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Statistical inverse problem to be solved (formulated in the framework of
a 3D linear elastostatic problem)

Input Elliptic BVP with random operator Output
EllOp(u) = −[Dx]

T [A(x)][Dx]u u = (u1, ..., um)

Parameter: Non-Gaussian random field in HD Partial observ. vector
x = (x1, ..., xd) �→ [A(x)] : Rd ⊃ Ω → L2(Θ,M+

n (R)) Uobs ∈ L2(Θ,Rmobs)

Identification of {[A(x)], x ∈ Ω} using the
Maximum Likelihood and/or Bayesian methods

Exemple: 3D elasticity Limited exp. data
d = 3,m = 3, n = 6 uexp,�, � = 1, . . . , νexp

[Dx] =
∑3

i=1[M
(i)] ∂

∂xi
corresponding to Uobs
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Difficulties of the statistical inverse problem in the framework of a general
parametric representation of the random field [A] for the HD case

{[A(x)], x ∈ Ω} is a second-order random field in HD: a general parametric
representation would be given by its polynomial chaos expansion (PCE).

What would be the difficulties?

• Non-Gaussian matrix-valued random field should be identified, and not a
real valued random field.

• Algebraic properties should be satisfied: deterministic or random bounds,
random field with values in the positive-definite symmetric matrices with in-
variance properties (induced by material symmetries), constraints on the tensor-
valued moments, etc.

=⇒ PCE coefficients would belong to a manifold, which could be very com-
plicated to describe and to explore for computing the coefficients.
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• Convergence of the PCE would require, a very huge number of coefficients
(HD case).

• Available experimental data sets correspond to partial data for an obser-
vation vector requiring solving a stochastic boundary value problem =⇒ the
covariance matrix of the discretized random field could not be estimated=⇒
the statistical reduction by principal component analysis could not be used.

CONSEQUENTLY: If no additional information is available, then it is an ill-
posed problem: there are too many coefficients to be identified with respect
to the available experimental data.

=⇒ A family of prior algebraic stochastic models (PASM), containing ad-
ditional information, and an adapted identification methodology, must be
introduced.
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Stochastic finite element approximation of the boundary value problem

• Let {[A(x)], x ∈ Ω} be the matrix-valued random field.

• The finite element approximation of the BVP yields a finite family of Np

dependent random matrices {[A(x)], x ∈ I} in which I = {x1, . . . , xNp} ⊂ Ω

is the finite subset of Ω made up of all the integrations points of the finite
elements used in the mesh of Ω. This set of random matrices is represented
by a random vector V = (V1, . . . , VmV) that is then defined as:

V
def
= reshape{[A(x)], x ∈ I} , mV = Np × (n× n)

• The random vector U = (U1, . . . , UmDOF) of the DOF (including observed and
non-observed DOF) is such that

U = h(V) , U = (Uobs,Unobs) , Uobs = hobs(V) , Unobs = hnobs(V)

in which h = (hobs, hnobs) is a deterministic nonlinear transformation from
RmV into RmDOF = Rmobs × Rmnobs , constructed solving the BVP.
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Introducing an adapted representation of the random field {[A(x)], x ∈ Ω}
in view of constructing its polynomial chaos expansion (PCE)

• Why an adapted representation must be introduced?

∀x ∈ Ω , E{ ‖[A(x)]‖2F } < +∞ ⇒ PCE is a general representation of [A(x)]
(for its identification), which is written (in a finite approximation) as:

[A(Nd,Ng)(x)] =
Nd∑
j1=0

. . .

Nd∑
jNg=0

[aj1,...,jNg
(x)]φj1(Ξ1)× . . .× φjNg

(ΞNg)

For representing properties (such as positiveness) of [A(x)], the convergence
must be accurate⇒Nd andNg sufficiently large⇒N = (Ng+Nd)!/(Ng!Nd!)

of MS
n(R)-valued functions, [aj1,...,jNg

], very large (huge).

� The objective is thus to introduce a representation that guaranties the lower
bound and the positiveness.
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• Normalized representation with a shift to ensure ellipticity.

∀x ∈ Ω , [A(x)] = [C�(x)] + [La(x)]T [C(x)] [La(x)]

[C�(x)] ∈ M+
n (R) (lower bound) and [a(x)] = E{[A(x)]} ∈ M+

n (R).

[La(x)]T [La(x)] = [a(x)]− [C�(x)] ∈ M+
n (R) (Cholesky factorization).

[C]: normalized M+
n (R)-valued random field such that E{[C(x)]} = [In].

Particular choice: [C�(x)] = ε
1+ε [a(x)]} with 0 < ε < 1, then [La(x)] =

1√
1+ε

[La(x)] with [La(x)]T [La(x)] = [a(x)], and consequently,

∀x ∈ Ω , [A(x)] =
1

1 + ε
[La(x)]T {ε[In] + [C(x)]} [La(x)]
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• Choosing a representation to ensure the positiveness of [C(x)].

Non-Gaussian second-order M+
n (R)-valued random field {[C(x)], x ∈ Ω} is

expressed as a given invertible local transformation T of a second-order
MS

n(R)-valued random field {[G(x)], x ∈ Ω} (a priori not Gaussian):

∀x ∈ Ω , [C(x)] = T ([G(x)]) ⇔ [G(x)] = T−1([C(x)])

� Exponential-type representation and its inversion:

[C(x)] = expm([G(x)]) ⇔ [G(x)] = logm([C(x)])

If [G(x)] was Gaussian, then [C(x)] would be log-normal.

� Square-type representation and its inversion:

[C(x)] = [L(x)]T [L(x)] , [L(x)] = L([G(x)]) ⇔ [G(x)] = L−1([L(x)])

Nonlinear transformation L is constructed with the MaxEnt principle (Soize
CMAME 2006)
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• Expressing the invertible transformations for the discretized
random fields.

� Using the introduced representations, an invertible local transformation A

and its inverse can be constructed explicitly:

∀x ∈ Ω , [A(x)] = A([G(x)]) ⇔ [G(x)] = A−1([A(x)])

� Similarly, introducing the RmV-valued random variables:

V
def
= reshape{[A(x)], x ∈ I} , W

def
= reshape{[G(x)], x ∈ I}

an invertible nonlinear transformation Ar and its inverse can be constructed
explicitly:

V = Ar(W) , W = A−1
r (V)
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Methodology proposed for the identification in HD

We propose the methodology introduced in [1], with new improvements con-
cerning the choices of the:

• family of prior algebraic stochastic models for {[A(x)], x ∈ Ω} (from [2])
• representations adapted to the polynomial chaos expansion (PCE) (from [3])
• algorithm for computing realizations of PCE in high dimension (from [4] [5])

[1] C. Soize , Identification of high-dimension polynomial chaos expansions with random coefficients for
non-Gaussian tensor-valued random fields using partial and limited experimental data, Computer Methods
in Applied Mechanics and Engineering, 199(33-36), 2150-2164 (2010).
[2] J. Guilleminot, C. Soize, Stochastic model and generator for random fields with symmetry properties:
application to the mesoscopic modeling of elastic random media, Multiscale Modeling and Simulation (A
SIAM Interdisciplinary Journal), 11(3), 840-870 (2013).
[3] A. Nouy, C. Soize, Random fields representations for stochastic elliptic boundary value problems and
statistical inverse problems, European Journal of Applied Mathematics, in press, (2014).
[4] C. Soize, C. Desceliers], Computational aspects for constructing realizations of polynomial chaos in
high dimension, SIAM Journal On Scientific Computing, 32(5), 2820-2831 (2010).
[5] G. Perrin, C. Soize, D. Duhamel, C. Funfschilling, Identification of polynomial chaos representations
in high dimension from a set of realizations, SIAM Journal on Scientific Computing, 34(6), A2917-A2945
(2012).
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Step 1: Family of prior algebraic stochastic models (PASM)

• Introducing {[APASM(x; s)] , x ∈ Ω} on (Θ,T,P), depending on a vector-valued
hyperparameter s ∈ Cad in low dimension (mean values, dispersion parame-
ters, spatial correlation lengths, etc).

• Deducing a family {VPASM(s), s ∈ Cad} of random vectors with values in RmV ,
VPASM(s)

def
= reshape{[APASM(x; s)], x ∈ I}.

• A generator of independent realizations VPASM(θ1; s), . . . ,VPASM(θν ; s) is
then available.

Comment: In HD, the real possibility to correctly identify a general rep-
resentation (such as the PCE) of random field {[A(x)], x ∈ Ω}, through a
stochastic BVP, is directly related to the capability of the constructed PASM
for representing fundamental properties such as lower bound, positiveness,
invariance related to material symmetry, mean value, support of the spectrum,
spatial correlation lengths, level of statistical fluctuations, etc.

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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Step 2: Identification of an optimal PASM in the constructed family using
partial and limited experimental data sets

Identifying the optimal value sopt in Cad of hyperparameter s using partial and
limited experimental data {uexp,1, . . . , uexp,νexp} relative to Uobs:

• Using the family, Uobs,PASM(s) = hobs(VPASM(s)) for s ∈ Cad, of random obser-
vation vectors, constructed with the PASM and the computational model.

•Using the moment method, the least-square method or the maximum likelihood
method, for calculating sopt in Cad, and then, deducing the optimal PASM:

VPASM,opt = VPASM(sopt)

• A generator of independent realizations VPASM,opt(θ1), . . . ,VPASM,opt(θν) is then
available allowing the calculation of independent realizations WPASM,opt(θ1), . . . ,

WPASM,opt(θν) of WPASM,opt such that

WPASM,opt(θ�) = A−1
r (VPASM,opt(θ�))

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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• Why steps 1 and 2 are necessary to guaranty a possible and realistic identification of a

general representation of the unknown random vector W = A−1
r (V) in high dimension.

E{ ‖W‖2 } < +∞ ⇒ PCE is a general representation of W (for its identifica-
tion), which is written (in a finite approximation) as:

W(Nd,Ng) =

Nd∑
j1=0

. . .

Nd∑
jNg=0

wj1,...,jNg
φj1(Ξ1)× . . .× φjNg

(ΞNg)

At convergence (in Nd,Ng), the number of vectors, wj1,...,jNg
to be identified

is N = (Ng +Nd)!/(Ng!Nd!): very large number.

In the framework of a non convex optimization problem, trying to perform
an identification in a high-dimension hypercube without specifying a small
region (defined by the knowledge of a prior information) of the hypercube that
has to be explored, is an ill-posed problem. Consequently, Steps 1-2 is a very
fundamental steps in the identification procedure.
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Step 3: Construction of a statistical reduced-order (RO) optimal PASM
in the representation W using a principal component analysis

• Estimation of the mean value W and the covariance matrix [CW] of WPASM,opt

using the independent realizations: {WPASM,opt(θ�), � = 1, . . . , ν}.

• Solving [CW]wj = λjwj and deducing the RO optimal PASM:

WPASM,opt � W +
n∑

j=1

√
λj η

PASM,opt
j wj

E{�PASM,opt} = 0 , E{�PASM,opt (�PASM,opt)T } = [In]

• Mean-square convergence n �→ err(n) = 1− (
∑n

j=1 λj)/(tr[CWPASM,opt ]).
At convergence n is large (several hundred or even a thousand or more).

• The independent realizations, �PASM,opt(θ1), . . . , �

PASM,opt(θν), are calculated by

ηPASM,opt
j (θ�) =

1√
λj

(WPASM,opt(θ�)− W)T wj

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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Step 4: Construction of the polynomial chaos expansion (PCE) with
deterministic coefficients of random vector �PASM,opt

• Gaussian polynomial chaos expansion of random vector �PASM,opt:

�PASM,opt � �chaos(N) , �chaos(N) =
N∑

α=1

yα Ψα(�)

� = (Ξ1, . . . ,ΞNg) , N = (Nd +Ng)! /(Nd!Ng!)

E{Ψα(�)} = 0 , E{Ψα(�)Ψβ(�)} = δαβ

• Constraint:
∑N

α=1 yα yαT = [In]

• Analyzing the convergence with respect to Ng and Nd:

errj(Ng, Nd) =

∫
BIj

| log10 pηPASM
j

(e)− log10 pηchaos
j

(N)(e ; y1, . . . , yN )| de

BIj = adapted bounded interval.

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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• Optimal values [ y ] = [y1 . . . yN ]T of [y] = [y1 . . . yN ]T calculated with the
maximum likelihood method, and the independent realizations:

�PASM,opt(θ1), . . . , �

PASM,opt(θν)

For the high-dimension case (n large and N  n very large), this optimiza-
tion (challenging) problem can be solved in using the efficient random search
algorithm proposed in [1],

� which is adapted to the high dimension,

� which explores the constraint
∑N

α=1 yα yαT = [In],

� and for which good results have been obtained for n = 550 and
N = 10, 625 yielding 5, 843, 750 real coefficients,
[y]jα , 1 ≤ j ≤ n , 1 ≤ α ≤ N .

[1] C. Soize , Identification of high-dimension polynomial chaos expansions with random coefficients for
non-Gaussian tensor-valued random fields using partial and limited experimental data, Computer Methods
in Applied Mechanics and Engineering, 199(33-36), 2150-2164 (2010).

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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Step 5: Construction of a posterior model in the region localized by the
optimal value, [ y ] = [y1 . . . yN ]T of [y] = [y1 . . . yN ]T

Construction of a posterior model of random vector V (discretization of ran-
dom field [A]), obtained using the Bayes method with the following procedure
proposed in [3] and made up of 7 stages:

[3] A. Nouy, C. Soize, Random fields representations for stochastic elliptic boundary value problems and
statistical inverse problems, European Journal of Applied Mathematics, in press (2014).

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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• (i) Introduction of a minimal parameterization of the constraint:∑N
α=1 yα yαT = [In]

� [y] = [y1 . . . yN ]T ∈ MN,n(R) ⇒ the constraint is rewritten as [y]T [y] = [In].

� Introduction of the compact Stiefel manifold:

Vn(R
N ) = { [y] ∈ MN,n(R) ; [y]T [y] = [In] }

with νs = dim{Vn(RN )} = nN − n(n+ 1)/2.

� For the case N ≥ n and possibly, for N  n, introduction of the minimal
parameterization of Vn(RN ), with complexity O(Nn2) (instead of O(N3)),
proposed in [3], consisting in constructing, for any [y0] fixed in Vn(RN ),
a surjective mapping M[y0] from Rνs onto Vn(RN ):

z �→ [y] = M[y0](z)

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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• (ii) Introducing a parameterization B[y](z) of V (discretizing random field
[A]), in the region localized by the optimal value, [ y ] = [y1 . . . yN ]T

Defining the parameterized random mapping B[y]:

z �→ V = B[y](z) : Rνs → L2(Θ,RmV)

using the following mappings (previously defined):

[y] = M[y](z) ([y] optimal value computed in Step 4 with the opt PASM)

� =
∑N

α=1 yαΨα(�) = [ y ]T �(�)

W � W +
∑n

j=1

√
λj ηj wj , � = (η1, . . . , ηn)

V = Ar(W)

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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• (iii) Estimating the optimal value, zopt of parameter z in Rns , using the
maximum likelihood method,

� for observation Uobs = hobs(V) with V = B[y](z)
� with the partial experimental data {uexp,1, . . . , uexp,νexp} relative to Uobs

• (iv) Computing [yopt] associated with zopt: [yopt] = M[y](zopt)

• (v) Introducing random coefficients [Y] = [Y1 . . .YN ]T in the PCE for a
stochastic modeling of [y] = [y1 . . . yN ]T , in the region defined by [yopt],
and thus, Z is a random vector such that: [Y] = M[yopt](Z).

• (vi) Computing a posterior estimation Zpost using the Bayes method with
a prior centered Gaussian vector Zprior.

� for observation Uobs = hobs(V) with V = B[yopt](Z)
� with the partial experimental data {uexp,1, . . . , uexp,νexp} relative to Uobs

• (vii) Iterating the identification procedure in restarting from Step 3 with
WPASM,opt replaced by Wpost

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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A few details on important ingredients
required for such an identification procedure

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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A family of prior algebraic stochastic models (PASM) for non-Gaussian
matrix-valued random field {[A(x)], x ∈ Ω} and its generator

• Framework: 3D linear elasticity of microstructures;
{[A(x)], x ∈ Ω}: apparent elasticity field of microstructure Ω at mesoscale.

For all x fixed in Ω, random elasticity matrix [A(x)]:

(i) is, in mean, close to a given symmetry class (independent of x),
induced by a material symmetry;

(ii) exhibits more or less anisotropic fluctuations around this symmetry class;

(iii) exhibits a level of statistical fluctuations in the symmetry class, which must
be controlled independently of the level of statistical anisotropic fluctuations.

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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• Notation and properties for positive matrices with symmetry classes

M+
n (R) ⊂ MS

n(R) ⊂ Mn(R) (positive-definite, symmetric, all).

A given symmetry class is defined by the subset Msym
n (R) ⊂ M+

n (R) such that,

[M ] =
∑ns

i=1mi[E
sym
i ] , m = (m1, . . . ,mns) ∈ C , [Esym

i ] ∈ MS
n(R)

C = {m ∈ Rns | ∑ns

i=1mi[E
sym
i ] ∈ M+

n (R)}
{[Esym

i ], i = 1, . . . , ns} is a matrix basis (Walpole’s tensor basis).

Examples of usual symmetry classes for n = 6 (3D elasticity),
ns = 2: isotropic symmetry
ns = 5: transverse isotropic symmetry
ns = 9: orthotropic symmetry
etc... and, ns = 21: anisotropy

Property: if [M ] ∈ Msym
n (R), then [M ]1/2 ∈ Msym

n (R)

if [M ] and [M ′] ∈ Msym
n (R), then [M ] [M ′] ∈ Msym

n (R)

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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• An advanced prior stochastic model {[APASM(x)], x ∈ Ω} for {[A(x)], x ∈ Ω}
[C. Soize], Non Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differ-
ential operators, Computer Methods in Applied Mechanics and Engineering, 195(1-3), 26-64 (2006).

[J. Guilleminot, C. Soize], Stochastic model and generator for random fields with symmetry properties:
application to the mesoscopic modeling of elastic random media, Multiscale Modeling and Simulation (A
SIAM Interdisciplinary Journal), 11(3), 840-870 (2013).

Prior algebraic representation (Guilleminot & Soize SIAM MMS 2013):

∀x ∈ Ω , [APASM(x)] = [C�(x)] + [A(x)]

{[C�(x)], x ∈ Ω}: M+
n (R)-valued deterministic field (lower-bound)

{[A(x)], x ∈ Ω}: M+
n (R)-valued random field

[A(x)] = [S(x)]T [M(x)]1/2[G(x)] [M(x)]1/2 [S(x)]

{[G(x)], x ∈ Ω}: M+
n (R)-valued random field.

{[M(x)], x ∈ Ω}: Msym(R)-valued random field independent of {[G(x)], x ∈ Ω}.
{[S(x)], x ∈ Ω}: Mn(R)-valued deterministic field.

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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Anisotropic statistical fluctuations: {[G(x)], x ∈ Ω} which is a non-Gaussian
M+

n (R)-valued random field (MaxEnt construction and generator are given in
Soize, CMAME 2006), for which E{[G(x)]} = [In].
The hyperparameters of {[G(x)], x ∈ Ω} are: d × n(n + 1)/2 spatial correla-
tion lengths and a scalar dispersion parameter δG controlling the anisotropic
statistical fluctuations.

Statistical fluctuations in the given symmetry class: {[M(x)], x ∈ Ω} (inde-
pendent of [G]), which is a non-Gaussian Msym

n (R)-valued random field (alge-
braic representation, MaxEnt construction and generator using an ISDE are
given in Guilleminot & Soize, SIAM MMS 2013), for which

E{[M(x)]} = [M(x)] = Psym([a(x)]),

with Psym the projection operator from M+
n (R) on Msym

n (R), and

[a(x)] = E{[A(x)]} = E{[A(x)]} − [C�(x)] ∈ M+
n (R),

[M(x)] = [M(x)]1/2[N(x)] [M(x)]1/2 with E{[N(x)]} = [In].

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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{[N(x)], x ∈ Ω} is a non-Gaussian Msym
n (R)-valued random field written as

[N(x)] = expm([N (x)]) in which [N (x)] =
∑ns

i=1 νi(x)[E
sym
i ] with {�(x), x ∈

Ω} is a Rns-valued random process.

The hyperparameters of {[M(x)], x ∈ Ω} are: d×ns spatial correlation lengths
and a scalar dispersion parameter δM controlling the statistical fluctuations in
the symmetry class.

Construction of the Mn(R)-valued deterministic field {[S(x)], x ∈ Ω}:

The Cholesky factorizations of [a(x)] = E{[A(x)]} − [C�(x)] ∈ M+
n (R) yields

the upper matrix [La(x)], and [M(x)] = Psym([a(x)]) ∈ Msym
n (R) yields the upper

matrix [LM (x)]. Since [a(x)] = [S(x)]T [M(x)] [S(x)], it can be deduced that

[S(x)] = [LM (x)]−1 [La(x)]

Fully anisotropic case: the "sym class" is chosen as the "anisotropic class"
with ns = 21 and δM is taken as 0; then [A(x)] = [a(x)]1/2[G(x)] [a(x)]1/2.

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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Computational aspects for constructing realizations of polynomial chaos
in high dimension and for an arbitrary measure

• The objective is to compute the (N × ν) real matrix [Ψ] of the ν independent
realizations (in preserving the orthogonality properties) of the PCE in high
dimension and for an arbitrary probability measure p�(�) d� on RNg :

[Ψ] =

⎡
⎣ ψ1(�(θ1)) . . . ψ1(�(θν))

· . . . ·
ψN (�(θ1)) . . . ψN (�(θν))

⎤
⎦

Orthogonality property: limν→+∞ 1
ν [Ψ] [Ψ]T = [IN ].

• Difficulties: Problem not trivial at all: the use of the explicit algebraic for-
mula (constructed with a symbolic Toolbox) or the use of the computational
recurrence relation with respect to the degree, induces important numerical
noise and the orthogonality property is lost.
If a global orthogonalization was done to correct this problem, then the inde-
pendence of the realizations would be lost.

C. SOIZE, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, April 14-18, 2014
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• A new method is proposed to preserve the orthogonality properties and
the independence of the realizations:

[C. Soize, C. Desceliers], Computational aspects for constructing realizations of polynomial chaos in high
dimension, SIAM Journal On Scientific Computing, 32(5), 2820-2831 (2010).

[G. Perrin, C. Soize, D. Duhamel, C. Funfschilling], Identification of polynomial chaos representations
in high dimension from a set of realizations, SIAM Journal on Scientific Computing, 34(6), A2917-A2945
(2012).

(1) Constructing the realizations of the multivariate monomials using a gener-
ator of independent realizations of the germs whose probability distribution is
the given arbitrary measure.

(2) Performing an orthogonalization of the realizations of the multivariate
monomials with an algorithm different from the Gram-Schmidt orthogonal-
ization algorithm which is not stable in high dimension.
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• Method proposed for the high dimension and an arbitrary measure

. Multivariate monomials Mα(�) = ξj11 × . . .× ξ
jNg

Ng
, α = 1, . . . , N .

. Computing the (N × ν) real matrix of the ν independent realizations:

[M ] = [M(�(θ1)) . . .M(�(θν))] =

⎡
⎣ M1(�(θ1)) . . . M1(�(θν))

· . . . ·
MN (�(θ1)) . . . MN (�(θν))

⎤
⎦

. Matrix [Ψ] can be written as [Ψ] = [A] [M ].

. Thus [R ] = E{M(�)M(�)T } = limν→+∞ 1
ν [M ] [M ]T = [A]−1[A]−T .

The algorithm is then the following:

. Computing matrix [M ] and then [R ] � 1
ν [M ] [M ]T for ν sufficiently high.

. Computing [A]−T that corresponds to the Cholesky decomposition of [R ].

. Computing the lower triangular matrix [A].

. Computing [Ψ] = [A] [M ].
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For Ng = 1 graphs of the relative error as a function of N = Nd = 1, . . . , 30

with ν = 106: Explicit algebraic formula and recurrence equations (thin line
with circles); proposed computational method and theory (thick line).
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Conclusion

• A new methodology were introduced in 2010-2011 to identify (in high di-
mension) polynomial chaos expansion of non-Gaussian tensor-valued random
fields, with partial experimental data, through a stochastic boundary value
problem. Some numerical experiments were performed in high dimension
with success (about 6 millions of coefficients were identified for the elasticity
random field in 3D).).

•We have presented important improvements of such a methodology for which
some recent results obtained in different domains have been included. The
numerical validation of such methodology is in progress.
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