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Problem setting
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Physical problem/Geometrical Configuration [in 3D]

E“f”)%% O
@ ©

Incident plane wave impinging onto collection of J perfectly conducting obstacles
D,...,Dj.
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Physical problem/Geometrical Configuration [in 3D]

= Scattered field E°(x)

Incident plane wave impinging onto collection of J perfectly conducting obstacles
D,...,Dj.
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Parametrization

The system is parametrized by:

e The wave number £k,

A

e The angle and polarization of the incident wave E*(x; k,p, k) = —p eik® ko.0)

e The location and shape of the obstacles:
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Parametrization

The system is parametrized by:

e The wave number k,

e The angle and polarization of the incident wave E*(x; k, p, I%) = —p etk ko,4) :
e The location and shape of the obstacles:

Ti i — iBi.’i'—Fbi
Reference shape: (@)=

AZ//\ /

. AY

<>V
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Parametrization

The system is parametrized by:

e The wave number £k,

e The angle and polarization of the incident wave E*(x; k,p, k) = —pe

e The location and shape of the obstacles:

Ti(x) = viBi + bs

Reference shape:

>
T

The affine transformation 7; includes:
B; € SO(3): rotation

vi € RT: stretching

b; € R3: translation

AZ//\ /

AY

A

’LkiB’;(g,(b) :
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Parametrization

The system is parametrized by:

e The wave number £k,

A

e The angle and polarization of the incident wave E*(x; k,p, k) = —p eik® ko.0)

e The location and shape of the obstacles:

Ti i — iBi.’i'—Fbi
Reference shape: (@)=

AZ//\ /

AY

>
T

The affine transformation 7} includes: T
B; € SO(3): rotation

vi € RT: stretching

b; € R3: translation

[ Parameter: H = (k7l%7p7b17B17’717° .- 7bJ7BJ7/yJ) clPC R5+7J }

Thursday, April 24, 14



Governing equations
(time-harmonic ansatz)

Assume that the free space is a homogenous media with magnetic permeability
1+ and electrical permittivity e.

The total electric field E = E* + E* € H (curl, Q) satisfies

/

curl curl E — k°E = 0 in €, Maxwell

Exn=0 on I boundary condition

curlE®(x) x o] — IKE® (a:)| =0 (I?ll) as |x| — oo. |Silver-Miiller radiation condition

-

I" is the collection of all surfaces: I' = Uj_,9D;.

see book of [Colton,Kress], [Nedelec]
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Variational formulation of the Electric Field
Integral Equation (EFIE)

Change the unknown to be u : Electric currant on collection of surfaces.

For any fixed p € P, find u(p) € V s.t.

[ alu(p),v; pl = flospl, Vv eV ]

with

alw,v;u| =1kZ /F(M) /F(M) Gr(x,y) {u(y) v(x) — k—gdivyu(y)divwv(w)} dy dx

Flws ] = — / Bk k) o) dy
7!

The scattered electric field E? is then uniquely determined by the electric currant wu.
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Variational formulation of the Electric Field
Integral Equation (EFIE)

Change the unknown to be u : Electric currant on collection of surfaces.

For any fixed p € P, find u(p) € V s.t.

[: alu(p),v; pl = flospl, Vv eV ]

with

alw,v;u| =1kZ /F(M) /F(M) Gr(x,y) {u(y) v(x) — k—gdivyu(y)divwv(w)} dy dx

Flws ] = — / Bk k) o) dy
7!

The kernel function is given by

giklz—y|

Gk(xvy) —

dr|x — y|
J

The scattered electric field E? is then uniquely determined by the electric currant wu.
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Output of interest: Radar Cross Section (RCS)

* Describes pattern/energy of electrical field at infinity
* Functional of the current on body

4 )
- ikZ [ . A n &
Aolu; p, d| = 2 d x (u(z) x d)e” "%y
4 r
. A [u: dl12
RCS[u; p, d] = 101log, ‘ , s B A”
[E(z; k, p, k)|
N )

where
u: current on surface
d: given directional unit vector
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Output of interest: Radar Cross Section (RCS)

* Describes pattern/energy of electrical field at infinity
* Functional of the current on body

where

w: current on surface

-

-

A

1k 2 -

A

Aolu; p,dl = — | d x (u(x) x d)e‘ikm"idw

A

47 r

RCS|u; p, d] = 101og, (

| Ao [w; pr, d] |2
|Ei(x; k,p, k)2

~

d: given directional unit vector

theta (RCS)

RCS
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.20 L
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Single obstacle scattering
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Reduced Basis Method

Reduced Basis Ansatz:

© Uy = spanfus(u), sy} )

for some well-chosen sample points p1,..., uy.
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Reduced Basis Method

Reduced Basis Ansatz:

[ Vn = span{us(p1), ..., us(pun)} J

for some well-chosen sample points w1, ..., uy.
Example: ' T
k 1’% * 575 k: ;7.9'6 k: 5063 K ;500
1 parameter: wavenumber k
Different snapshots illustrated
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Reduced Basis Method

Reduced Basis Ansatz:

[ Vn = span{us(p1), ..., us(pun)} J

for some well-chosen sample points w1, ..., uy.

Example:

k: 1.96 k:8.75

1 parameter: wavenumber k
Different snapshots illustrated

Question: How to find the sample points 1, ..., gy such that

[ Vy = M ={us(p) : Vn € P} ]
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Reduced Basis Method

Reduced Basis Ansatz:

[ Vn = span{us(p1), ..., us(pun)} J

for some well-chosen sample points w1, ..., uy.

Example:

k: 1.96 k:8.75

1 parameter: wavenumber k
Different snapshots illustrated

Question: How to find the sample points 1, ..., gy such that

[ Vy = M ={us(p) : Vn € P} ]

Answer: Greedy-algorithm
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Affine decomposition for EFIE

For any parameter value u € P, find u(u) € V s.t.

[a(U(M),‘v;u) =f(v;p), Y GV]

with

a(u,v; p) = ikZ/ /u(a:) v(y) — =divr pu(z) divr,y’v(y)} dx dy
r
twin) = —p- (@ e de
r
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Affine decomposition for EFIE

For any parameter value u € P, find u(u) € V s.t.

[a(U(u)av;u) =f(v;p), Y GV]

with

a(u,v; p) = ikZ/ /u(w) v(y) — =divr pu(e )divr,y’v(y)} dx dy
r
twin) = —p- (@ e de
r

Solution: Empirical Interpolation Method (EIM) (also based on a greedy algorithm)

Given: A parametrized function g(x; ).

Output: {p,q} __, such that

g(x; p) ~ as(p) g(x; pg) Similar problem
Z ! formulation as for the

RBM, but solutions
are explicitly known
(not solution to PDE)

[Maday et al. 2004] (happy birthday!)
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Affine decomposition for the EFIE

Approximating 4 0 )

J

red: parameter-dependent,
blue: parameter-independent.
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Affine decomposition for the EFIE

Approximating 4 0 )
ik|le—y] - itkgle—y|
Z7TIav—yl -~ Z@q( )647T|w—y|
qg=1
Q@
etFT-k0,6) ~ Z&f](“) ikq®-k(o,, 6q)
qg=1
- /
results in
p
7,k:|:c y| zk|w | .
a(v,w; u) sz//émw i - v(y) de dy — //47T|m Z|d1v1ﬂ,wu(w)d1vr,yv(y) dx dy

. . cikqlz—yl ——
~ szZozq(k)/ / 7= e u(x) - v(y) dxdy
rJr

zk:q|:n Y| .
/F47r|:1: o dive 2u(x)divr 4v(y) dx dy

red: parameter-dependent,
blue: parameter-independent.
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Affine decomposition for the EFIE

Approximating 4 0 )
ctkle—yl - a etkqle—yl
Arlz—y| =7 Z@q(k) dr|z—yl
qg=1
Q@
67,k;:c k0,6) ZO‘E(H’> ikq®-k(o,, 6q)
N =
/
results in
p
7,k:|aa Yy zk|w | . .
a(v,w; u) sz//émw i - v(y) de dy — //47T|m Z|d1v1ﬂ,wu(w)d1vr,yv(y) dx dy
. . cikqlz—yl ——
wszZoz (k)// 7= e u(x) - v(y) de dy
q=1 2
“ L Z ol (k) kq| |
14 o elkqlz—y .
_Z—Ig // TrTo—gT QIVE 2u(x)divr 4v(y) dx dy
=1 rJr

-

and for the source term in

red: parameter-dependent,
blue: parameter-independent.

) . / €qumk(0q’¢q)v(m) dw
r

Q
~ =) pagp
q=1
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Output functional (RCS)

Recall: an important object of interest for scattering is the RCS:

4 I
. GkZ [ . L
Seo(U,d) = 2 d x (u(x) x d)e” "%y
4 T
. oo (u, d)|?
rcs(u, d) = 10logy, (47T|S ’g;"z )| )
o /

Rigorous computable error bounds for the output functional can be developed:

g
Theorem: The error of the functionals are bounded by

kZ+/|T)

47

‘Sw(ué(ﬂ)ad)_SOO(UN(H)aCm < €5 = nn (1),
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Application to scattering problems

Parameter space: k € [10,20], 0 = 7, ¢ = 0.

Scatterer:
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Application to scattering problems

Parameter space: k € [10,20], 0 = 7, ¢ = 0.

Scatterer:

Convergence of greedy algorithm (Offline)
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Application to scattering problems

Parameter space: k € [10,20], 0 = 7, ¢ = 0.

Scatterer:

Convergence of greedy algorithm (Offline)

10 —— A posteriori estimate
1 ==== Error
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Application to scattering problems

Parameter space: k € [10,20], 0 = 7, ¢ = 0.

Scatterer:

Convergence of greedy algorithm (Offline)

[]
—— A posteriori estimate
==== Error
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Application to scattering problems

Parameter space: k € [10,20], 0 = 7, ¢ = 0.

Scatterer:

Convergence of greedy algorithm (Offline)

1 T
1 L . 1
10 — A posteriori estimate
1 ---- FError :
01 F ~ 777 T = _ :
— Sso
© o0tfF  Te=<T :
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-6 | | ] | | ] L S
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-m= =" P Phe S a
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° - . - ~
Error-profile:  ___..---- . .- =
rpmm==" . 1 4 PR ~ .
e s’ .-" Sa o
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1107 E
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i Error 1x10° 3 Error
3 _ 0t E
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2 1x108
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k

 Error estimate is a strict upper bound of error as can be shown in theory
 Typical error-profiles for greedy algorithm
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Output functional

Monostatic RCS (backscattering) for different wave-numbers:

40
‘ \
- h
20 - I\
[ |
B it | |l/l\ /\ —v
N O = \ /\"“\
A : ‘%WM
= .20 | ——— upper error bar ('Y \, / ‘A
[ ——— lower error bar \ l\ | \'/
[ rcs(u_N) |’\I
40 =+ res(u_h) |'I /]
[ I 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I
10 12 14 16 18 20
k
40
20 |
w 0 :— g A/N\
S I \
o 20 | ——— upper error bar \VY/
- ——— lower error bar V'
- res(u_N) \/
40 F +  res(u_h) v
[ I 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I
10 12 14 16 18 20
k
40
20 |
O . W
o .20 | ——— Upper error bar
[ ——— lower error bar
- rcs(u_N)
40 F +  res(u_h)
[ I 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I
10 12 14 16 18 20
k

N=21

N=22

N=23
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Output functional

Monostatic RCS (backscattering) for different wave-numbers:

40
o i
[ Iy
w ofF I A\ A
T o ——— upper error bar 1Y \, / AN T
[ ——— lower error bar \ l\ | V
- rcs(u_N) |I\,
40+ res(u_h) |‘l V
| ) ) ) | ) ) ) | ) ) ) | ) ) ) | ) ) ) |
10 12 14 16 18 20
k
40
20
0w o0 AN
8 i \ N:22
.20 - ——— upper error bar \VY/
I ——— lower error bar \
- res(u_N) \l
40+ res(u_h) v
[ I L L L I L L L I L L L I L L L I L L L I
10 12 14 16 18 20
k
40
2 |
8 0 :— /—\W\/—v\/
o 20 | ——— Upper error bar N_23
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Output functional

Monostatic RCS (backscattering) for different wave-numbers:

40
b i
[ | \
w ofF I A\ NN
2 f Y - 7 N=21
o .20 |- ——— upper error bar (R \, / AN -
[ ——— lower error bar \ l\ | V
- rcs(u_N) |I\,
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40+ res(u_h) v
[ I L L L I L L L I L L L I L L L I L L L I
10 12 14 16 18 20
k
40
2 |
8 0 :_ /—\W\/\/-\/
o 20 | ——— Upper error bar N_23
[ ——— lower error bar ‘ e
40 i rcsEu_E)) et theta (RCS)
40+ res(u_ 1.00,
| L L L | L L L | L L L | L L L | L L L | 0.00
10 12 14 16 18 20

Fast and reliable many-query computations with certified error control over
model reduction!

Thursday, April 24, 14



Multi obstacle scattering
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Truth solver (BEM)

_1
Galerkin approach: we replace the functional space V.= H . >(I') by a finite
dimensional subspace V; = RT).

For any fixed pu € P, find up () € Vy, s.t.

[a[uh(ﬂ)avh§ﬂ] = flon; pl, Vo, € V), ]
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Truth solver (BEM)

_1
Galerkin approach: we replace the functional space V.= H . >(I') by a finite
dimensional subspace V; = RT).

where

For any fixed pu € P, find up () € Vy, s.t.

[a[uh(u)a’vh;u] = flonsp],  Vop €V ]
Embed the structure of the J elements:
4
Vi = ‘-1] 1 Vi (T's)
7 7/1' Z a’ 7 7“
i,j=1

\_

N

Vi(Ti) : is the Boundary Element space on the surface I';

1J[ ) 7“’] — [7'3“]’Vh(F1)XVh(Fj)
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Truth solver (BEM)

_1
Galerkin approach: we replace the functional space V.= H . >(I') by a finite
dimensional subspace V; = RT).

For any fixed pu € P, find up () € Vy, s.t.

[a[uh(ﬂ)avh§ﬂ] = flon; pl, Vo, € V), ]

Embed the structure of the J elements:
4 I

Vi, = ‘1] 1 Vi (Ts) Integral equation/BEM:
Double integral

[+, ] = Za .y o5 ] « = double sum!

i,j=1
\ J
where
4 N
Vi(Ti) : is the Boundary Element space on the surface I';
a [, 5 ] = al, -5 p)|vi, (o) x Vi (ry)
N y
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Generalized Born series

In matrix form:

N

f.J

where M*J corresponds to the sesequilinear form a*3[-, -; p].
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Generalized Born series

In matrix form: f
'Mll Ml.]' 'ul' 'fl
M21 M2J 112 f2
e | e | | e

\_

where M*J corresponds to the sesequilinear form a*3[-, -; p].

Then, the solution uJ is represented in series as

©.@)
i J
u —E ;.

k=1

where u; solves

4 )
Mitud = fi,
MUup = - MYyl ;, k> 1.
N 17 Y,
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Generalized Born series

In matrix form:

N

~
- _ fl -
f2
f.J
%

where M*J corresponds to the sesequilinear form a*3[-, -; p].

Then, the solution uJ is represented in series as

©.@)
J — J
u —E ;.
k=1

where u; solves

Easy implementation in parallel.
One LU-factorization per obstacle.

-

-

Mitud = £,

ii i iy ]
M u; = E M~ u;, o,

i7]

k> 1.

see book of [P.A. Martin|
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Generalized Born Series - |ldea
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Generalized Born Series - |ldea

4 independent problems

e
'® @
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Generalized Born Series - |ldea

4 independent problems

Interaction of reflected waves
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Generalized Born Series - |ldea

4 independent problems
Interaction of reflected waves

Updating
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Generalized Born Series - |ldea

4 independent problems
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Generalized Born Series - |ldea

4 independent problems

Interaction of reflected waves
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Generalized Born Series - |ldea

4 independent problems
Interaction of reflected waves

Updating
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Generalized Born Series - |ldea

4 independent problems
Interaction of reflected waves

Updating

‘ a

Thursday, April 24, 14



Combination of model reduction and
Generalized Born Series
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General idea

Offline procedure:

1. Take a reference shape: Assemble a reduced basis V that represents ac-
curately all solutions for k € [k, k™], all possible angles and polarizations
for the incident plane wave.

= b parameters only.

= The (certified) reduced basis space V can represent any solution on
a single scatterer for any incident plane wave accurately.

= Details of this step: first part of this talk.

2. Copy this reduced basis on all objects D; and use it as approximation
spaces.

Online procedure:

3. Solve the coupled problem iteratively ”a la Generalized Born series”, but
with the reduced basis space as solution space on each obstacle.
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General idea

Offline procedure:

1. Take a reference shape: Assemble a reduced basis V that represents ac-
curately all solutions for k € [k, k™], all possible angles and polarizations
for the incident plane wave.

= 5 parameters only.

= The (certified) reduced basis space V can represent any solution on
a single scatterer for any incident plane wave accurately.

= Details of this step: first part of this talk.

2. Copy this reduced basis on all objects D; and use it as approximation
spaces.

Online procedure:

3. Solve the coupled problem iteratively ”a la Generalized Born series”, but
with the reduced basis space as solution space on each obstacle.

Idea: During each iteration, the reflected wave impinging on D; can be ap-
proximated by a linear combination of plane waves. The reduced basis on D; is

trained to be accurate for such cases.
<
—
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General idea

Offline procedure:

1. Take a reference shape: Assemble a reduced basis V that represents ac-
curately all solutions for k € [k, k™], all possible angles and polarizations
for the incident plane wave.

= 5 parameters only.

= The (certified) reduced basis space V can represent any solution on
a single scatterer for any incident plane wave accurately.

= Details of this step: first part of this talk.

2. Copy this reduced basis on all objects D; and use it as approximation
spaces.

Online procedure:

3. Solve the coupled problem iteratively ”a la Generalized Born series”, but
with the reduced basis space as solution space on each obstacle.

Idea: During each iteration, the reflected wave impinging on D; can be ap-
proximated by a linear combination of plane waves. The reduced basis on D; is

trained to be accurate for such cases.
<
—

Limitations: Close objects! — Dipole-like interaction
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General idea

Offline procedure:

1. Take a reference shape: Assemble a reduced basis V that represents ac-
curately all solutions for k € [k, k™], all possible angles and polarizations
for the incident plane wave.

= 5 parameters only.

= The (certified) reduced basis space V can represent any solution on
a single scatterer for any incident plane wave accurately.

= Details of this step: first part of this talk.

2. Copy this reduced basis on all objects D; and use it as approximation
spaces.

Online procedure:

3. Solve the coupled problem iteratively ”a la Generalized Born series”, but
with the reduced basis space as solution space on each obstacle.

Idea: During each iteration, the reflected wave impinging on D; can be ap-
proximated by a linear combination of plane waves. The reduced basis on D; is
trained to be accurate for such cases.

Remaining discussion:

=
1. Proper formulation of online part.
2. Efficient implementation (indep. of N' = dim(Vy,)). >>>>> ‘

3. Numerical results.
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Integration over reference shape

Goal: State sesquilinear form as integrals over the reference shapes (parameter
indep.).

Here:
e
Gij(A 3 etk|Ti(2)—T5(g)|
m):y — A A 9
H 47T|Ti(5’3) — 15 (y)|
T(&) — T5()] = v | — 2Bi Byg + --Bi (b — bj)| = 7[& — 7:;Bs39 + cs5)
’Ti(§7> — Ti(?))’ = Vi |T — Q‘
\_
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Integration over reference shape

Goal: State sesquilinear form as integrals over the reference shapes (parameter
indep.).

Given the affine transformation T;(x) = v;Bi@ + b;, write

/ )
I, v; pl

= ikZ / / (z, y) (y)
Ii(p) JT5()

= 1k Zi; /F/PGLJ (x,9) {ija(g) - Bio(x) — mdiv,gu( )divgo (@ )} dy dx

A
\_/

%divyu(y)divmv(m)} dy dx

=1 a"[a, ; p]
o _ _ J
where u = P(u) and v = P(v) (Piola transformation)
Here
4 N
o GMT@-Ty@)
G (z,9)

ATy (@) - T3(9)|
Ti(x) = T5(9)| =7 |& — zj BTB iy + %B?(bi —by)| = 7l® — 7138139 + ¢4
Ti(z) - Ti(y)| = 71 [z — 9
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Formulation of Online part

Having previously assembled a reduced basis V for the reference shape, we re-
strict the solution space to V.

— VYV represents accurately all solutions on the reference shape corresponding
to all wave numbers k € [k~, k7] and incident plane wave of all angles and
polarizations.
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Formulation of Online part

Having previously assembled a reduced basis V for the reference shape, we re-
strict the solution space to V.

— VYV represents accurately all solutions on the reference shape corresponding
to all wave numbers k € [k~, k7] and incident plane wave of all angles and
polarizations.

Thus, assemble the matrices

T e D
Ap, — a ['7';“’”VN><VN7
B, = s ullvy-
\_ /
Then, solve
/ o o . o \
Ay uy =1,
A,ijuf{ — = ZAiBui_l, k> 1.
N 177 J

The reduced basis approximation ul is then written as ul = Ul
x—1 Yk
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Formulation of Online part

Having previously assembled a reduced basis V for the reference shape, we re-
strict the solution space to V.

— VYV represents accurately all solutions on the reference shape corresponding
to all wave numbers k € [k~, k7] and incident plane wave of all angles and
polarizations.

Thus, assemble the matrices

T e D
Ap, — a ['7';“’”VN><VN7
B, = s ullvy-
\_ /
Then, solve
/ o o . o \
Ay uy =1,
A,ijuf{ = — ZAiBui_l, k> 1.
N 177 J

The reduced basis approximation ul is then written as ul = Ul
x—1 Yk

Remaining task: Affine decomposition of forms.
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Efficient implementation - Empirical Interpolation
Method (EIM)

Define the functions on which we apply EIM:
4 I

with &, 9 € I' and ~:/k,v € R, c € R3, B € SO(3).

eivik\:ﬁ—vByA—l—d
L, Y; ika 7B7 — A A y . )
67;’71]@70
gO[TWik]: Ay T:‘j_glvi:ja
\_ /
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Efficient implementation - Empirical Interpolation
Method (EIM)

Define the functions on which we apply EIM:
4 I

ei'yik\:f:—vBQ—l—d
L, Y; ikv 7B7 — A A y . )
ei’yik’f‘
gO[TWik]: Ay T:‘iﬁ—g‘,i:j,
\_ /

with &, 9 € I' and ~:/k,v € R, c € R3, B € SO(3).

Denoting g = (7:k,7,¢,B) resp. p = 7:k, the EIM provides us {pm}, {p,}
such that
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Efficient implementation - Empirical Interpolation
Method (EIM)

Define the functions on which we apply EIM:
4 I

ei'yik\:f:—vBQ—l—d
L, Y; ikv 7B7 — A A y . )
ei’yik’f‘
gO[TWik]: Ay T:‘iﬁ—g‘,i:j,
\_ /

with &, 9 € I' and ~:/k,v € R, c € R3, B € SO(3).
Denoting pu = (7:k,7,¢,B) resp. p = ik, the EIM provides us {gt,,}, {uY }

such that
4 I
M
g[ia g? l'l'] ~ Z ()ém([,b> g[ia Qa l’l’m]a
m=1
M
Golr; u] = )~ ap, (1) Go[r; paa,)
\ m=1 /
if 1 #£ j:

= 6-dimensional spatial space {2 = I xT
= 8-dimensional paramater space P.
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Efficient implementation - Empirical Interpolation
Method (EIM)

Define the functions on which we apply EIM:
4 I

ei'yik\:f:—vBQ—l—d
L, Y; ikv 7B7 — A A y . )
ei’yik’f‘
gO[TWik]: Ay T:‘iﬁ—g‘,i:j,
\_ /

with &, 9 € I' and ~:/k,v € R, c € R3, B € SO(3).
Denoting pu = (7:k,7,¢,B) resp. p = ik, the EIM provides us {gt,,}, {uY }

such that
4 I
M
g[ia g? l'l'] ~ Z ()ém([,b> g[ia Qa l’l’m]a
m=1
M
Golr; u] = )~ ap, (1) Go[r; paa,)
\ m=1 /
if 1 #£ j:

= 6-dimensional spatial space {2 = I xT
= 8-dimensional paramater space P.

Simplified: Only translations.
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Efficient implementation - Affine decomposition

i=7:
s )
"l oia) = k27 [ [ Golrivukla(9) - o(@) dy de r=|& -9l
rJr
— %//go[r;vik] divgu(y)divao(z) dy dz
r'Jr
N J
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Efficient implementation - Affine decomposition

i=7:
4 R
"l oia) = k27 [ [ Golrivukla(9) - o(@) dy de r=|& -9l
rJr
— %/[go[r;vik] divgu(y)divao(z) dy dz
rJr
| J
Thus ...

M
a9 1] ~ i, Z Z fu(w) [ [ Golrs ) o) - 5(@) dy da

— £ //g r; po ] divga(9)diveo(2) dy dz

Thursday, April 24, 14



Efficient implementation - Affine decomposition
i+#3:
/

~

03[, 0 ] = 1K 2757, / / GY (&, 9)B;a(g) - B:o(@) dy da

//G” (z,y)divgu(y)diveo(z) dy dz
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Efficient implementation - Affine decomposition

i+#3:
- D
ata, v; p szyle//GlJ (,9)B;u(y) - Biv(x) dy dx
//G” z,y)divgu(y)divev(z) dy dx
N\ J
Note that:
4 3 )
Bjw(g) - Bio(&) = Y  w(§) (B] Bi)wm 8(&),
l,n=1
G;.LJEJ (Ziﬁ,’g) — %g[a’\%ﬁ;vikainjaBij?Cij]
N\ J
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Efficient implementation - Affine decomposition

i+#3:
- N
ata, v; p sz%%//GlJ (,9)B;u(y) - Biv(x) dy dx
//G” z,y)divgu(y)divev(z) dy dx
\_ )
Note that:
4 3 N
Bjw(g) - Bio(&) = Y  w(§) (B] Bi)wm 8(&),
l,n=1
G;.LJEJ (Ziﬁ,’g) — %g[a’\%ﬁ;vikainjaBij?Cij]
N J
Thus ...
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Efficient implementation - Affine decomposition

i+#3:
g 2
ata, o5 p sz%yJ//GlJ (,9)B;u(y) - Bivo(x) dy dx
//G1J z,y)divgu(y)divev(z) dy dx
- y
M 3
ah, vy p) =ik Z Y Y am(u)(BfBl)m/ Gl&, 5 p|w(9); 0(2),, dy dx
m=11[,n=1 rJr
M
_ ]z_fj Z ozm(u)f Glz,y; pp)divgu(y)diveo(z) dy dz
m=1 I'J1r

Thus ...
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Efficient implementation - Affine decomposition

We are therefore able to write

M M
A=) O3 (A, and B, =) 0} (n)i,
m=1 m=1

Note, given the interpolation points {g,, }*_, from the EIM, and the reduced
basis V on the reference shape, we can precompute {A,,}M_, and {f,,}
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Efficient implementation - Affine decomposition

We are therefore able to write

M M
A=) O3 (A, and B, =) 0} (n)i,
m=1 m=1

Note, given the interpolation points {g,, }*_, from the EIM, and the reduced
basis V on the reference shape, we can precompute {A,,}M_, and {f,,}

Thus: For any new configuration (p € IP), which is described by

1. the wave number £,

2. the angle and polarization of incident plane wave, and

3. the geometrical configuration of each obstacle 1 < j < J which includes a
rotation, stretch and a translation of the reference shape,

we can solve the coupled problem independently of N' = dim(V},).
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Complexity

The computing time (on seq. computer) is dictated by

1. Assembling” matrices ALj :~ J°N2M.
2. Solving J N-dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but indep. of N).

T : Building the sum of matrices En]\le O () AL,
I : Assembling the matrices, i.e., numerical integration of weakly singular kernel etc.
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Complexity

The computing time (on seq. computer) is dictated by

1. Assembling” matrices ALj :~ J°N2M.
2. Solving J N-dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but indep. of N).

Without reduced basis approach, it would be

1. Assembling matrices ALj :~ J°NZ.
2. Solving J N-dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but dep. of N).

T : Building the sum of matrices En]\le O () AL,
I : Assembling the matrices, i.e., numerical integration of weakly singular kernel etc.
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Complexity

The computing time (on seq. computer) is dictated by

1. Assembling” matrices Alij :~ J°N2M.
2. Solving J N-dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but indep. of N).

Without reduced basis approach, it would be

1. Assembling matrices AE :~ J°NZ.
2. Solving J N-dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but dep. of N).

T : Building the sum of matrices En]\le O () AL,
I : Assembling the matrices, i.e., numerical integration of weakly singular kernel etc.

Comments: Remember that N <« N (example of a sphere with k € [3,5]: N = 5009,
N = 4320):

1. Speed up only if M is moderate: For shape modifications such as stretch and
rotations M is not moderate.
= novel techniques exist and are under development such as hp-EIM etc ...

2. Speed up thanks to N < N

3. No details, but similar comment as in 1.
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Numerical results
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2 Unit spheres - fixed wavenumber

Comparison with [Bruning and Lo]:

- 00

y gT -m.z 10355 ka =kb = 11048
A )

! IR ARRERRRN
' L
8| HE
_ ‘”' i
- TR |l
o TR
o 1 TRl
o T
= % H || ” H
| o
: g Loy
D I || I
R Loy
8] oy
' ﬂ b L
w] I h L
3 ; Ll

20.00 25. 2% 30.48 95.72 4o, 95 NG. 20 S51.44 56

kd

Endfire incidence and backscattering
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wmany sources of error

2 Unit spheres - variable wavenumbey g teortofere

01 F

0.01

0.001 |

0.0001 k-

1x107° |

—0— k=1
—— k=2
—&— k=3

1x10°®

Error: Difference between BEM solution u(u) and RB approximation wy(u) in L?(T")-norm.

Sources of error:

20 25

0.1 3
0.01 g
0.001 3

0.0001 ;

1x10° F

1x10°®

-

—o— k=3
—o— k=4
—— k=5 -

1. Ability of reduced basis space Vy to represent the solution space. As closer the
spheres get, as more the interaction is of dipole character. The reduced basis is
however trained to respond for linear combinations of plane waves.

2. Accuracy of EIM and therefore the matrices ALJ

3. Truncation of generalized Born series.
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2 Unit spheres - variable wavenumber

~— S ~— —o— k=0
,q 30_— —_—O0— k=2 ,q 30_— —0— k=4
~— \ —_—— k=3 ~— —— k=5
N 1 N
- ! a
O 25 |- O 25 |-
+ - +
av 4w
— —
D) i ) i
= 20 |- = 20
S i (- i
o) o)
g sl g sl
3 15_— 3 15_—
= s
- =
a 10 [~ = 10 -
r— r—
(v (4w
b b
- 5 L - s [
I I I I I I llllllllllllllllllllllllllllllllllll
0 5 10 15 20 25 5 10 15 20 25 30 35 40
kd kd
many sources of error

KCI::}: integral of current
]

-
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Lattice of spheres

Sender: 0 = 0, 72T, =0
Receiver: 0.5 = 5, ¢res € [0, 27]

24.

N

15.5

-2.76

-11.9

-21.0
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Lattice of unit spheres

Sender: § = 7, ¢ € [0, 27]
Receiver: Opcs = 5, ¢rcs € [0, 27]

-
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Stretch | I 7 € [0.5,1]

< 4

Sender: 0 =¢=0,k=3,d=4
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Stretch I 1 € 10.5.1]

< 4

Sender: 0 =¢=0,k=3,d=4

Yo € [0.5, 1]
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Stretch Y1 € [0.5,1]
Sender: 0 =¢9=0,k=3,d=4 b Y
Y2 € [057 1]
x
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Stretch

Sender: 0 =¢=0,k=3,d=4

71
. Mat’).m 1.57
V1 Orcs
Receiver: O,..c = ¢pes = 0 Receiver: O.cs € [0, 5], ¢rcs =0
Y2 =10—7
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N

[
|
S

Rotation

Sender: 0 = 7, ¢ =0
Receiver: 0.cs = 5, ¢rcs =0

1.57 -

i 0.785 ' -
0.00 157 0.785 157
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Different reference shapes

k=3
Sender: 0 = 7, ¢

Receiver: 0,..s =

€ [0, 27]
ga Pres € |0, 27]

l 32.0

6.28 1
21.2
N
10.5
y .
‘ o "
-0.287 ( R 'L
I ¢ AR Y 4
-11.0 - .\ |
‘ = 3 - -
SN A4,
-21.8 . \\\\ro . ! A
NN NS A s, ":
NN 78
-32.5 ow _I\\ \ ‘ » )i //(/:"'"Ja - b. \i\'
000 6.28
e Ores
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Conclusions

e RBM was applied to an integral equation = EIM plays an important role.

e Previously, the RBM was designed to get significant speed-up for parametrized
problems. Solving the problem always relied on an established solver (black-box).
Here, we can solve configurations where the black-box solver would fail (memory,
time).
= Similar in spirit to work of Patera, Eftang, etc (“lego”) but no physical interface
condition. Instead communication is through kernel function. In consequence,

heavy use of EIM.
= Use of ROM to solve larger problems, i.e. design new solvers.

e IE are well suited for coupling several RB models.
e Translations only (no stretch, no rotation) simplifies and accelerates the approach.
e Generalization to CFIE straightforward.

e Bottleneck: large number of obstacles (scaling and convergence), low rank-structure
of parametrized interaction
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