelets

Dictionary func 48 Dictionary func 49 Dictionary func 50 Dictionary func 51
0.5

! 05
0- 0-
- -05

0 50 0 50
Dictionary func 52 Dictionary func 53 Dictionary func 54 Dictionary func 55

0.5 0.5 0.5
0 - 0 - - 0 -
-0.5 -0.5 -0.5 -0.5
0 50 0 50 0 50 0 50

Dictionary func 57 Dictionary func 58 Dictionary func 59

0.5 .5 0.5
0 - 0- 0 -

0.5 = -0.5
0 50 0 50 0 50

Dictionary func 60 Dictionary func 61 Dictionary func 62
0.5 .
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e ’Sparsity’. conditions on the vector /3

¢ Conditions on the matrix X (not too high collinearities,
RIP...




For C C {1,...p}, denote X¢ the matrix X restricted to the
raws which are in C and the associated Gram-matrix
1
M(C) = Xc

Restricted identity property. means that M(C) is almost the
identity matrix for any C small enough.




RIP(myg, v) assumes that
There exist 0 < v < 1 and mg > 1 such that :

VX ER™, [l (L — ) < MO < [x] (L + ),




e Mj; =1 for all j.

e Coherence.

1
Tn = Sup |Mfrn| = sup |_ ZXMXiml
{#m f#m 11 i—1

Coherence = RIP(|v/m],v)
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#{ee{lvvk}a ’/85‘7&0} <S5

D18 <M, 0<q<1(Bg(M))
L




Many penalizations introduced historically in the regression
framework (to put identification constraints on /3)

. E(B,A) = |IY — X8||* +
. E(B,A) = Y — X8> +
. E(8,)) = [[Y — XB||* +

Solutions based on:

— Convex Optimization for ls, 13, non convex Opti. for Scad
Candes & Tao (2007), Fan & Lv (2008, 2010), ...

Many others...




Y=XB+¢e¢ Y (nx1),X (nxk)

steps compute size
Find b Leaders | X} (n,b)
<n<<k
on Leaders B=(X:Xp)'XEY | (1,b)
the coefficients | /3 (1,9)




LOL : coefficient-wise : Stepl
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LOL: step 3

n=250, $=10, p=1000,b=2,SNR=5

*
e o
e f ;u:,a,

ght
Pl
e +‘!‘,_
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Y=X8+¢ X :Nxk

We decide to re-arrange the k predictors into p (p < k) groups
of variables
X =[Xg,,. .., Xg,]

where Gy, ...,Gp, is a partition of {1,... k}.

Xe =X, Xg; =X, X g0

¢ je{l,...,p} is the index of the group G;
¢ t is the altitude (height) of ¢ inside the group G;.




e Structured Sparsity

T
ijnﬂngj, ZWj[Z B 19/ < (M)e.

j=1 =l
if Wi = 1, r>q, Z HBHEJ Z[Z ’/8(3 t)’ ]q/r
= =1 t=1

e Structured sparsity generally less stringent than ordinary
one

e Means we require a small number of 'big’ groups




o Block thresholding (global blocks)

B = (Bik)

G ={(,k), 0<k<2},0<j<p

Size of G; = 2J,
Sparsity = Besov(s,r,q)(M)




The columns of X are again normalized

ZXI(J 9 =1L V()

"grouped correlation" search and thresholding:

N
1 . .
Ko = |H ZXi(j,t)Yi| V(§it), 1<j<p, 1<t<T

P} = Z ’C(Jt)’ T = max |G|

t ]‘1 7




e A(1) is tuning parameter

B:{jzlv'“’p’ PJ22)\(1)2} (2)

* Gp = Ujepl;j.




OLS on the block-leaders by considering the new pseudo-linear
model
Y = Xg,Bg, + error.

Bgs = B(B) and fgg =0

where A
5(6) = [thBXgB]_lngY'




e \(2) is another tuning parameter.

e We apply the second threshold on the estimated coefficients

Vi = (j’t) € {1’ SO0 ’k}a BZ = BZ ]I{ HBng,Z > )‘(2)}

1B1g,2:= > Bfy-

0<t<T




Y =

Xp+e Y (Nx1),X(Nxk) pgroups

Calculate the ( ) correlations of the columns of the
matrix X as well as their ( ) correlation with the
target Y.

Put columns which are highly correlated (
correlation) in different groups

Gather the columns with typically close correlation to the
target ( correlation)

Make T (number of groups) as small as possible



e Divide the columns of X into two sets : Sy : highly
correlated, So : weakly correlated.

e Put S; as 'group beginners’ (each of them has smallest
altitude in its group) to separate them.
e Choose the cut off between S; and Ss.

o Fill the groups with affinity with the delegate in terms of
Ki=1:3N XaY|




Back to electrical consumption

French consumption
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Figure : Temperature spots




Dictionary

Functions of the dictionary. Constant (black-solid line),
cosine (blue-dotted line), sine (blue-dashdot line), Haar (red-dashed
line) and temperature (green-solid line with points) functions.
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Delegates

"Correlation" between the consumption signal and the various dictionary

functions. The chosen delegates are tagged with a red star.

For LOL, E = 1.86% (x24) selected functions:

T TR o vy o R e e
meaningful functions (20 : T), (2: C), (1:S), (1: H) .

Group LOL: E = 0.75%, 24 regressors / 8 groups
THS-THH-THH-TCS-TCST-HHTC-STSH.

meaningful functions (8 : T); (3: C); (5: S); (8 : H).
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Approximation

Model of the consumption signal (black-solid line) using

GROL (red-dashed line) and LOL (blue dot dashed line).
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Pre-processing the explanatory
variables
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Represent sparsely each day on the dictionary (H, S, C).

Use K-means algorithm to cluster this representation : 8
groups

Define these groups into calendar boolean variables

Define in each group the consumption ’pattern’ of the
group (simply the mean) meang)

Zy = [[C]¢ [M]]

Put [C]; = [meangy), Yi—7]




Table : Groups, 1...8, are defined using a calendar interpretation of
clusters from Monday (day 1) to Sunday (day 7) and from January
(month 1) to December (month 12) computed form January 15 to
August 312 [?].

Months
7

Days 10 11 12

1

N O Ul W N
(SN IES BES EES BES SEN 1 T
S 00 00 G0 0O 0O 00|
= = Ot Ot Ot Ot O W
FSONSQICIICRNJURIJURIIC] IS
DO DD GO WO WO W ol ot
D DN W W W W W o
O DN GO O D W W
N N = = = = =00
DO DD O W W W W w©
DO DD GO Lo O W W
SN S IS S S
S N= SN BEN BES IR N
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@ Place K points into the space represented by the objects
that are being clustered. These points represent initial
group centroids.

@ Assign each object to the group that has the closest
centroid.

® When all objects have been assigned, recalculate the
positions of the K centroids.

@ Repeat Steps 2 and 3 until the centroids no longer move.




@ Number of clusters
@ Statibility of the algorithm




e Linear summary of the variables PCA 90% of the variance.
Each variable separately.

e Non-linear summary : for each variable,
(Max, Min, Med, Variance)
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Y=X8+¢e¢ Y (nx1),X (nxp)

steps compute size
Find | Leaders | Xy, (n,b)
<n<<p
on Leaders B = (X;Xp)'XEY | (1,b)
the coefficients | 3 (1,5)




The columns of X are normalized

ZXI(J 9 =1L V()

"grouped correlation" search and thresholding:

Ko =1 ZXI(”)YI Y (), 1<j<p, 1<t<T

1_

= > ’C(Jt)’ T = max|G|

t ]‘1 7




e A(1) is tuning parameter

B:{jzlv'“’p’ PJ22)\(1)2} (3)

* Gp = Ujepl;j.




OLS on the block-leaders by considering the new pseudo-linear
model
Y = Xg,Bg, + error.

Bgs = B(B) (hence g =0)

where a
5(8) = [thBXgB]_lngY'




e \(2) is another tuning parameter.

e We apply the second threshold on the estimated coefficients

Vi = (j’t) € {1’ SO0 ’k}a BZ = BZ ]I{ HBng,Z > )‘(2)}

1B1g,2:= > Bfy-

0<t<T




Choose:
° such that
Tv1
GRLOL A(1) = #1] % v 7]
° such that

TV1
GRLOL A(2) = rs % v 7]

T := max|G|
J




Z 1614, = SIS gl < (M

j=1 t=1
(6 € B1q(M))

. p <exp(cm), (¢’ constant)




sup Ed(3,6)2 < D[y/ TV 1%8P |/ )20
Bl,q(M) n

A HARVA
sup Ed(F*, B)2 < DS[y/ ——2BP v 2
B170(S) n

for some positive constant D




e Let M be the k x k Gram matrix :
M = 1X*X.
n

e and the
1 N
Tn = sup Mgy | = sup |- ZXiZXim|
Z;ﬁm Z;ﬁm n i=1

= sup [Mgyganl = sup Xi6.0Xi(y.40)]
(3,5) A£G t) (.6)") G,0)2£G" ) 1’12 (3,6)X(’,t")




We split the coherence 7, into ygg and yga where

YBG = supsup [Mg o)) -
t A

YBA = Supsup M(j,t)(j’,t’)
i’ At

J»)




Let us define :

7 =T vBA + VBG

where T = maxj—1,_; #{gj}-
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ST coefficients, all equal to 7.

log k
v8A =0,7B¢ =7 2 E
LOL GRLOL (opt) GRLOL (worse)

RATES




Y=X8+e¢ Y (Nx1), X (Nxk)
Question : how to group to obtain better rates, when possible 7




e Divide the columns of X into two sets : Sy : highly
correlated, Sy : weakly correlated.

e Put S; as 'group beginners’ (each of them has smallest
altitude in its group)

e Realize a 'good cut off S; and Sg, ensuring :

Tvga < 7BG, logp/n<gg, T/n<Adg

o Fill the groups with affinity with the delegate in terms of
Ki=1|% SN XaYil :




