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Stochastic Stokes equations with random input da

ta

Let (2,5, P) be a complete probability space, where Q2 is a set of outcomes w € Q, § is

a o-algebra of events and P is a probability measure defined

asP:§ — [0,1] with

P(Q) = 1. We consider a stochastic Stokes equations in physical domain D € R?

—v(w)Au(-,w) + Vp(-,w) =1(-,w)
V-u(,w)=0
u(-,w)=0

v(w)Vu(-,w) -n — p(-,w)n = h(-,w)

Prob(w)

in D,
inD,
on dDp,
on 0Dy,

(1)

where the uncertainties w arise from the viscosity v, force term f and Neumann BC h.

Finite dimensional noise assumption

The uncertainties depend on N random variables y = (yi, ..

Lyn) Q= RY:

N
e.g. multicomponent fluid:  v(y(w)) = v + Z(un — 1)yn(w);

n=1

N
e.g. truncated random fields:  f(x,y(w)) = E[f](x) + Y _ VAufa(@)yu(w).  (3)
n=1
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Parametrization of the stochastic Stokes equations

... so that the stochastic problem Prob(w) becomes a parametric problem

—v(y)Au(-,y) + Vp(,y) =£(-,y) inD,
Prob(y) V-u(,y)=0 in D, 4
Y u(-,y) =0 on ODp,
V(y)vu(v}) -nfp(~,_y)n:h(-,y) on aDN?
Remark: Prob(y) stochastic/parametric problem with random/parameter vector
y:Q =T :=g" T, c R and probability density function p := @_,p, : T — R.
Stochastic Hilbert Spaces
L) = {v:0 > B| BVi= [ 00100 <oo )
r
G:= (L)@ L' D) H:= (Ly(T) ® L*(9Dn))";
V= {v € (LA(N) ® H' (D))" : v=00n aDD} ;
Q:=L;(I)®Q(D); QD) := {q eL*(D): /qu = o} .
D
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Weak formulation of stochastic Stokes problem

The weak formulation of Prob(y) reads: find {u,p} € V x Q such that

a(u,v) +b(v,p) = (£,v) + (h,v)apy, VWV EV,
b(u,q) =0 Vg € Q,

a(w,v) :://VVW@VVp(y)dxdy Yw,v e V;
rJo
b(v,q) = —//V-qu(y)dxdy weV,qgeQ;
rJp
(f,v) := / /f-vp(y)dxdy feg,vey;
rJo

(h,v)apy := / / h-vp(y)dxdy heH,ve.
r Joby

Remark: d-dimensional deterministic integral and N-dimensional stochastic integral

Assumption on the random input data

P(w : Upin S v((W)) < Unax) =1, 0 < Upin < Unax < 00;

[Ifll¢ < oo and ||h||x < oco.
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Well-posedness of stochastic Stokes problem

Under the assumption above, there exists a unique solution to the stochastic Stokes
problem (5). Moreover, the following stability estimate holds (Brezzi, 1974)

ally < - (cpnfng 42t CTHhHH) 6)
and
Irlle < 5 (14 2¢) ol + 4222 e ) )

where the positive constants a,, v4, 85, 7» are defined such that
a(w,v) < al|wllv|[v|lv  Yw,v e Vanda(v,v) > o[V, Vv e, (8)
being V, the kernel of b given by Vo := {v e V : b(v,q) = 0,Vq € Q}, and

inf sup b(v.q)

o = P and b(v,q) < wllvllvllglle Vv eV, vge Q. 9)
20 veb [vIvllalle
The constants Cp and Cr are due to Poincaré inequality and trace theorem.

Chen, Quarteroni, Rozza. Multilevel and weighted reduced basis method for stochastic optimal
control problems constrained by Stokes equations, submitted, 2013.
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Stochastic optimal control problem with Stokes constraint

Cost functional (tracking)
A possible distributed cost functional is defined by discrepancy + regularization
Tp)=E [1 [@-uwpac s [o-pia+ s [ fzdx} . (0
2 D 2 D 2 JD

Remark: may not involve the second term of pressure or more general observation u,.
v

Constrained optimal control problem

Find an optimal solution {u*,p*,f*} € V x Q x G such that
J*,p" ) = min J (u, p, ) subject to that {u, p, f} solve Prob(y).  (11)
{upflevxaoxg

v

Theorem: existence of the stochastic optimal solution

By Lions’ argument (Lions, 1971), we have that there exists a stochastic optimal
solution {u*,p*,f*} € ¥V x Q x G of the constrained optimal control problem (11).
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Lagrangian formulation - the first order optimality system

Define a compound bilinear form for the weak formulation of Stokes problem as

B({u,p,f},{v,q}) = a(u,v) + b(v,p) + b(u,q) — (£, v). (12)
Associated with this bilinear form, we define the Lagrangian functional as
L({u,p, 1}, {u,p}) = T (u,p,£) + B({u,p, £}, {u*, p}) = (h,u)ap,, (13)

where {u’,p’} € V x Q are the adjoint (or dual) variables of the Stokes problem.
First order optimality system

({w,p}, {v",¢'}) + B({v",¢" 0}, {u",p"})

= (ud’ Va) + (pd7pa) V{Va7qa} 6 V X Q7 (14)
0 Vg € G,

(h7 V)BDN V{V, q} €V x Qa

Oé(f, g) - (ua7 g)
B({u,p,f},{v,q})

(u, v") +a(u®,v")  +b(v",p") = (ug,v") W eV,

(])7 qa) +b(unv qa) = (Pd’ qa) an €9,
Oé(f, g) _(ua,g) =0 Vg S ga
a(u,v) +b(v,p) —(f,v) = (h,Vv)sp, VVEYV,
b(u,q) =0 Vg € Q,
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An equivalent stochastic saddle point formulation (Gunzburger, Bochev, 2004)

Let A: (Vx 9 xG)x(VxQxG)— Rbeacompound bilinear form defined as
A({u,p,1},{v,q,8}) = (u,v) + (p,q) + a(f, ). (16)

An equivalent saddle point formulation

Find {u,p,f} € V x Q x G and {u’,p"} € V x Q such that

A({w,p,f},{v*, ", g}) + B({v*, 4", g}, {u’, p})
= ({ua,pa,0},{v*,q",8}) {v,q", 8t €V x Q2 xG, (17)
B({ll,[),f}, {V’ q}) = (h7 V)BDN V{Vv q} eV xQ.

Theorem: there exists a unique optimal solution. Moreover, the optimal solution
{u, p,f} and the adjoint variables {u®, p} satisfy the following stability estimates:

[{w,p, f}lvxoxg < ail[{ua,pa}|lcx o + Bil || (18)
and
[{u,p"Hlvxo < co|[{ua, pa}llcxo + Bl ||| (19)

where the constants oy, 51, a2, 8, depends on the data, see more details in
Chen, Quarteroni, Rozza. Multilevel and weighted reduced basis method for stochastic optimal
control problems constrained by Stokes equations, submitted, 2013.
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Stochastic regularity of the optimal solution

Assumption on the stochastic regularity of the random input data

For every y € T, there exists r = (r1, ..., 7v) € RY such that the k-th order derivative of
the viscosity v : I' — R4 and the boundary condition h : ' — H satisfy

v () Csl|OFh ()|l

Ca < rf = rk" and
PTUG) H Cal[{ua, patllLxo + Callh(y)||n

< k|, (20)

where the constants Co, = a1 + a2, Cg = i + B2, Ca,p = max{ai + a2, 81 + B2}

Theorem: stochastic regularity

Under the above assumption, we have the following stability estimate for the k-th order
derivative of the solution {u,p,f,u’,p} : T - VX QO XxGxV xQ

105 {u(»), P(), ) Hlvxoxa + 1165 {u’ (), p* () Hlvxo

(21)
< C(Call{ua, pa}llzxo + CslIh()|m) [kl (rr)",

where rr = (rri, rr2, . .., rry) With the constant rate r > 1/1og(2), and C is a constant.
Moreover, the saddle point solution can be analytically extended to the complex region
¥ := {z € C: 3y € T such that ZnN:l ITalzn — ya| < 1}.

4
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Stochastic collocation approximation in probability space

Stochastic collocation methods (SCM) (Griebel, Xiu, Nobile, Hesthaven, etc.)

Choose collocation nodes y',y?, ...,y" (e.g. Clenshaw-Curtis nodes, Gauss
quadrature nodes), solve Prob(y) for each of the nodes, evaluate solution at any new
y € T by multidimensional interpolation and statistics (e.g. mean) by multidimensional
quadrature formula. Use sparse-grid SCM to reduce computational effort.

Sparse grid Smolyak formula:

S = D (A"®- @ AV)(y). (22)

i€Xa (q,N)

0 02 04 06 08 T o 0z 04 05 ' T
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Finite element approximation in physical space

Given an regular triangulation 7 of the physical domain D C R with mesh size k, we
define the following finite element space

Xh = {Vh c C ( ) Vh|K cP, VK e 77,}7 k> 1, (23)

we define Vf := (X)) NV, Q" := X' N Q, and G, := (X})* N G with k,m, [ > 1 as finite
element approximation spaces, e.g. Taylor-Hood m =k — 1,k > 2.

Finite element problem
Forany y € T, find {w:(y), pa(y), f2(y)} € Vi x Qi x G}, and {uj(y),pi()} € Vi x O}
A{wn(v), pn(), £}, Vi, g, 8 3) + BV, g, 8}, {wi(0), Ph(0) }5 )
s.t. = (ua,vi) + (pasd)  V{Vi, i@} € Vi X O X G, (24)
B{wi(»), pn(y), @)} {vi @1};5) = (W), vi)ony  V{vi,an} € Vi x O}

Theorem: well-posedness of the finite element problem

There exists a unique finite element saddle point solution to (24). The stability
estimates in (18) and (19) hold in the finite element space Vi x O x G.
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Algebraic formulation and preconditioning

Let the finite element solution of the saddle point problem (24) be written as

Np

Ny
W) =D ()%, pn(y) = D pa(y)pn, By an (25)
n=1

n=1

we obtain the algebraic formulation of the finite element system as

M,, 0 0 Al Bl Un(y) M, 1 Ua,p
0 Mp,h 0 Bh 0 Ph(y) Mp,th,h
0 0 oMy | —M., 0 Fi(y) | = 0 ) (26)
Ay Bl M| 00 Ui(y) M, Hy(y)
B, 0 0 0 0 Pi(y) 0
We solve (26) by MINRES method with a block diagonal preconditioner
My, 0 0
P(y) = 0  aMg 0 , (27)
00 KLMI(K)
where M, , (Gauss-Seidel) and Kﬁ ,» (inexact Uzawa, Rees et al., 2011) are approximate
of
(Mg 0 . _ (4 B
Mv,h - ( 0 Mp’h ) and Ks,h = ( Bh 0 . (28)
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Multilevel and weighted reduced basis method

Computational challenges
@ ltis very expensive to solve the full finite element algebraic system (26).
@ We need to solve (26) at a large number of samples, e.g. 0(10%).

Computational opportunities
@ The finite element optimal solutions live in a low dimensional manifold.
@ Model order reduction by adaptive construction and a posteriori certification.

Reduced basis approximation, double saddle point problem (Negri et al., 2011-2012)
The associated reduced basis problem can be formulated as: for any y € T, find
{w(),pr(),£:(»)} € Vi, X Qn, X Gy, and {u}(y),p;(y)} € Vi, x O, such that

A{w(),pr (), 0} AV g7 8 3) + BUV ¢f &1, {wi (0), P (0) 1)
= (uq,vy) + (pasqr) V{vy, 47,8} € Vn, X On, X Gy,, (29)
B({u’(y)7pr(y)a gf(y)}, {VH (]r}; y) = (h(y)7 V’)BDN V{Vh qr} € VNr X QNr7
where Vy,, Ow,, Gy, are reduced basis spaces constructed from the snapshots at the
pre-selected samples y', ..., y".
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Construction of RB spaces, double saddle point problem stabilization

Reduced control space
The reduced control space Gy, is constructed by

Gy, = span{f,(y"),1 <n < N,}. (30)

v

Reduced pressure space, aggregated approach

As for Qy,, we take the union of the state and adjoint snapshots of pressure in order to
guarantee the approximate stability in the reduced basis space (Negri et al., 2011-12)

On, = Oy, U Oy, = span{pi(y"),ps(y"),1 <n < N,}. (31)

v

Reduced velocity space (Gerner, Huynh, Manzoni, Patera, Rozza, Veroy, 2003-2014)

To guarantee the the compatibility condition, we enrich the reduced basis velocity
space by introducing the supremizer operator 7 : Q) — Vi:

(Tqn, vi)a = b(Va,qn) ¥V € V, (32)
where (u,v)s = a(u,v;y) Vu,v € V, being y € I" a reference value, so we have

Vi, = Vi, U Vi, = span{uw,(y"), Tpn ("), w, "), Tpin ("), L < n < N} (33)
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Reduced basis method — basic greedy formulation

It is still not feasible because I' has infinite elements and «(y) needs expensive solve.

Recipe 1: replace I by a finite set =4 C I' With |Eyin] = Nirain, known as training set;
Recipe 2: replace ||us(y) — un—1(y)||x by a posteriori error bound Ay—_i(y), yielding

weak greedy algorithm: y" := arg max Ay_;(y),

YEErain

‘ Question: how to choose the training set =i, ? ‘

Criteria for training set
@ sufficient to cover a large range of probability domain T';
@ sparse to alleviate computational effort for reduced basis construction.

Choice of training set
@ random sampling according to probability density function [Boyaval et al., 2010];
@ adaptively clean and enrich the training set [Hesthaven et al., 2014];
@ borrow sparse grid used by stochastic collocation methods [Chen et al., 2012];

v
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A multilevel greedy algorithm

Denote the set of collocation nodes in the gth (¢ > N) level of sparse grid as H(g, N)

1 1 1 1 : 1 :
0.5 . 0.5 . 0.5 . . . 0.5¢ ¢ - . o o ot 0.5 E e o 0 soeq
0 0 0 0 0 i

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Multilevel greedy algorithm [EIman and Liao, 2013] [Chen et al., 2013]
@ To start, we solve a full FE problem at y' (e.g. center) and construct RB spaces;
@ At each level g, we choose sample y"*! to maximize RB error & = ||uy — u||x

E®D). (34)

Ny+1
y = ar max
yEH(q,N)\H(q—1,N)

@ Solve a full FE problem at yM+! and construct RB spaces;
Q@ IfE,(N ) <, N, =N, + 1, go to step 2 at the next level g = g + 1;
@ Otherwise, N, = N, + 1, choose the next sample yVt! at current level.

Q Ifq > Guax, Stop.
4
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Numerical approximation

Weighted a posteriori error bound

A full finite element problem has to be solved in order to evaluate the reduced basis

approximation error &,, which is infeasible. Instead, we use a posteriori error bound A,
cAr(y) < &) < Ar),

where ¢ < 1. We hope that ¢ = 1 and A,(y) is very cheap to compute. We propose

A2) = PRI/ Br-

7
Beta(1.1) 1) true error
—— Beta(10,10) 0,10) true error
Beta(100,100) 2} 00,100) true error
1) error bound
0,10) error bound
_af 00,100) error bound H
T, o
* <
* 7
* .
5
©
& il
)
ol 121
141
06 08 1 o 2 4 6 s 10 12 14 1
N

beta PDF and selected samples

error bound and true error
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Weighted algorithm for arbitrary probability distribution
Error estimates

Stochastic collocation approximation error (stochastic regularity)

£ = [lu—wllew) < CONS, &= ||Efu] — Eful]llv < GN;™). (37)

v

Finite element approximation error (deterministic regularity & FE polynomial order)

En(y) < Cuh[|ul]is1- (38)

Reduced basis approximation error (stochastic regularity)

E = |lu — wleryvy < Crexp(—rN;). (39)

Global error estimate
Efu] — Efu, <&+ max §& 4+ max &(y). 40
IEL] ~Efully &+ _max E0)+ max £() (40)

Chen et al., Multilevel and weighted reduced basis method for stochastic optimal control problems
constrained by Stokes equations, submitted, 2013.
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Experimental setting

We consider a two dimensional physical domain D = (0, 1)*. The observation data is
set as (Gunzburger et al., 2000). The random viscosity v is given as

Ny
=3 Zun 2N > (v =)y, (41)
n=1
where y¥ € T', = [—1, 1]™ corresponding to N, uniformly distributed random variables.

We set v = 0.01, v, = 15/2" and use N, = 3. We set h(x,y") = (1 (x2,"),0) with

Np

L . h

i (x2,y") = o <(\€ ) s Z v A (sm(mrxz)y’z" + cos(nﬂxz)yg,lJrl)) , (42)
n=1

which comes from truncation of Karhunen-Loéve expansion of a Gauss covariance

field with correlation length L = 1/16; the eigenvalues \,, 1 < n < N, are given by

A = v/Lexp (f(mrL)z /4) : (43)

yi. 1 < n < 2N, + 1 are uncorrelated with zero mean and unit variance, which are
independent of y”. Therefore, the random inputs are y = (y*,y"), living in

N = N, + 2N, + 1 dimensional probability space. We use P1 element for pressure
space and P2 element for velocity and control space with 1342 elements in total.
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10 dimensional experiment

Table: The number of samples by multilevel greedy algorithm with different tolerance ¢, in each of
the sparse grid level; the value in (-) reports the number of samples potential as new bases.

tolerance \ level | g—N=0| ¢g—N=1|g—N=2| ¢g—N=3 | intotal
# nodes 1 21 221 1581 1581
ot = 107! 1(1) 6 (14) 1(21) 0 (0) 8 (36)
ol = 1072 1(1) 8 (20) 7 (80) 4 (28) 20 (129)
ol = 1077 1(1) 9 (20) 13 (86) 5 (62) 28 (169)
ot = 1077 1(1) 9 (20) 18 (90) 9 (67) 37 (178)
o1 = 107 1 (1) 10 (20) 22 (90) 14 (105) | 47 (216)
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10 dimensional experiment

—&— error bound
—e— true error

pointwise error
expectation error

Figure: Left, weighted error bound Af and true error of the reduced basis approximation at the
selected samples; right, expectation error at different levels with different tolerance ;.
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100 dimensional experiment

Table: The number of samples selected by multilevel greedy algorithm in each of the level with
different dimensions; the value in (-) reports the number of samples potential as new bases.

dimension\level | ¢g—N=1|¢g—-N=2|g—N=3|g—N=4 in total
N =10 5(10) 13 (40) 19(85) | 10 (100) | 48 (236)
# nodes 11 71 401 2141 2141
N =20 5 (10) 21 (60) | 36 (205) | 15 (204) | 78 (480)
# nodes 11 91 1021 12121 12121
N =40 5 (10) 25(92) | 47(397) | 19 (432) | 97 (932)
# nodes 11 123 2381 40769 40769
N = 100 5 (10) 25(92) | 47(397) | 19 (436) | 97 (936)
# nodes 11 123 2393 41349 41349
Stochastic optimal control with Stokes Constraints April 14-18, 2014
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High dimensional experiments

10' T T T T T T T 107
—©— error bound —o— N=10
—— e ermor . —— N-20
10 —5— N=40
—0— N=100
10 E|
S 5 10 ]
5 ] g
= @
3 c
8 S
H g
5 g
S ] s
g 107 ]
10° E|
107 E|
10 I L L . L L L L L 1070l L L L
3 - T 10 10 1o 10 10

4 ]

Figure: Weighted error bound Af and true error of the reduced basis approximation at the
selected samples in the case of stochastic dimension N = 10 (left) and high dimensions (right).
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Conclusions and perspectives

Conclusions

@ We obtained the well-posedness for the stochastic optimal control problem
constrained by Stokes equations via stochastic saddle point formulation;

@ We developed multilevel and weighted reduced basis method to solve the
PDE-constrained stochastic optimization problem, whose numerical error
estimates have been verified by numerical experiments of 10 to 100 dimensions.

Perspectives

@ Further development of the proposed method for stochastic optimal control
problems with more general statistical observation data;

@ Application of the proposed method to other stochastic fluid flow control problems,
for instance unsteady Stokes or Navier-Stokes constraint.

Thank you for your attention!
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