Reduced Basis method and Variational Inequalities

Bernard Haasdonk ¹, Julien Salomon² and Barbara Wohlmuth³

¹IANS, SimTech, University of Stuttgart, Germany.
 ²CEREMADE, UMR CNRS 7534, Université Paris IX, France.
 ³Zentrum Mathematik, T.U. Müchnen, Germany.

Variational inequalities

Optimization and saddle points

• Variational equalities:

$$\min_{u\in V} \frac{1}{2}a(u,u) - f(u) \Rightarrow \boxed{a(u,v) = f(v) \ \forall v \in V.}$$

• Variational inequalities: Denote $X = \{ u \in V, \ b(u,\eta) \le g(\eta), \ \eta \in M \}, \ M \text{ closed convex set,}$ $\min_{u \in X} \frac{1}{2} a(u,u) - f(u) \Rightarrow a(u,v-u) \ge f(v-u), \ \forall v \in X,$

or equivalently:

$$\begin{array}{rcl} \textbf{a}(u,v) + b(v,\lambda) &=& f(v), \ \forall v \in V, \\ b(u,\eta-\lambda) &\leq& g(\eta-\lambda), \ \forall \eta \in M. \end{array}$$

Outline

Problem setting

2 A reduced basis method for Variational Inequalities The scheme Analytical results A posteriori estimators

- 3 Some numerical experiments Setting Results
- Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing
- 5 Conclusions and perspectives

Problem setting

Variational inequality formulation

Consider the saddle point problem:

Standard Variational inequality

Given $\mu \in \mathcal{P}$, V, W two Hilbert spaces and M a convex cone in W, find $(u(\mu), \lambda(\mu)) \in V \times M$ such that

$$\begin{array}{lll} \mathsf{a}(u(\mu),v;\mu)+\mathsf{b}(v,\lambda(\mu)) &=& f(v;\mu), & v\in V\\ \mathsf{b}(u(\mu),\eta-\lambda(\mu)) &\leq& g(\eta-\lambda(\mu);\mu), & \eta\in M. \end{array}$$

Equivalently, if a is symmetric :

$$\inf_{u\in X(\boldsymbol{\mu})}\frac{1}{2}a(u,u;\boldsymbol{\mu})-f(u;\boldsymbol{\mu})$$

Moreover, we assume that:

• *a* is uniformly coercive and continuous w.r. to μ ,

 $a(u, v; \boldsymbol{\mu}) \leq \gamma_a \|u\|_V \|v\|_V \qquad \alpha \|u\|_V^2 \leq a(u, u; \boldsymbol{\mu}),$

• b is continuous and inf-sup stable,

 $\inf_{\eta \in W} \sup_{v \in V} b(v, \eta) / (\|v\|_V \|\eta\|_W) \ge \beta > 0,$

• f and g are continuous,

$$f(\mathbf{v}) \leq \gamma_f \|\mathbf{v}\|_{\mathbf{V}}, \ g(\eta) \leq \gamma_g \|\eta\|_{\mathbf{W}},$$

• a, f, g are Lipschitz with respect to μ .

Problem setting Examples of applications

- Mechanics : obstacle problems
- Finance : pricing of American Options

Outline

Problem setting

2 A reduced basis method for Variational Inequalities The scheme

Analytical results A posteriori estimators

- 3 Some numerical experiments Setting Results
- Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing
- 5 Conclusions and perspectives

Now, consider the standard Galerkin approximation: let V_N and W_N some finite dimensional linear sub-space of V and W.

Galerkin Approximation Find $(u_N(\mu), \lambda_N(\mu)) \in V_N \times M_N$ such that $a(u_N(\mu), v_N; \mu) + b(v_N, \lambda_N(\mu)) = f(v_N; \mu), \quad v_N \in V_N$ $b(u_N(\mu), \eta_N - \lambda_N(\mu)) \leq g(\eta_N - \lambda_N(\mu); \mu), \quad \eta_N \in M_N$

R-B method Scheme

- In the R-B setting, V_N and W_N are built thanks to "snapshots", i.e. fine solutions of the initial problem corresponding to a set of parameters (μ₁,..., μ_{NS}).
- In our case, the construction is done as follows:

$$\begin{array}{lll} V_N &=& span\{u(\mu_i), B\lambda(\mu_i), \ i = 1, ..., N_S\}, \\ W_N &=& span\{\lambda(\mu_i), \ i = 1, ..., N_S\}, \\ M_N &=& span_+\{\lambda(\mu_i), \ i = 1, ..., N_S\}, \end{array}$$

where B is the operator defined through:

$$\langle B\lambda(\mu_i), v \rangle_V = b(v, \lambda(\mu_i)), v \in V.$$

This approach consists in enriching the primal basis with supremizers.

G. Rozza, D.B.P Huynh and A.T. Patera. Arch. Comput. Meth. Eng., 15(3): 229-275, 2008.

Outline

Problem setting

2 A reduced basis method for Variational Inequalities The scheme

Analytical results

A posteriori estimators

- 3 Some numerical experiments Setting Results
- Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing
- 5 Conclusions and perspectives

Inf-sup stability :

$$\beta_{N} := \inf_{\eta_{N} \in W_{N}} \sup_{v_{N} \in V_{N}} \frac{b(v_{N}, \eta_{N})}{\|v_{N}\|_{V} \|\eta_{N}\|_{W}} = \inf_{\eta_{N} \in W_{N}} \sup_{v_{N} \in V_{N}} \frac{\langle v_{N}, B\eta_{N} \rangle_{V}}{\|v_{N}\|_{V} \|\eta_{N}\|_{W}}$$
$$= \inf_{\eta_{N} \in W_{N}} \frac{\langle B\eta_{N}, B\eta_{N} \rangle_{V}}{\|B\eta_{N}\|_{V} \|\eta_{N}\|_{W}}$$
$$\geq \inf_{\eta \in W} \frac{\langle B\eta, B\eta \rangle_{V}}{\|B\eta\|_{V} \|\eta\|_{W}} = \inf_{\eta \in W} \sup_{v \in V} \frac{\langle v, B\eta \rangle_{V}}{\|v\|_{V} \|\eta\|_{W}} = \beta > 0.$$

Hence, existence and uniqueness of the reduced solution (u_N, λ_N) .

Stability of the scheme:

$$\begin{split} \|u_{N}(\boldsymbol{\mu})\|_{V} &\leq \frac{1}{2\alpha} \left(\gamma_{f} + \frac{\gamma_{a}}{\beta_{N}} \gamma_{g}\right) + \sqrt{\frac{1}{4\alpha^{2}} \left(\gamma_{f} + \frac{\gamma_{a}}{\beta_{N}} \gamma_{g}\right)^{2} + \frac{\gamma_{g} \gamma_{f}}{\alpha \beta_{N}}} \\ &:= \gamma_{u}, \\ \|\lambda_{N}(\boldsymbol{\mu})\|_{W} &\leq \frac{1}{\beta_{N}} \left(\gamma_{f} + \gamma_{a} \gamma_{u}\right). \end{split}$$

Lipschitz continuity: For all μ, μ' there exist L_u, L_λ such that

$$\|u_{N}(\mu) - u_{N}(\mu')\|_{V} \leq L_{u}\|\mu - \mu'\|_{\mathcal{P}},$$

$$\|\lambda_{N}(\mu) - \lambda_{N}(\mu')\|_{W} \leq L_{\lambda}\|\mu - \mu'\|_{\mathcal{P}}.$$

Outline

Problem setting

2 A reduced basis method for Variational Inequalities

The scheme Analytical results A posteriori estimators

3 Some numerical experiments Setting Results

- Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing
- 5 Conclusions and perspectives

First, we define the equality residual $r(\cdot; \mu) \in V'$ and $s(\cdot; \mu) \in W'$ by

$$\begin{aligned} r(\boldsymbol{v};\boldsymbol{\mu}) &:= f(\boldsymbol{v};\boldsymbol{\mu}) - a(u_N(\boldsymbol{\mu}),\boldsymbol{v};\boldsymbol{\mu}) - b(\boldsymbol{v},\lambda_N(\boldsymbol{\mu})), \\ s(\eta;\boldsymbol{\mu}) &:= b(u_N(\boldsymbol{\mu}),\eta) - g(\eta;\boldsymbol{\mu}) =: \langle \eta,\eta_s(\boldsymbol{\mu}) \rangle_W. \end{aligned}$$

The residual r represents the right hand side of the error-equation

$$a(u(\mu) - u_N(\mu), v; \mu) + b(v, \lambda(\mu) - \lambda_N(\mu)) = r(v; \mu).$$

R-B method

A posteriori estimators

Then define :

$$\begin{split} \delta_r(\boldsymbol{\mu}) &:= \|r(\cdot;\boldsymbol{\mu})\|_{V'} \\ \delta_{s1}(\boldsymbol{\mu}) &:= \|\pi(\eta_s(\boldsymbol{\mu}))\|_W \\ \delta_{s2}(\boldsymbol{\mu}) &:= \langle \lambda_N(\boldsymbol{\mu}), \pi(\eta_s(\boldsymbol{\mu})) - \eta_s(\boldsymbol{\mu}) \rangle_W, \end{split}$$

with $\pi: W \to M$, the orthogonal projection on M, and η_s :

$$\langle \eta, \eta_s(\boldsymbol{\mu}) \rangle_W = s(\eta; \boldsymbol{\mu}), \quad \eta \in W.$$

Upper a posteriori Error Bound

For any μ , the reduced basis errors can be bounded by

$$egin{aligned} \|u(oldsymbol{\mu})-u_{N}(oldsymbol{\mu})\|_{V} &\leq & \Delta_{u}(oldsymbol{\mu}) \coloneqq c_{1}(oldsymbol{\mu})^{2}+c_{2}(oldsymbol{\mu}), \ \|\lambda(oldsymbol{\mu})-\lambda_{N}(oldsymbol{\mu})\|_{W} &\leq & \Delta_{\lambda}(oldsymbol{\mu}) \coloneqq rac{1}{eta_{N}}\left(\delta_{r}(oldsymbol{\mu})+\gamma_{a}(oldsymbol{\mu})\Delta_{u}(oldsymbol{\mu})
ight), \end{aligned}$$

with constants

$$c_{1}(\boldsymbol{\mu}) := \frac{1}{2\alpha(\boldsymbol{\mu})} \left(\delta_{r}(\boldsymbol{\mu}) + \frac{\delta_{s1}(\boldsymbol{\mu})\gamma_{a}(\boldsymbol{\mu})}{\beta_{N}} \right),$$

$$c_{2}(\boldsymbol{\mu}) := \frac{1}{\alpha(\boldsymbol{\mu})} \left(\frac{\delta_{s1}(\boldsymbol{\mu})\delta_{r}(\boldsymbol{\mu})}{\beta_{N}} + \delta_{s2}(\boldsymbol{\mu}) \right).$$

A posteriori estimators

Sketch of the proof:

$$\alpha(\boldsymbol{\mu}) \|\boldsymbol{e}_{\boldsymbol{u}}\|_{\boldsymbol{V}}^2 \leq \boldsymbol{a}(\boldsymbol{e}_{\boldsymbol{u}}, \boldsymbol{e}_{\boldsymbol{u}}) = \boldsymbol{r}(\boldsymbol{e}_{\boldsymbol{u}}) + \boldsymbol{b}(\boldsymbol{e}_{\boldsymbol{\lambda}}, \boldsymbol{e}_{\boldsymbol{u}}).$$

$$b(e_{\lambda}, e_{u}) = b(\lambda_{N}, u_{N}) - b(\lambda, u_{N}) - b(\lambda_{N}, u) + b(\lambda, u)$$

$$\leq g(\lambda_{N}) - s(\lambda) - g(\lambda) - g(\lambda_{N}) + g(\lambda)$$

$$= -s(\lambda) = s(e_{\lambda}) = \langle e_{\lambda}, \eta_{s} \rangle_{W}$$

$$= \langle e_{\lambda}, \pi(\eta_{s}) \rangle_{W} + \langle e_{\lambda}, \eta_{s} - \pi(\eta_{s}) \rangle_{W}$$

$$\leq \|e_{\lambda}\|_{W} \|\eta_{s} - \pi(\eta_{s})\|_{W} + \langle e_{\lambda}, \pi(\eta_{s}) \rangle_{W}$$

$$\leq \delta_{s1} \|e_{\lambda}\|_{W} + \delta_{s2}.$$

Outline

Problem setting

2 A reduced basis method for Variational Inequalities The scheme Analytical results A posteriori estimators

Some numerical experiments Setting

Results

- Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing
- 5 Conclusions and perspectives

Numerical experiments Setting

Obstacle example: $\mu = (\mu_1, \mu_2)$

$$\begin{array}{lll} \mathsf{a}(u,v;\boldsymbol{\mu}) &:=& \int_{\Omega} \nu(\boldsymbol{\mu})(x) \nabla u(x) \cdot \nabla v(x) dx \ , \quad v,u \in V \\ b(u,\eta) &:=& -\eta(u), \quad u \in V, \eta \in W \end{array}$$

with $\nu(\mu)(x) = \mu_1 Ind_{[0,1/2]}(x) + \nu_0 Ind_{[1/2,1]}(x)$. The obstacle is given by:

$$g(\eta; \mu) = \int \eta(x)h(x; \mu) h(x; \mu) = -0.2(\sin(\pi x) - \sin(3\pi x)) - 0.5 + \mu_2 x.$$

Numerical experiments Setting

Numerical methods:

• Snapshot computation (large problems): Primal-Dual Active Set Strategy.

M. Hintermüller, K. Ito and K. Kunisch. The primal-dual active set strategy as a semi-smooth Newton method. SIAM Journal on Optimization, 13:865-888, 2002.

• Reduced problems (small problems): Standard QP-solver.

Outline

Problem setting

2 A reduced basis method for Variational Inequalities The scheme Analytical results A posteriori estimators

3 Some numerical experiments Setting Results

Extension to time-dependent systems
 Algorithms
 Application to American Option Pricing

5 Conclusions and perspectives

Numerical experiments Obstacle problem

Figure : Left-middle: Primal solutions and obstacle. Right column: Exact and reduced solutions for a particular parameter. Solid line: exact solutions, dashed line: reduced solutions.

Numerical experiments Obstacle problem

Figure : Left-middle: Dual solutions. Right column: Exact and reduced solutions for a particular parameter. Solid line: exact solutions, dashed line: reduced solutions.

Numerical experiments Obstacle problem

Figure : Eight first vectors of the reduced basis $\{\varphi_i\}_{i=1}^{N_V}$ forming V_N (left), of the dual reduced family $\{\lambda(\boldsymbol{\mu}_i)\}_{i=1}^{N_S}$ (middle), and the corresponding supremizers $\{B\lambda(\boldsymbol{\mu}_i)\}_{i=1}^{N_S}$ (right).

Numerical experiments Results

Figure : Effect of the inclusion of supremizers. Inf-sup stability constants (left) and number of iterations (right) required to solve the reduced problem. Dots: $V_N = V_N^{(2)}$ with supremizers; crosses: $V_N = V_N^{(1)}$ without supremizers.

Numerical experiments Results

Basis generation via Greedy Algorithm.

Figure : Numerical values of the error $\varepsilon_N(\mu) = e_u(\mu) + e_\lambda(\mu)$ when selecting the parameters on an uniform grid (left) or thanks to the a posteriori estimators (middle).

" A Reduced Basis Method for Parametrized Variational Inequalities",

B. Haasdonk, J. Salomon, B. Wohlmuth, SIAM J. Num. Math., 50 (5), pp. 2656-2676 (2012).

Outline

Problem setting

A reduced basis method for Variational Inequalities The scheme Analytical results A posteriori estimators

3 Some numerical experiments Setting Results

4 Extension to time-dependent systems Algorithms

Application to American Option Pricing

5 Conclusions and perspectives

Extension to time-dependent systems

We now consider:

$$egin{aligned} &\langle \partial_t u, v
angle_V + \mathsf{a}(u, v; \mu) - \mathsf{b}(\lambda, v) &= f(v; \mu), \ &\mathbf{b}(\eta - \lambda, u) &\geq \mathsf{g}(\eta - \lambda; \mu). \end{aligned}$$

Required adaptations:

- Time solver: Crank-Nicholson
- Primal Basis construction: POD-greedy algorithm. Haasdonk, B., Ohlberger, M., *M2AN*, 42(2):277-302, 2008.
- Dual Basis construction: Angle-greedy algorithm.

Extension to time-dependent systems

Angle-greedy algorithm:

Given N_W , $\mathcal{P}_{train} \subset \mathcal{P}$, choose arbitrarily $0 \le n_1 \le L$ and $\mu_1 \in \mathcal{P}_{train}$ and do

1 set
$$\Xi_N^1 = \left\{ \frac{\lambda^{n_1}(\mu_1)}{\|\lambda^{n_1}(\mu_1)\|_W} \right\}$$
, $W_N^1 := \operatorname{span}(\Xi_N^1)$,
2 for $k = 1, \dots, N_W - 1$, do
1 find $(n_{k+1}, \mu_{k+1}) := \operatorname{argmax}_{n=0,\dots,L, \mu \in \mathcal{P}_{train}} \left(\measuredangle \left(\lambda^n(\mu), W_N^k \right) \right)$,
2 set $\xi_{k+1} := \frac{\lambda^{n_{k+1}}(\mu_{k+1})}{\|\lambda^{n_{k+1}}(\mu_{k+1})\|_W}$,
3 define $\Xi_N^{k+1} := \Xi_N^k \cup \{\xi_{k+1}\}, W_N^{k+1} := \operatorname{span}(\Xi_N^{k+1})$,
3 define $\Xi_N := \Xi_N^{N_W}, W_N := \operatorname{span}(\Xi_N)$.

Outline

Problem setting

A reduced basis method for Variational Inequalities The scheme Analytical results A posteriori estimators

3 Some numerical experiments Setting Results

4 Extension to time-dependent systems Algorithms

Application to American Option Pricing

5 Conclusions and perspectives

Extension to time-dependent systems Application to American Option Pricing

$$\partial_t P - \frac{1}{2} \sigma^2 s^2 \partial_{ss}^2 P - (r - q) s \partial_s P + rP \ge 0, \quad P - \psi \ge 0,$$

$$\left(\partial_t P - \frac{1}{2} \sigma^2 s^2 \partial_{ss}^2 P - (r - q) s \partial_s P + rP\right) \cdot (P - \psi) = 0,$$

where

- P = P(s, t) is the price of an American put,
- $s \in \mathbb{R}_+$ the asset's value,
- σ, r, q are the volatility, the interest rate and the dividend payment,
- $\psi = \psi(s, t)$ is the payoff function.

Extension to time-dependent systems Application to American Option Pricing

The boundary and initial conditions are as follows: $P(s,0) = \psi(s)$, P(0,t) = K, $\lim_{s \to +\infty} P(s,t) = 0$, where K > 0 is a fixed strike price that satisfies $K = \psi(0,0)$. In what follows, we use $\psi(s,t) = (K - s)_+$ with $(\cdot)_+ = \max(0, \cdot)$.

Extension to time-dependent systems

Application to American Option Pricing

Figure : Eight first vectors of the reduced basis Ψ_N , Ξ_N and the corresponding supremizers.

Extension to time-dependent systems Application to American Option Pricing

$$\varepsilon_{N}^{u} := \max_{\mu \in \mathcal{P}_{train}} \sqrt{\sum_{n=0}^{L} \|u^{n}(\mu) - \Pi_{V_{N}^{k}}(u^{n}(\mu))\|_{V}^{2}},$$

$$\varepsilon_{N}^{\lambda} := \max_{\substack{n = 0, \dots, L, \\ \mu \in \mathcal{P}_{train}}} \left(\measuredangle \left(\lambda^{n}(\mu), W_{N}^{k} \right) \right)$$

$$err_N(\mu) = \sqrt{\Delta t \sum_{n=0}^{L} \|u^n(\mu) - u_N^n(\mu)\|_V^2}, \quad Err_N^{L^\infty} = \max_{\mu \in \mathcal{P}_{test}} \left(err_N(\mu) \right).$$

Extension to time-dependent systems Application to American Option Pricing

Figure : Values of ε_N^u and ε_N^λ during the iterations of POD-greedy Algorithm (left) and Angle-greedy (middle). Right: Values of $Err_N^{L^\infty}$ with respect to N_V and N_W .

"A Reduced Basis Method for the Simulation of American Options", B. Haasdonk, J. Salomon, B. Wohlmuth, *Proceedings of ENUMATH Conference*

Preprint HAL : hal-00660385.

Conclusions:

- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case

Conclusions:

- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case

Conclusions:

- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case

Conclusions:

- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case

Conclusions:

- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case

Conclusions:

- Theoretical and numerical improvement when using supremizers
- Better accuracy for the primal variable as for the dual
- Adaptation to time dependent systems

- Better dual cone generation
- Full decomposition of a posteriori estimators
- A posteriori estimators for the time-dependent case

Also: Another approach this morning, see the work of K. Veroy et al

 \rightarrow primal-dual approach.

Also: Another approach tomorrow, see the talk of K. Urban \rightarrow time-space setting.