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Variational inequalities
Optimization and saddle points

e Variational equalities:

1
lrln€|\r}§a(u, u) — f(u) :>‘a(u, v) =f(v) Vv e V.‘

e Variational inequalities: Denote
X={ueV, b(u,n) <gn), ne M}, M closed convex set,

1
mein Ea(u, u) — f(u) = a(u,v—u) > f(v—u), Yve X,
u

or equivalently:

a(u, v) = f(v), YveV,
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Problem setting

Variational inequality formulation

Consider the saddle point problem:

Standard Variational inequality

Given p € P, V, W two Hilbert spaces and M a convex cone in
W, find (u(p), A(12)) € V x M such that

a(u(p), vip) + b(v, A(p)) = f(vip), veV
b(u(pe),n — M) < gl —Mp)ip), neM.

Equivalently, if a is symmetric :

H 1 . .
ue';?{u) alu,u;p) = f(u; 1)



Problem setting

supplementary assumptions

Moreover, we assume that:

e ais uniformly coercive and continuous w.r. to p,
2
a(uvin) <vallully IV, allulfy < a(u, u; p),
e b is continuous and inf-sup stable,
inf sup b(v,n)/(llvlly Inllw) = 8 >0,
neW vev
e f and g are continuous,

F(v) <vellvily, &) < e lnllw

e a, f, g are Lipschitz with respect to 1.



Problem setting

Examples of applications

e Mechanics : obstacle problems

e Finance : pricing of American Options
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R-B method

Scheme

Now, consider the standard Galerkin approximation: let V) and
W)y some finite dimensional linear sub-space of V and W.

Galerkin Approximation
Find (un(e), An(r)) € Vv x My such that

a(un(p), vivi 1) + (v, An(r)) = f(vi 1), vy € Vi
b(un(e)snn — An(1)) < glow — An(p); 1), v € My



R-B method

Scheme

e In the R-B setting, Viy and Wy are built thanks to
"snapshots", i.e. fine solutions of the initial problem
corresponding to a set of parameters (11, ..., f4ps).

e |n our case, the construction is done as follows:

Vv = span{u(,u,-),B)\(u,-), = 17"'>NS}>
Wy = span{\(p;), i=1,...,Ns},
My = spani{A(pi), i=1,...,Ns},

where B is the operator defined through:
<BA(,U,')7 V>V = b(V7 A(:u‘i))a vev.

This approach consists in enriching the primal basis with
supremizers.

G. Rozza, D.B.P Huynh and A.T. Patera. Arch. Comput. Meth. Eng., 15(3): 229-275, 2008.
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R-B method

Analytical results

Inf-sup stability :

b , B
By = inf sup —(VN’nN) = inf sup —<VN )y
nvnEWN vyeVy ||VN||V ||77N||W nEWN vyeVy ||VN||V ||77N||W
— <BTIN7BTIN>\/
wveWn || Bnnlly vl w
Bn, B B
_(Bn.Bn)y inf sup v, By =3>0.

e [1Blly Inllw — new vev Ivily Inllw

Hence, existence and uniqueness of the reduced solution (up, Ay).



R-B method

Analytical results

Stability of the scheme:

IN

1 Ya > 1 ( Ya )2 VeV
lun(e)lly 0 (’Yf + BN’Yg + \/4a2 v+ BN'Yg + By
= ’YU7

1
ANl < B (v¢ + YaYu) -
N



R-B method

Analytical results

Lipschitz continuity:
For all yu, 1t/ there exist L, Ly such that

Lullpe — ||,
Lallpe — e H’P~

Jun(re) = un(e)ly

<
[An(e) = v )l <
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R-B method

A posteriori estimators

First, we define the equality residual r(-; ;1) € V/ and s(-; ;1) € W’
by

r(vip) = f(vip) = a(un(p), vi i) = b(v, An (1)),
s(mip) = blun(r),n) —&(m 1) =: (mms(12)) vy -

The residual r represents the right hand side of the error-equation

a(u(p) = un(pe), vi i) + b(v, A(p) = An (1)) = r(v; ).



R-B method

A posteriori estimators

Then define :
or(p) = |Ir(p)llv
0s1(p) = lm(ns(12))llw
ds2(0) = (An(p), w(ms(12)) = ms (1)) w »

with 7 : W — M, the orthogonal projection on M, and 7s:

(mns(u))w = s(n; i), new.



R-B method

A posteriori estimators

Upper a posteriori Error Bound

For any 1, the reduced basis errors can be bounded by

Ay(p) = alp) +y/alp)? + c(p),

[AC) = An()llw < Ax(w) :=i(5r(u)+va(u)Au(u)),

IN

fu(ee) = un(e)lly

<
Bn
with constants
) = gars (0 + 27D,



R-B method

A posteriori estimators

Sketch of the proof:

ape) ||GU||%/ < a(ey, ey) = r(eu) + b(exr, eu)-

b(ex,e,) = b(An,un) — b(\, uy) — b(An, u) + b(\, u)
g(An) —s(A) — g(A) — g(An) + &(})
—s(A) =s(en) = {ex.ns)w

<e>\u77(775)>W + (ex,ns — 77(775)>W
lexllwlins — m(ns)llw + (ex, m(ns))w
ds1llexlw+ds2.

IN

VARV
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Numerical experiments
Setting

Obstacle example: 1 = (111, 1£2)
a(u,v;p) = / v(p)(x)Vu(x) - Vv(x)dx , v,ueV
Q
b(”ﬂ?) = —U(U)a uc an eWw

with v(p0)(x) = palnd 1/2)(x) + volndy j2,1(x).
The obstacle is given by:

glnin) = [ nGhtxin)
h(x;pt) = —0.2(sin(mx) — sin(37x)) — 0.5 + fux.



Numerical experiments
Setting

Numerical methods:
e Snapshot computation (large problems): Primal-Dual Active
Set Strategy.
M. Hintermiiller, K. Ito and K. Kunisch. The primal-dual active set strategy as

a semi-smooth Newton method. SIAM Journal on Optimization, 13:865-888,
2002.

e Reduced problems (small problems): Standard QP-solver.
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Numerical experiments
Obstacle problem
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Figure : Left-middle: Primal solutions and obstacle. Right column: Exact

and reduced solutions for a particular parameter. Solid line: exact
solutions, dashed line: reduced solutions.




Numerical experiments
Obstacle problem
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Figure : Left-middle: Dual solutions. Right column: Exact and reduced

solutions for a particular parameter. Solid line: exact solutions, dashed

line: reduced solutions.



Numerical experiments
Obstacle problem

0.06

BA(i)

01 x 09 0.1 x 0.9 0.1 x 0.9

Figure : Eight first vectors of the reduced basis {;} 1", forming Vi
(left), of the dual reduced family {\(1;)}N, (middle), and the
corresponding supremizers { BA(14;)} 15, (right).



Numerical experiments

Results

90
| Ns | 8w for V) | logio(Bw) for V) B
5 1.000000 -2.566240 2 60
10 1.000000 -5.647559 % 28
15 1.000000 -8.562338 3 30 .
20 1.000000 -11.410636 = 20| "
25 1.000000 -14.680717 10

5 10 15 20 25

Figure : Effect of the inclusion of supremizers. Inf-sup sta’%ility constants
(left) and number of iterations (right) required to solve the reduced
problem. Dots: Viy = V,f,z) with supremizers; crosses: Vi = V,E,l) without

supremizers.



Numerical experiments

Results

Basis generation via Greedy Algorithm.

il
I ,g,;g,,,«p‘o

1 0.05

M1 0.25
Figure : Numerical values of the error en(1t) = eu(1t) + ex(re) when

selecting the parameters on an uniform grid (left) or thanks to the a
posteriori estimators (middle).



" A Reduced Basis Method for Parametrized Variational
Inequalities",

B. Haasdonk, J. Salomon, B. Wohlmuth, SIAM J. Num. Math., 50 (5), pp.
2656-2676 (2012).
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Extension to time-dependent systems
Algorithms

We now consider:

(Oru, vy + a(u, v; u) — b(A, v) = f(v; ),
b(n— A u) =g(n—Ap).

Required adaptations:
e Time solver: Crank-Nicholson

e Primal Basis construction: POD-greedy algorithm.
Haasdonk, B., Ohlberger, M., M2AN, 42(2):277-302, 2008.

e Dual Basis construction: Angle-greedy algorithm.



Extension to time-dependent systems
Algorithms

Angle-greedy algorithm:
Given Ny, Pirain C P, choose arbitrarily 0 < n; < L and
11 € Ptrain and do

— AM —
® set =}, = {m} W} := span(=},),
@ fork=1,....,Ny —1, do
0 find (nk+17,uk+1) = argmaX,—o I pu€Pain (K ()\n('u), W/é/)) s

ATk ()
@ set &ii1 = TR il

© define _k+1 ==K U {1}, W = span(ZK™),

© define =y = _N , Wy := span(=Zy).
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Extension to time-dependent systems
Application to American Option Pricing

1
0P — 502528§SP —(r—q)sosP+rP>0, P—v > 0,

<8tP - %025283513 —(r—q)sosP + rP) (P—v) = 0,

where
e P = P(s,t) is the price of an American put,
e s € R, the asset’s value,
e o, r, q are the volatility, the interest rate and the dividend
payment,
e 1) = (s, t) is the payoff function.



Extension to time-dependent systems
Application to American Option Pricing

The boundary and initial conditions are as follows: P(s,0) = ¢(s),
P(0,t) = K, lims_s oo P(s,t) = 0, where K > 0 is a fixed strike
price that satisfies K = 1(0,0). In what follows, we use

P(s,t) = (K — s)4 with (-)1 = max(0,-).



Extension to time-dependent systems
Application to American Option Pricing
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Figure : Eight first vectors of the reduced basis Wy, =y and the
corresponding supremizers.



Extension to time-dependent systems
Application to American Option Pricing

el '= max $ZHU” (1) — vk(un(/ﬁ))H%/

WEPtrain -0
s, g (000 )
we Ptrain

L
erry(p) = \lAt Z un(p) — uf (W3, Errf = max (errn(p)) -

n—0 123 test



Extension to time-dependent systems
Application to American Option Pricing

Angle-Greedy 10° POD-Greedy Max error
10—} 10%°
3z . = b=
102 e 10! L
1073 5 10 T 0 —7
N, Ny}

Figure : Values of €Y and ey, during the iterations of POD-greedy
Algorithm (left) and Angle-greedy (middle). Right: Values of Errk” with
respect to Ny and Ny .



"A Reduced Basis Method for the Simulation of American

Options",
B. Haasdonk, J. Salomon, B. WohImuth,
Proceedings of ENUMATH Conference

Preprint HAL : hal-00660385.
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Conclusions and perspectives

Conclusions:

e Theoretical and numerical improvement when using
supremizers

e Better accuracy for the primal variable as for the dual
e Adaptation to time dependent systems
Perspectives:
e Better dual cone generation
e Full decomposition of a posteriori estimators

e A posteriori estimators for the time-dependent case



Conclusions and perspectives

Also: Another approach this morning, see the work of K. Veroy et
al
— primal-dual approach.



Conclusions and perspectives

Also: Another approach tomorrow, see the talk of K. Urban
— time-space setting.
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