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Stochastic Stokes problem

Stochastic Stokes equations with random input data

Let (Ω,F,P) be a complete probability space, where Ω is a set of outcomes ω ∈ Ω, F is
a σ-algebra of events and P is a probability measure defined as P : F→ [0, 1] with
P(Ω) = 1. We consider a stochastic Stokes equations in physical domain D ∈ Rd

Prob(ω)


−ν(ω)4u(·, ω) +∇p(·, ω) = f(·, ω) in D,

∇ · u(·, ω) = 0 in D,

u(·, ω) = 0 on ∂DD,

ν(ω)∇u(·, ω) · n− p(·, ω)n = h(·, ω) on ∂DN ,

(1)

where the uncertainties ω arise from the viscosity ν, force term f and Neumann BC h.

Finite dimensional noise assumption

The uncertainties depend on N random variables y = (y1, . . . , yN) : Ω→ RN :

e.g. multicomponent fluid: ν(y(ω)) = ν0 +
N∑

n=1

(νn − ν0)yn(ω); (2)

e.g. truncated random fields: f(x, y(ω)) = E[f](x) +

N∑
n=1

√
λnfn(x)yn(ω). (3)
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Stochastic Stokes problem

Parametrization of the stochastic Stokes equations

... so that the stochastic problem Prob(ω) becomes a parametric problem

Prob(y)


−ν(y)4u(·, y) +∇p(·, y) = f(·, y) in D,

∇ · u(·, y) = 0 in D,

u(·, y) = 0 on ∂DD,

ν(y)∇u(·, y) · n− p(·, y)n = h(·, y) on ∂DN ,

(4)

Remark: Prob(y) stochastic/parametric problem with random/parameter vector
y : Ω→ Γ := ⊗N

n=1Γn ⊂ RN and probability density function ρ := ⊗N
n=1ρn : Γ→ R.

Stochastic Hilbert Spaces

L2
ρ(Γ) :=

{
v : Γ→ R

∣∣∣ E[v2] :=

∫
Γ

(v(y))2ρ(y)dy <∞
}

;

G := (L2
ρ(Γ)⊗ L2(D))d; H := (L2

ρ(Γ)⊗ L2(∂DN))d;

V :=
{

v ∈ (L2
ρ(Γ)⊗ H1(D))d : v = 0 on ∂DD

}
;

Q := L2
ρ(Γ)⊗ Q(D); Q(D) :=

{
q ∈ L2(D) :

∫
D

qdx = 0
}
.
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Stochastic Stokes problem

Weak formulation of stochastic Stokes problem

The weak formulation of Prob(y) reads: find {u, p} ∈ V ×Q such that{
a(u, v) + b(v, p) = (f, v) + (h, v)∂DN ∀v ∈ V,

b(u, q) = 0 ∀q ∈ Q,
(5)

a(w, v) :=

∫
Γ

∫
D
ν∇w⊗∇vρ(y)dxdy ∀w, v ∈ V;

b(v, q) := −
∫

Γ

∫
D
∇ · vqρ(y)dxdy ∀v ∈ V, q ∈ Q;

(f, v) :=

∫
Γ

∫
D

f · vρ(y)dxdy f ∈ G, v ∈ V;

(h, v)∂DN :=

∫
Γ

∫
∂DN

h · vρ(y)dxdy h ∈ H, v ∈ V.

Remark: d-dimensional deterministic integral and N-dimensional stochastic integral

Assumption on the random input data

P(ω : νmin ≤ ν(y(ω)) ≤ νmax) = 1, 0 < νmin < νmax <∞;

||f||G <∞ and ||h||H <∞.
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Stochastic Stokes problem

Well-posedness of stochastic Stokes problem

Under the assumption above, there exists a unique solution to the stochastic Stokes
problem (5). Moreover, the following stability estimate holds (Brezzi, 1974)

||u||V ≤
1
αa

(
CP||f||G +

αa + γa

βb
CT ||h||H

)
, (6)

and

||p||Q ≤
1
βb

((
1 +

γa

αa

)
CP||f||G +

γa(αa + γa)

αaβb
CT ||h||H

)
, (7)

where the positive constants αa, γa, βb, γb are defined such that

a(w, v) ≤ γa||w||V ||v||V ∀w, v ∈ V and a(v, v) ≥ αa||v||2V ∀v ∈ V0, (8)

being V0 the kernel of b given by V0 := {v ∈ V : b(v, q) = 0, ∀q ∈ Q}, and

inf
q∈Q

sup
v∈V

b(v, q)

||v||V ||q||Q
≥ βb, and b(v, q) ≤ γb||v||V ||q||Q ∀v ∈ V,∀q ∈ Q. (9)

The constants CP and CT are due to Poincaré inequality and trace theorem.

Chen, Quarteroni, Rozza. Multilevel and weighted reduced basis method for stochastic optimal
control problems constrained by Stokes equations, submitted, 2013.
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Constrained optimal control, saddle point formulation

Stochastic optimal control problem with Stokes constraint

Cost functional (tracking)

A possible distributed cost functional is defined by discrepancy + regularization

J (u, p, f) = E
[

1
2

∫
D
(u− ud)2dx +

1
2

∫
D
(p− pd)2dx +

α

2

∫
D

f2dx
]
. (10)

Remark: may not involve the second term of pressure or more general observation ud.

Constrained optimal control problem

Find an optimal solution {u∗, p∗, f∗} ∈ V ×Q× G such that

J (u∗, p∗, f∗) = min
{u,p,f}∈V×Q×G

J (u, p, f) subject to that {u, p, f} solve Prob(y). (11)

Theorem: existence of the stochastic optimal solution

By Lions’ argument (Lions, 1971), we have that there exists a stochastic optimal
solution {u∗, p∗, f∗} ∈ V ×Q× G of the constrained optimal control problem (11).
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Constrained optimal control, saddle point formulation

Lagrangian formulation - the first order optimality system

Define a compound bilinear form for the weak formulation of Stokes problem as

B({u, p, f}, {v, q}) = a(u, v) + b(v, p) + b(u, q)− (f, v). (12)

Associated with this bilinear form, we define the Lagrangian functional as

L({u, p, f}, {ua, pa}) = J (u, p, f) + B({u, p, f}, {ua, pa})− (h, ua)∂DN , (13)

where {ua, pa} ∈ V ×Q are the adjoint (or dual) variables of the Stokes problem.

First order optimality system
({u, p}, {va, qa}) + B({va, qa, 0}, {ua, pa})

= (ud, va) + (pd, pa) ∀{va, qa} ∈ V ×Q,
α(f, g)− (ua, g) = 0 ∀g ∈ G,
B({u, p, f}, {v, q}) = (h, v)∂DN ∀{v, q} ∈ V ×Q,

(14)


(u, va) +a(ua, va) +b(va, pa) = (ud, va) ∀va ∈ V,

(p, qa) +b(ua, qa) = (pd, qa) ∀qa ∈ Q,
α(f, g) −(ua, g) = 0 ∀g ∈ G,

a(u, v) +b(v, p) −(f, v) = (h, v)∂DN ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q,

(15)
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Constrained optimal control, saddle point formulation

An equivalent stochastic saddle point formulation (Gunzburger, Bochev, 2004)

Let A : (V ×Q× G)× (V ×Q× G)→ R be a compound bilinear form defined as

A({u, p, f}, {v, q, g}) = (u, v) + (p, q) + α(f, g). (16)

An equivalent saddle point formulation

Find {u, p, f} ∈ V ×Q× G and {ua, pa} ∈ V ×Q such that
A({u, p, f}, {va, qa, g}) + B({va, qa, g}, {ua, pa})

= ({ud, pd, 0}, {va, qa, g}) ∀{va, qa, g} ∈ V ×Q× G,
B({u, p, f}, {v, q}) = (h, v)∂DN ∀{v, q} ∈ V ×Q.

(17)

Theorem: there exists a unique optimal solution. Moreover, the optimal solution
{u, p, f} and the adjoint variables {ua, pa} satisfy the following stability estimates:

||{u, p, f}||V×Q×G ≤ α1||{ud, pd}||L×Q + β1||h||H (18)

and
||{ua, pa}||V×Q ≤ α2||{ud, pd}||L×Q + β2||h||H (19)

where the constants α1, β1, α2, β2 depends on the data, see more details in
Chen, Quarteroni, Rozza. Multilevel and weighted reduced basis method for stochastic optimal
control problems constrained by Stokes equations, submitted, 2013.
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Constrained optimal control, saddle point formulation

Stochastic regularity of the optimal solution

Assumption on the stochastic regularity of the random input data

For every y ∈ Γ, there exists r = (r1, . . . , rN) ∈ RN
+ such that the k-th order derivative of

the viscosity ν : Γ→ R+ and the boundary condition h : Γ→ H satisfy

Cα,β
|∂k

y ν(y)|
ν(ȳ)

≤ rk =:
N∏

n=1

rkn
n and

Cβ ||∂k
y h(y)||H

Cα||{ud, pd}||L×Q + Cβ ||h(y)||H
≤ |k|!rk, (20)

where the constants Cα = α1 + α2,Cβ = β1 + β2,Cα,β = max{α1 + α2, β1 + β2}.

Theorem: stochastic regularity

Under the above assumption, we have the following stability estimate for the k-th order
derivative of the solution {u, p, f, ua, pa} : Γ→ V × Q× G× V × Q

||∂k
y {u(y), p(y), f(y)}||V×Q×G + ||∂k

y {ua(y), pa(y)}||V×Q

≤ C(Cα||{ud, pd}||L×Q + Cβ ||h(y)||H)|k|!(rr)k,
(21)

where rr = (rr1, rr2, . . . , rrN) with the constant rate r > 1/ log(2), and C is a constant.
Moreover, the saddle point solution can be analytically extended to the complex region
Σ :=

{
z ∈ C : ∃y ∈ Γ such that

∑N
n=1 rrn|zn − yn| < 1

}
.
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Numerical approximation

Stochastic collocation approximation in probability space

Stochastic collocation methods (SCM) (Griebel, Xiu, Nobile, Hesthaven, etc.)

Choose collocation nodes y1, y2, . . . , yM (e.g. Clenshaw-Curtis nodes, Gauss
quadrature nodes), solve Prob(y) for each of the nodes, evaluate solution at any new
y ∈ Γ by multidimensional interpolation and statistics (e.g. mean) by multidimensional
quadrature formula. Use sparse-grid SCM to reduce computational effort.
Sparse grid Smolyak formula:

Sα
q v(y) =

∑
i∈Xα(q,N)

(4i1 ⊗ · · · ⊗ 4iN )v(y). (22)
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Numerical approximation

Finite element approximation in physical space

Given an regular triangulation Th of the physical domain D̄ ⊂ Rd with mesh size h, we
define the following finite element space

Xk
h := {vh ∈ C0(D̄) : vh|K ∈ Pk ∀K ∈ Th}, k ≥ 1, (23)

we define Vk
h := (Xk

h)d ∩ V, Qm
h := Xm

h ∩ Q, and Gl
h := (Xl

h)
d ∩ G with k,m, l ≥ 1 as finite

element approximation spaces, e.g. Taylor-Hood m = k − 1, k ≥ 2.

Finite element problem

For any y ∈ Γ, find {uh(y), ph(y), fh(y)} ∈ Vk
h × Qm

h × Gl
h and {ua

h(y), pa
h(y)} ∈ Vk

h × Qm
h

s.t.


A ({uh(y), ph(y), fh(y)}, {va

h, q
a
h, gh}) + B({va

h, q
a
h, gh}, {ua

h(y), pa
h(y)}; y)

= (ud, va
h) + (pd, qa

h) ∀{va
h, q

a
h, gh} ∈ Vk

h × Qm
h × Gl

h,

B({uh(y), ph(y), gh(y)}, {vh, qh}; y) = (h(y), vh)∂DN ∀{vh, qh} ∈ Vk
h × Qm

h .

(24)

Theorem: well-posedness of the finite element problem

There exists a unique finite element saddle point solution to (24). The stability
estimates in (18) and (19) hold in the finite element space Vk

h × Qm
h × Gl

h.
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Numerical approximation

Algebraic formulation and preconditioning

Let the finite element solution of the saddle point problem (24) be written as

uh(y) =

Nv∑
n=1

un(y)ψn, ph(y) =

Np∑
n=1

pn(y)ϕn, fh(y) =

Nv∑
n=1

fn(y)ψn, (25)

we obtain the algebraic formulation of the finite element system as
Mv,h 0 0 Ay

h BT
h

0 Mp,h 0 Bh 0
0 0 αMg,h −MT

c,h 0
Ay

h BT
h −Mc,h 0 0

Bh 0 0 0 0




Uh(y)
Ph(y)
Fh(y)
Ua

h(y)
Pa

h(y)

 =


Mv,hUd,h

Mp,hPd,h

0
Mn,hHh(y)

0

 . (26)

We solve (26) by MINRES method with a block diagonal preconditioner

P(y) =

 M̂s,h 0 0
0 αM̂g,h 0
0 0 K̂y

s,hM−1
s,h (K̂y

s,h)
T

 , (27)

where M̂s,h (Gauss-Seidel) and K̂y
s,h (inexact Uzawa, Rees et al., 2011) are approximate

of

Ms,h =

(
Mv,h 0

0 Mp,h

)
and Ky

s,h =

(
Ay

h BT
h

Bh 0

)
. (28)
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Numerical approximation

Multilevel and weighted reduced basis method

Computational challenges

It is very expensive to solve the full finite element algebraic system (26).

We need to solve (26) at a large number of samples, e.g. O(105).

Computational opportunities

The finite element optimal solutions live in a low dimensional manifold.

Model order reduction by adaptive construction and a posteriori certification.

Reduced basis approximation, double saddle point problem (Negri et al., 2011-2012)

The associated reduced basis problem can be formulated as: for any y ∈ Γ, find
{ur(y), pr(y), fr(y)} ∈ VNr × QNr × GNr and {ua

r (y), pa
r (y)} ∈ VNr × QNr such that

A ({ur(y), pr(y), fr(y)}, {va
r , q

a
r , gr}) + B({va

r , q
a
r , gr}, {ua

r (y), pa
r (y)}; y)

= (ud, va
r ) + (pd, qa

r ) ∀{va
r , q

a
r , gr} ∈ VNr × QNr × GNr ,

B({ur(y), pr(y), gr(y)}, {vr, qr}; y) = (h(y), vr)∂DN ∀{vr, qr} ∈ VNr × QNr ,

(29)

where VNr ,QNr ,GNr are reduced basis spaces constructed from the snapshots at the
pre-selected samples y1, . . . , yNr .
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Numerical approximation

Construction of RB spaces, double saddle point problem stabilization

Reduced control space

The reduced control space GNr is constructed by

GNr = span{fh(yn), 1 ≤ n ≤ Nr}. (30)

Reduced pressure space, aggregated approach

As for QNr , we take the union of the state and adjoint snapshots of pressure in order to
guarantee the approximate stability in the reduced basis space (Negri et al., 2011-12)

QNr = Qs
Nr ∪ Qa

Nr = span{ph(yn), pa
h(yn), 1 ≤ n ≤ Nr}. (31)

Reduced velocity space (Gerner, Huynh, Manzoni, Patera, Rozza, Veroy, 2003-2014)

To guarantee the the compatibility condition, we enrich the reduced basis velocity
space by introducing the supremizer operator T : Qm

h → Vk
h :

(Tqh, vh)A = b(vh, qh) ∀v ∈ Vk
h , (32)

where (u, v)A = a(u, v; ȳ) ∀u, v ∈ V, being ȳ ∈ Γ a reference value, so we have

VNr = Vs
Nr ∪ Va

Nr = span{uh(yn), Tph(yn), ua
h(yn), Tpa

h(yn), 1 ≤ n ≤ Nr}. (33)
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Numerical approximation

Reduced basis method – basic greedy formulation

It is still not feasible because Γ has infinite elements and u(y) needs expensive solve.

Recipe 1: replace Γ by a finite set Ξtrain ⊂ Γ with |Ξtrain| = Ntrain, known as training set;
Recipe 2: replace ||uh(y)− uN−1(y)||X by a posteriori error bound 4N−1(y), yielding

weak greedy algorithm: yN := arg max
y∈Ξtrain

4N−1(y),

Question: how to choose the training set Ξtrain ?

Criteria for training set

sufficient to cover a large range of probability domain Γ;

sparse to alleviate computational effort for reduced basis construction.

Choice of training set

random sampling according to probability density function [Boyaval et al., 2010];

adaptively clean and enrich the training set [Hesthaven et al., 2014];

borrow sparse grid used by stochastic collocation methods [Chen et al., 2012];
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Numerical approximation

A multilevel greedy algorithm

Denote the set of collocation nodes in the qth (q ≥ N) level of sparse grid as H(q,N)
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0 0.5 1
0
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0

0.5

1

Multilevel greedy algorithm [Elman and Liao, 2013] [Chen et al., 2013]

1 To start, we solve a full FE problem at y1 (e.g. center) and construct RB spaces;
2 At each level q, we choose sample yNr+1 to maximize RB error Er = ||uh − ur||X

yNr+1 = arg max
y∈H(q,N)\H(q−1,N)

Er(y). (34)

1 Solve a full FE problem at yNr+1 and construct RB spaces;
2 If Er(yNr+1) < ε, Nr = Nr + 1, go to step 2 at the next level q = q + 1;
3 Otherwise, Nr = Nr + 1, choose the next sample yNr+1 at current level.

3 If q > qmax, Stop.
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Numerical approximation

Weighted a posteriori error bound

A full finite element problem has to be solved in order to evaluate the reduced basis
approximation error Er, which is infeasible. Instead, we use a posteriori error bound 4r

c4r(y) ≤ Er(y) ≤ 4r(y), (35)

where c < 1. We hope that c ≈ 1 and 4r(y) is very cheap to compute. We propose

4ρr (y) = ρ(y)||R(ur(y))||2U/βr. (36)
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Chen, Rozza (EPFL-SISSA) Stochastic optimal control with Stokes Constraints April 14-18, 2014 21 / 32



Numerical approximation Weighted algorithm for arbitrary probability distribution

Error estimates

Stochastic collocation approximation error (stochastic regularity)

Eαs := ||u− us||C(Γ;V) ≤ Cα
s N−r(α)

q , Ee
s := ||E[u]− E[us]||V ≤ Ce

s N−r(α)
q . (37)

Finite element approximation error (deterministic regularity & FE polynomial order)

Eh(y) ≤ Chhk||u||k+1. (38)

Reduced basis approximation error (stochastic regularity)

Er := ||uh − ur||C(Γ;V) ≤ Cr exp(−rNr). (39)

Global error estimate

||E[u]− E[ur]||V ≤ Ee
s + max

y∈Hα(q,N)
Eh(y) + max

y∈Hα(q,N)
Er(y). (40)

Chen et al., Multilevel and weighted reduced basis method for stochastic optimal control problems
constrained by Stokes equations, submitted, 2013.
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Numerical experiments

Experimental setting

We consider a two dimensional physical domain D = (0, 1)2. The observation data is
set as (Gunzburger et al., 2000). The random viscosity ν is given as

ν(yν) =
1
2

Nν∑
n=0

νn +
1

2Nν

Nν∑
n=1

(νn − ν0)yνn , (41)

where yν ∈ Γν = [−1, 1]Nν corresponding to Nν uniformly distributed random variables.
We set ν0 = 0.01, νn = ν0/2n and use Nν = 3. We set h(x, yh) = (h1(x2, yh), 0) with

h1(x2, yh) =
1

10

((√
πL
2

)1/2

yh
1 +

Nh∑
n=1

√
λn

(
sin(nπx2)yh

2n + cos(nπx2)yh
2n+1

))
, (42)

which comes from truncation of Karhunen-Loève expansion of a Gauss covariance
field with correlation length L = 1/16; the eigenvalues λn, 1 ≤ n ≤ Nh are given by

λn =
√
πL exp

(
−(nπL)2/4

)
; (43)

yh
n, 1 ≤ n ≤ 2Nh + 1 are uncorrelated with zero mean and unit variance, which are

independent of yν . Therefore, the random inputs are y = (yν , yh), living in
N = Nν + 2Nh + 1 dimensional probability space. We use P1 element for pressure
space and P2 element for velocity and control space with 1342 elements in total.
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Numerical experiments

10 dimensional experiment

Table: The number of samples by multilevel greedy algorithm with different tolerance εtol in each of
the sparse grid level; the value in (·) reports the number of samples potential as new bases.

tolerance \ level q− N = 0 q− N = 1 q− N = 2 q− N = 3 in total
# nodes 1 21 221 1581 1581
εtol = 10−1 1 (1) 6 (14) 1 (21) 0 (0) 8 (36)
εtol = 10−2 1 (1) 8 (20) 7 (80) 4 (28) 20 (129)
εtol = 10−3 1 (1) 9 (20) 13 (86) 5 (62) 28 (169)
εtol = 10−4 1 (1) 9 (20) 18 (90) 9 (67) 37 (178)
εtol = 10−5 1 (1) 10 (20) 22 (90) 14 (105) 47 (216)
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Numerical experiments

10 dimensional experiment
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Figure: Left, weighted error bound4ρr and true error of the reduced basis approximation at the
selected samples; right, expectation error at different levels with different tolerance εtol.
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Numerical experiments

100 dimensional experiment

Table: The number of samples selected by multilevel greedy algorithm in each of the level with
different dimensions; the value in (·) reports the number of samples potential as new bases.

dimension \ level q− N = 1 q− N = 2 q− N = 3 q− N = 4 in total
N = 10 5 (10) 13 (40) 19 (85) 10 (100) 48 (236)
# nodes 11 71 401 2141 2141
N = 20 5 (10) 21 (60) 36 (205) 15 (204) 78 (480)
# nodes 11 91 1021 12121 12121
N = 40 5 (10) 25 (92) 47 (397) 19 (432) 97 (932)
# nodes 11 123 2381 40769 40769
N = 100 5 (10) 25 (92) 47 (397) 19 (436) 97 (936)
# nodes 11 123 2393 41349 41349
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Numerical experiments

High dimensional experiments
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Figure: Weighted error bound4ρr and true error of the reduced basis approximation at the
selected samples in the case of stochastic dimension N = 10 (left) and high dimensions (right).
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Conclusions and perspectives

Conclusions and perspectives

Conclusions

We obtained the well-posedness for the stochastic optimal control problem
constrained by Stokes equations via stochastic saddle point formulation;

We developed multilevel and weighted reduced basis method to solve the
PDE-constrained stochastic optimization problem, whose numerical error
estimates have been verified by numerical experiments of 10 to 100 dimensions.

Perspectives

Further development of the proposed method for stochastic optimal control
problems with more general statistical observation data;

Application of the proposed method to other stochastic fluid flow control problems,
for instance unsteady Stokes or Navier-Stokes constraint.

Thank you for your attention!
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