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Problem setting
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Physical problem/Geometrical Configuration [in 3D]
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Incident plane wave impinging onto collection of J perfectly conducting obstacles
D1, . . . , DJ.

Ei(x)
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Physical problem/Geometrical Configuration [in 3D]

Di

D1
DJ

Incident plane wave impinging onto collection of J perfectly conducting obstacles
D1, . . . , DJ.

Ei(x)

� Scattered field Es(x)
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Parametrization

The system is parametrized by:
• The wave number k,
• The angle and polarization of the incident wave Ei(x; k, p, k̂) = �p eikx·k̂(�,⇥) ,
• The location and shape of the obstacles:

Thursday, April 24, 14



Parametrization

The system is parametrized by:
• The wave number k,
• The angle and polarization of the incident wave Ei(x; k, p, k̂) = �p eikx·k̂(�,⇥) ,
• The location and shape of the obstacles:

Reference shape:

x̂

ŷ
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Parametrization

The system is parametrized by:
• The wave number k,
• The angle and polarization of the incident wave Ei(x; k, p, k̂) = �p eikx·k̂(�,⇥) ,
• The location and shape of the obstacles:

Reference shape:

x̂

ŷ

y

x

D̂

Di

Ti(x̂) = �iBix̂ + bi

Parameter: µ = (k, k̂,p,b1,B1, �1� �� �, . . . ,bJ,BJ, �J� �� �) � P � R5+7J

The a�ne transformation Ti includes:
Bi � SO(3): rotation
�i � R+: stretching
bi � R3: translation
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Governing equations
(time-harmonic ansatz)

The total electric field E = Ei + Es ⇧H(curl,⇥) satisfies

curl curl E� k2E = 0 in ⇥, Maxwell
E⇥ n = 0 on �, boundary condition

���curlEs(x)⇥ x
|x| � ikEs(x)

��� = O
�

1
|x|

�
as |x|⇤⌅. Silver-Müller radiation condition

Assume that the free space is a homogenous media with magnetic permeability
µ and electrical permittivity �.

� is the collection of all surfaces: � = �J
i=1�Di.

� = R3\ �J
i=1 Di.

see book of [Colton,Kress], [Nedelec]
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Variational formulation of the Electric Field 
Integral Equation (EFIE)

The scattered electric field Es is then uniquely determined by the electric currant u.

Change the unknown to be u : Electric currant on collection of surfaces.

For any fixed µ ⇥ P, find u(µ) ⇥ V s.t.

a[u(µ),v;µ] = f [v;µ], ⇤v ⇥ V

with

a[u,v;µ] = ikZ

�

�(µ)

�

�(µ)
Gk(x,y)

�
u(y) · v(x)� 1

k2 divyu(y)divxv(x)
�

dy dx

f [v;µ] = �
�

�(µ)
Ei(y; k, p, k̂) · v(y) dy
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Variational formulation of the Electric Field 
Integral Equation (EFIE)

The kernel function is given by

Gk(x,y) =
eik|x�y|

4�|x� y|

The scattered electric field Es is then uniquely determined by the electric currant u.

Change the unknown to be u : Electric currant on collection of surfaces.

For any fixed µ ⇥ P, find u(µ) ⇥ V s.t.

a[u(µ),v;µ] = f [v;µ], ⇤v ⇥ V

with

a[u,v;µ] = ikZ

�

�(µ)

�

�(µ)
Gk(x,y)

�
u(y) · v(x)� 1

k2 divyu(y)divxv(x)
�

dy dx

f [v;µ] = �
�

�(µ)
Ei(y; k, p, k̂) · v(y) dy
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Output of interest: Radar Cross Section (RCS)

• Describes pattern/energy of electrical field at infinity
• Functional of the current on body

where
u: current on surface
d̂: given directional unit vector

A⇥[u;µ, d̂] =
ikZ

4�

�

�
d̂� (u(x)� d̂)e�ikx·d̂dx

RCS[u;µ, d̂] = 10 log10

�
|A⇥[u;µ, d̂]|2

|Ei(x; k, p, k̂)|2

�
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Output of interest: Radar Cross Section (RCS)

• Describes pattern/energy of electrical field at infinity
• Functional of the current on body

where
u: current on surface
d̂: given directional unit vector

A⇥[u;µ, d̂] =
ikZ

4�

�

�
d̂� (u(x)� d̂)e�ikx·d̂dx

RCS[u;µ, d̂] = 10 log10

�
|A⇥[u;µ, d̂]|2

|Ei(x; k, p, k̂)|2
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Single obstacle scattering
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Reduced Basis Method

Reduced Basis Ansatz:

VN = span{u�(µ1), . . . ,u�(µN )}

for some well-chosen sample points µ1, . . . ,µN .
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Reduced Basis Method

Reduced Basis Ansatz:
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Example:

1 parameter: wavenumber k
Di�erent snapshots illustrated

Thursday, April 24, 14



Reduced Basis Method

Reduced Basis Ansatz:

VN = span{u�(µ1), . . . ,u�(µN )}

for some well-chosen sample points µ1, . . . ,µN .

Example:

1 parameter: wavenumber k
Di�erent snapshots illustrated

Question: How to find the sample points µ1, . . . ,µN such that

VN �M = {u�(µ) : �µ � P}

Thursday, April 24, 14



Reduced Basis Method

Reduced Basis Ansatz:

VN = span{u�(µ1), . . . ,u�(µN )}

for some well-chosen sample points µ1, . . . ,µN .

Example:

1 parameter: wavenumber k
Di�erent snapshots illustrated

Question: How to find the sample points µ1, . . . ,µN such that

VN �M = {u�(µ) : �µ � P}

Answer: Greedy-algorithm
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Affine decomposition for EFIE

For any parameter value µ � P, find u(µ) � V s.t.

a(u(µ),v;µ) = f(v;µ), �v � V

with

a(u,v;µ) = ikZ

�

�

�

�

eik|x�y|

4�|x�y|

�
u(x) · v(y)� 1

k2 div�,xu(x) div�,yv(y)
�

dx dy

f(v;µ) = �p ·
�

�
eikx·k̂(�,�)v(x) dx
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Affine decomposition for EFIE

For any parameter value µ � P, find u(µ) � V s.t.

a(u(µ),v;µ) = f(v;µ), �v � V

with

a(u,v;µ) = ikZ

�

�

�

�

eik|x�y|

4�|x�y|

�
u(x) · v(y)� 1

k2 div�,xu(x) div�,yv(y)
�

dx dy

f(v;µ) = �p ·
�

�
eikx·k̂(�,�)v(x) dx

[Maday et al. 2004] (happy birthday!)

Output: {µq}Q
q=1 such that

g(x;µ) � IQ(g)(x;µ) =
Q�

q=1

�g
q(µ) g(x;µq).

Given: A parametrized function g(x;µ).

(also based on a greedy algorithm)

S i m i l a r p r o b l e m 
formulation as for the 
RBM, but solutions 
are explicitly known 
(not solution to PDE)

Solution: Empirical Interpolation Method (EIM)
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red: parameter-dependent,
blue: parameter-independent.

Affine decomposition for the EFIE

eik|x�y|

4�|x�y| �
Q�

q=1

�a
q(k) eikq|x�y|

4�|x�y|

eikx·k̂(�,�) �
Q�

q=1

�f
q(µ)eikqx·k̂(�q,�q)

Approximating
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red: parameter-dependent,
blue: parameter-independent.

Affine decomposition for the EFIE

a(v,w;µ) = ikZ

�

�

�

�

eik|x�y|

4�|x�y|u(x) · v(y) dx dy � iZ
k

�

�

�

�

eik|x�y|

4�|x�y|div�,xu(x) div�,yv(y) dx dy

�
Q�

q=1

ikZ�a
q(k)

�

�

�

�

eikq|x�y|

4�|x�y| u(x) · v(y) dx dy

�
Q�

q=1

iZ�a
q(k)

k

�

�

�

�

eikq|x�y|

4�|x�y| div�,xu(x) div�,yv(y) dx dy

results in

eik|x�y|

4�|x�y| �
Q�

q=1

�a
q(k) eikq|x�y|

4�|x�y|

eikx·k̂(�,�) �
Q�

q=1

�f
q(µ)eikqx·k̂(�q,�q)

Approximating
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red: parameter-dependent,
blue: parameter-independent.

Affine decomposition for the EFIE

and for the source term in

f(v;µ) � �
Q�

q=1

p �f
q(µ) ·

�

�
eikqx·k̂(�q,�q)v(x) dx

a(v,w;µ) = ikZ

�

�

�

�

eik|x�y|

4�|x�y|u(x) · v(y) dx dy � iZ
k

�

�

�

�

eik|x�y|

4�|x�y|div�,xu(x) div�,yv(y) dx dy

�
Q�

q=1

ikZ�a
q(k)

�

�

�

�

eikq|x�y|

4�|x�y| u(x) · v(y) dx dy

�
Q�

q=1

iZ�a
q(k)

k

�

�

�

�

eikq|x�y|

4�|x�y| div�,xu(x) div�,yv(y) dx dy

results in

eik|x�y|

4�|x�y| �
Q�

q=1

�a
q(k) eikq|x�y|

4�|x�y|

eikx·k̂(�,�) �
Q�

q=1

�f
q(µ)eikqx·k̂(�q,�q)

Approximating
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Output functional (RCS)

Recall: an important object of interest for scattering is the RCS:

s�(u, d̂) =
ikZ

4�

�

�
d̂� (u(x)� d̂)e�ikx·d̂dx

rcs(u, d̂) = 10 log10

�
4�

|s�(u, d̂)|2

|Ei|2

�

Theorem: The error of the functionals are bounded by

|s�(u�(µ), d̂)� s�(uN (µ), d̂)| � �s =
kZ

�
|�|

4�
�N (µ),

|rcs(u�(µ), d̂)� rcs(uN (µ), d̂)|

� 20 max

�
log10

�
|s�(uN (µ), d̂)| + �s

|s�(uN (µ), d̂)|

�
, log10

�
|s�(uN (µ), d̂)|

|s�(uN (µ), d̂)|� �s

��
.

Rigorous computable error bounds for the output functional can be developed:
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Application to scattering problems
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Figure 1: Scattering on a cavity (left) for di⇥erent wave-numbers k ⇧ [10, 20]. Evolution of the error
estimate and the error during the greedy algorithm (top right) and the error profile for N = 16.

with d̂ ⌥ p̂ and parametrized by the wave-number k ⇧ R+, direction d̂ ⇧ S2 and polarization p̂ ⇧ R3

where S2 denotes the unit sphere. We identify the polarization vector p̂, that is perpendicular to d̂, with
a vector in R2 by using a local orthonormal basis that is perpendicular to d̂. Then, we denote the set
of parameters by µ = (k, d̂, p̂) ⇧ P for some parameter domain P ⌅ R+⇤S2⇤R2. The wavelength of the
incident electric and magnetic fields is given by ⇥ = 2⌅/k.

The total field components [E,H], i.e., the incident and the scattered fields with the latter denoted
by [Esca,Hsca], satisfy the time-harmonic Maxwell equations:

curl E(x)� i⇧µ0H(x) = 0, curl H(x) + i⇧�0E(x) = 0, x ⇧ R3 \ D, (5)

and the Silver-Müller radiation condition

lim
|x|⇤⌅

[H(x)⇤x� |x|E(x)] = 0. (6)

We assume that the obstacle D is perfectly conducting and hence the tangential component of the total
electric field E vanishes on the surface of D, yielding the boundary condition:

n(x)⇤Esca(x) = �n(x)⇤Einc(x), x ⇧ �. (7)

Using the Stratton-Chu representation formula, one can derive the parametrized Electric Field Integral
Equation (EFIE), cast in terms of a variational problem: for a given parameter value µ ⇧ P, find
u(µ) ⇧ V := H

� 1
2

div (�) such that
a(u(µ),v;µ) = f(v;µ) (8)

for all v ⇧ X. The sesquilinear and linear forms are given by

a(u,v;µ) = ikZ

�

�⇥�
G(r; k)u(y) · v(x) dy dx� iZ

k

�

�⇥�
G(r; k)div�,yu(y)div�,xv(x) dy dx,

f(v;µ) = �
�

�
Einc(x;µ) · v(x) dx.

Here, G is the fundamental solution of the Helmholtz operator defined by

G(r, k) =
eikr

4⌅r
, r = |x� y|.

The discretization of the EFIE can be given by introducing the complex lowest order Raviart-Thomas
space V� := RT0 that is a conforming approximation space since RT0 ⌅ H0

div(�) ⌅ H
� 1

2
div (�). The

corresponding boundary element method then consists of seeking, for any given parameter value µ ⇧ P,
the discrete solution uh(µ) ⇧ RT0 such that

a(uh(µ),vh;µ) = f(vh;µ), ⌃vh ⇧ RT0. (9)

4

Parameter space: k � [10, 20], � = �
2 , � = 0.

Scatterer:
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Application to scattering problems
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Figure 1: Scattering on a cavity (left) for di⇥erent wave-numbers k ⇧ [10, 20]. Evolution of the error
estimate and the error during the greedy algorithm (top right) and the error profile for N = 16.

with d̂ ⌥ p̂ and parametrized by the wave-number k ⇧ R+, direction d̂ ⇧ S2 and polarization p̂ ⇧ R3

where S2 denotes the unit sphere. We identify the polarization vector p̂, that is perpendicular to d̂, with
a vector in R2 by using a local orthonormal basis that is perpendicular to d̂. Then, we denote the set
of parameters by µ = (k, d̂, p̂) ⇧ P for some parameter domain P ⌅ R+⇤S2⇤R2. The wavelength of the
incident electric and magnetic fields is given by ⇥ = 2⌅/k.

The total field components [E,H], i.e., the incident and the scattered fields with the latter denoted
by [Esca,Hsca], satisfy the time-harmonic Maxwell equations:
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the discrete solution uh(µ) ⇧ RT0 such that
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Fig. 4.14. Maximal error and a posteriori error estimation over the parameter space at each
step of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in Figure
4.3 with k 2 [10, 20].
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Fig. 4.15. Error profile over the parameter space at iteration N = 16 (top) and N = 23
(bottom) of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in
Figure 4.3 with k 2 [10, 20].

We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we pre-
sented some numerical examples to test the performance of the SCM and the reduced
basis method. Future work includes to generalize the method to the Combined Field
Integral Equation which is more frequently used in practice due to better stability
properties.

20

Convergence of greedy algorithm (Offline)

Scatterer:
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Application to scattering problems
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Figure 1: Scattering on a cavity (left) for di⇥erent wave-numbers k ⇧ [10, 20]. Evolution of the error
estimate and the error during the greedy algorithm (top right) and the error profile for N = 16.

with d̂ ⌥ p̂ and parametrized by the wave-number k ⇧ R+, direction d̂ ⇧ S2 and polarization p̂ ⇧ R3

where S2 denotes the unit sphere. We identify the polarization vector p̂, that is perpendicular to d̂, with
a vector in R2 by using a local orthonormal basis that is perpendicular to d̂. Then, we denote the set
of parameters by µ = (k, d̂, p̂) ⇧ P for some parameter domain P ⌅ R+⇤S2⇤R2. The wavelength of the
incident electric and magnetic fields is given by ⇥ = 2⌅/k.

The total field components [E,H], i.e., the incident and the scattered fields with the latter denoted
by [Esca,Hsca], satisfy the time-harmonic Maxwell equations:

curl E(x)� i⇧µ0H(x) = 0, curl H(x) + i⇧�0E(x) = 0, x ⇧ R3 \ D, (5)

and the Silver-Müller radiation condition

lim
|x|⇤⌅

[H(x)⇤x� |x|E(x)] = 0. (6)

We assume that the obstacle D is perfectly conducting and hence the tangential component of the total
electric field E vanishes on the surface of D, yielding the boundary condition:

n(x)⇤Esca(x) = �n(x)⇤Einc(x), x ⇧ �. (7)

Using the Stratton-Chu representation formula, one can derive the parametrized Electric Field Integral
Equation (EFIE), cast in terms of a variational problem: for a given parameter value µ ⇧ P, find
u(µ) ⇧ V := H

� 1
2

div (�) such that
a(u(µ),v;µ) = f(v;µ) (8)

for all v ⇧ X. The sesquilinear and linear forms are given by

a(u,v;µ) = ikZ

�

�⇥�
G(r; k)u(y) · v(x) dy dx� iZ

k

�

�⇥�
G(r; k)div�,yu(y)div�,xv(x) dy dx,

f(v;µ) = �
�

�
Einc(x;µ) · v(x) dx.

Here, G is the fundamental solution of the Helmholtz operator defined by

G(r, k) =
eikr

4⌅r
, r = |x� y|.

The discretization of the EFIE can be given by introducing the complex lowest order Raviart-Thomas
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step of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in Figure
4.3 with k 2 [10, 20].
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Fig. 4.15. Error profile over the parameter space at iteration N = 16 (top) and N = 23
(bottom) of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in
Figure 4.3 with k 2 [10, 20].

We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we pre-
sented some numerical examples to test the performance of the SCM and the reduced
basis method. Future work includes to generalize the method to the Combined Field
Integral Equation which is more frequently used in practice due to better stability
properties.
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We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we pre-
sented some numerical examples to test the performance of the SCM and the reduced
basis method. Future work includes to generalize the method to the Combined Field
Integral Equation which is more frequently used in practice due to better stability
properties.
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Figure 1: Scattering on a cavity (left) for di⇥erent wave-numbers k ⇧ [10, 20]. Evolution of the error
estimate and the error during the greedy algorithm (top right) and the error profile for N = 16.

with d̂ ⌥ p̂ and parametrized by the wave-number k ⇧ R+, direction d̂ ⇧ S2 and polarization p̂ ⇧ R3

where S2 denotes the unit sphere. We identify the polarization vector p̂, that is perpendicular to d̂, with
a vector in R2 by using a local orthonormal basis that is perpendicular to d̂. Then, we denote the set
of parameters by µ = (k, d̂, p̂) ⇧ P for some parameter domain P ⌅ R+⇤S2⇤R2. The wavelength of the
incident electric and magnetic fields is given by ⇥ = 2⌅/k.

The total field components [E,H], i.e., the incident and the scattered fields with the latter denoted
by [Esca,Hsca], satisfy the time-harmonic Maxwell equations:

curl E(x)� i⇧µ0H(x) = 0, curl H(x) + i⇧�0E(x) = 0, x ⇧ R3 \ D, (5)

and the Silver-Müller radiation condition

lim
|x|⇤⌅

[H(x)⇤x� |x|E(x)] = 0. (6)

We assume that the obstacle D is perfectly conducting and hence the tangential component of the total
electric field E vanishes on the surface of D, yielding the boundary condition:

n(x)⇤Esca(x) = �n(x)⇤Einc(x), x ⇧ �. (7)

Using the Stratton-Chu representation formula, one can derive the parametrized Electric Field Integral
Equation (EFIE), cast in terms of a variational problem: for a given parameter value µ ⇧ P, find
u(µ) ⇧ V := H

� 1
2

div (�) such that
a(u(µ),v;µ) = f(v;µ) (8)

for all v ⇧ X. The sesquilinear and linear forms are given by

a(u,v;µ) = ikZ

�

�⇥�
G(r; k)u(y) · v(x) dy dx� iZ

k

�

�⇥�
G(r; k)div�,yu(y)div�,xv(x) dy dx,

f(v;µ) = �
�

�
Einc(x;µ) · v(x) dx.

Here, G is the fundamental solution of the Helmholtz operator defined by

G(r, k) =
eikr

4⌅r
, r = |x� y|.

The discretization of the EFIE can be given by introducing the complex lowest order Raviart-Thomas
space V� := RT0 that is a conforming approximation space since RT0 ⌅ H0

div(�) ⌅ H
� 1

2
div (�). The

corresponding boundary element method then consists of seeking, for any given parameter value µ ⇧ P,
the discrete solution uh(µ) ⇧ RT0 such that

a(uh(µ),vh;µ) = f(vh;µ), ⌃vh ⇧ RT0. (9)
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Fig. 4.14. Maximal error and a posteriori error estimation over the parameter space at each
step of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in Figure
4.3 with k 2 [10, 20].
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Fig. 4.15. Error profile over the parameter space at iteration N = 16 (top) and N = 23
(bottom) of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in
Figure 4.3 with k 2 [10, 20].

We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we pre-
sented some numerical examples to test the performance of the SCM and the reduced
basis method. Future work includes to generalize the method to the Combined Field
Integral Equation which is more frequently used in practice due to better stability
properties.
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step of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in Figure
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Fig. 4.15. Error profile over the parameter space at iteration N = 16 (top) and N = 23
(bottom) of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in
Figure 4.3 with k 2 [10, 20].

We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we pre-
sented some numerical examples to test the performance of the SCM and the reduced
basis method. Future work includes to generalize the method to the Combined Field
Integral Equation which is more frequently used in practice due to better stability
properties.
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Fig. 4.14. Maximal error and a posteriori error estimation over the parameter space at each
step of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in Figure
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Fig. 4.15. Error profile over the parameter space at iteration N = 16 (top) and N = 23
(bottom) of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in
Figure 4.3 with k 2 [10, 20].

We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we pre-
sented some numerical examples to test the performance of the SCM and the reduced
basis method. Future work includes to generalize the method to the Combined Field
Integral Equation which is more frequently used in practice due to better stability
properties.

20

Error-profile:

Thursday, April 24, 14



Application to scattering problems

5 10 15 20
N

1x10-6
0.00001

0.0001
0.001

0.01
0.1

1
10

er
ro

r

A posteriori estimate
Error

10 12 14 16 18 20
k

1x10-9

1x10-8

1x10-7

1x10-6

1x10-5

1x10-4

1x10-3

1x10-2

1x10-1

er
ro

r

A posteriori estimate
Error

Figure 1: Scattering on a cavity (left) for di⇥erent wave-numbers k ⇧ [10, 20]. Evolution of the error
estimate and the error during the greedy algorithm (top right) and the error profile for N = 16.

with d̂ ⌥ p̂ and parametrized by the wave-number k ⇧ R+, direction d̂ ⇧ S2 and polarization p̂ ⇧ R3

where S2 denotes the unit sphere. We identify the polarization vector p̂, that is perpendicular to d̂, with
a vector in R2 by using a local orthonormal basis that is perpendicular to d̂. Then, we denote the set
of parameters by µ = (k, d̂, p̂) ⇧ P for some parameter domain P ⌅ R+⇤S2⇤R2. The wavelength of the
incident electric and magnetic fields is given by ⇥ = 2⌅/k.

The total field components [E,H], i.e., the incident and the scattered fields with the latter denoted
by [Esca,Hsca], satisfy the time-harmonic Maxwell equations:

curl E(x)� i⇧µ0H(x) = 0, curl H(x) + i⇧�0E(x) = 0, x ⇧ R3 \ D, (5)

and the Silver-Müller radiation condition

lim
|x|⇤⌅

[H(x)⇤x� |x|E(x)] = 0. (6)

We assume that the obstacle D is perfectly conducting and hence the tangential component of the total
electric field E vanishes on the surface of D, yielding the boundary condition:

n(x)⇤Esca(x) = �n(x)⇤Einc(x), x ⇧ �. (7)

Using the Stratton-Chu representation formula, one can derive the parametrized Electric Field Integral
Equation (EFIE), cast in terms of a variational problem: for a given parameter value µ ⇧ P, find
u(µ) ⇧ V := H

� 1
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div (�) such that
a(u(µ),v;µ) = f(v;µ) (8)

for all v ⇧ X. The sesquilinear and linear forms are given by
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Here, G is the fundamental solution of the Helmholtz operator defined by

G(r, k) =
eikr

4⌅r
, r = |x� y|.

The discretization of the EFIE can be given by introducing the complex lowest order Raviart-Thomas
space V� := RT0 that is a conforming approximation space since RT0 ⌅ H0

div(�) ⌅ H
� 1

2
div (�). The

corresponding boundary element method then consists of seeking, for any given parameter value µ ⇧ P,
the discrete solution uh(µ) ⇧ RT0 such that

a(uh(µ),vh;µ) = f(vh;µ), ⌃vh ⇧ RT0. (9)
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Fig. 4.14. Maximal error and a posteriori error estimation over the parameter space at each
step of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in Figure
4.3 with k 2 [10, 20].
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Fig. 4.15. Error profile over the parameter space at iteration N = 16 (top) and N = 23
(bottom) of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in
Figure 4.3 with k 2 [10, 20].

We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we pre-
sented some numerical examples to test the performance of the SCM and the reduced
basis method. Future work includes to generalize the method to the Combined Field
Integral Equation which is more frequently used in practice due to better stability
properties.
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Fig. 4.14. Maximal error and a posteriori error estimation over the parameter space at each
step of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in Figure
4.3 with k 2 [10, 20].
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Fig. 4.15. Error profile over the parameter space at iteration N = 16 (top) and N = 23
(bottom) of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in
Figure 4.3 with k 2 [10, 20].

We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we pre-
sented some numerical examples to test the performance of the SCM and the reduced
basis method. Future work includes to generalize the method to the Combined Field
Integral Equation which is more frequently used in practice due to better stability
properties.
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(bottom) of the greedy-algorithm during the Reduced Basis assembling process for a cavity as in
Figure 4.3 with k 2 [10, 20].

We presented in detail how the rigorous a posteriori estimates, which are key
ingredients to certify the error tolerance of the model reduction, are developed in the
present case. An important feature is to give an estimate of the inf-sup constant,
that is parameter dependent, by means of the successive constraint method (SCM).
One particularity of the EFIE is that the SCM needed to be generalized to complex
matrices. Further, we derived error estimates that certify the error of the radar cross
section, which is a non-linear functional of the unknowns of the EFIE. Finally, we pre-
sented some numerical examples to test the performance of the SCM and the reduced
basis method. Future work includes to generalize the method to the Combined Field
Integral Equation which is more frequently used in practice due to better stability
properties.
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Fig. 4.16. E�ciency of the error estimator over the parameter space for N = 10, 16, 23 during
the greedy-algorithm for the Reduced Basis assembling process for a cavity as in Figure 4.3 with
k 2 [10, 20] and the sampling points for N = 23.
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Fig. 4.17. The radar cross section (RCS) for k 2 [10, 20] using the reduced basis approximation
and the boundary element method including error bars for N = 21 (top), N = 22 (middle) and
N = 23 (bottom).
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Truth solver (BEM)

For any fixed µ � P, find uh(µ) � Vh s.t.

a[uh(µ),vh;µ] = f [vh;µ], �vh � Vh

Galerkin approach: we replace the functional space V = H
� 1

2
div (�) by a finite

dimensional subspace Vh = RT0.
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Truth solver (BEM)

For any fixed µ � P, find uh(µ) � Vh s.t.

a[uh(µ),vh;µ] = f [vh;µ], �vh � Vh

Galerkin approach: we replace the functional space V = H
� 1

2
div (�) by a finite

dimensional subspace Vh = RT0.

Embed the structure of the J elements:

Vh = �J
i=1Vh(�i)

a[·, ·;µ] =
J�

i,j=1

aij[·, ·;µ]

where

Vh(�i) : is the Boundary Element space on the surface �i

aij[·, ·;µ] = a[·, ·;µ]|Vh(�i)�Vh(�j)
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For any fixed µ � P, find uh(µ) � Vh s.t.

a[uh(µ),vh;µ] = f [vh;µ], �vh � Vh

Galerkin approach: we replace the functional space V = H
� 1

2
div (�) by a finite

dimensional subspace Vh = RT0.

Embed the structure of the J elements:

Vh = �J
i=1Vh(�i)

a[·, ·;µ] =
J�

i,j=1

aij[·, ·;µ]

where

Vh(�i) : is the Boundary Element space on the surface �i

aij[·, ·;µ] = a[·, ·;µ]|Vh(�i)�Vh(�j)

Integral equation/BEM:
Double integral

� double sum!
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Generalized Born series

�

����

M11 . . . M1J

M21 . . . M2J

...
...

MJ1 . . . MJJ

�

����

�

����

u1

u2

...
uJ

�

����
=

�

����

f1
f2
...
fJ

�

����

In matrix form:

where Mij corresponds to the sesequilinear form aij[·, ·;µ].
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Generalized Born series

�

����

M11 . . . M1J

M21 . . . M2J

...
...

MJ1 . . . MJJ

�

����

�

����

u1

u2

...
uJ

�

����
=

�

����

f1
f2
...
fJ

�

����

In matrix form:

where Mij corresponds to the sesequilinear form aij[·, ·;µ].

Then, the solution uj is represented in series as

uj =
��

k=1

uj
k

where uj
k solves

Miiui
1 = fi,

Miiui
k = �

�

i �=j

Mijuj
k�1, k > 1.
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Generalized Born series

�

����

M11 . . . M1J

M21 . . . M2J

...
...

MJ1 . . . MJJ

�

����

�

����

u1

u2

...
uJ

�

����
=

�

����

f1
f2
...
fJ

�

����

In matrix form:

where Mij corresponds to the sesequilinear form aij[·, ·;µ].

Then, the solution uj is represented in series as

uj =
��

k=1

uj
k

where uj
k solves

Miiui
1 = fi,

Miiui
k = �

�

i �=j

Mijuj
k�1, k > 1.

One LU-factorization per obstacle.
Easy implementation in parallel.

see book of [P.A. Martin]
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Generalized Born Series - Idea

D1 D2

D3 D4
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Generalized Born Series - Idea

D1 D2

D3 D4

4 independent problems
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Generalized Born Series - Idea

D1 D2

D3 D4

4 independent problems

Interaction of reflected waves
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Generalized Born Series - Idea

D1 D2

D3 D4

4 independent problems

Interaction of reflected waves

Updating
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4 independent problems
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Generalized Born Series - Idea

D1 D2

D3 D4

4 independent problems

Interaction of reflected waves
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Generalized Born Series - Idea

D1 D2

D3 D4

4 independent problems

Interaction of reflected waves

Updating
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Generalized Born Series - Idea

D1 D2

D3 D4

4 independent problems

Interaction of reflected waves

Updating

etc
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Combination of model reduction and 
Generalized Born Series
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General idea
O�ine procedure:

1. Take a reference shape: Assemble a reduced basis VN that represents ac-
curately all solutions for k � [k�, k+], all possible angles and polarizations
for the incident plane wave.
� 5 parameters only.
� The (certified) reduced basis space VN can represent any solution on

a single scatterer for any incident plane wave accurately.
� Details of this step: first part of this talk.

2. Copy this reduced basis on all objects Di and use it as approximation
spaces.

Online procedure:

3. Solve the coupled problem iteratively ”à la Generalized Born series”, but
with the reduced basis space as solution space on each obstacle.
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General idea

D4

Idea: During each iteration, the reflected wave impinging on Di can be ap-
proximated by a linear combination of plane waves. The reduced basis on Di is
trained to be accurate for such cases.

O�ine procedure:

1. Take a reference shape: Assemble a reduced basis VN that represents ac-
curately all solutions for k � [k�, k+], all possible angles and polarizations
for the incident plane wave.
� 5 parameters only.
� The (certified) reduced basis space VN can represent any solution on

a single scatterer for any incident plane wave accurately.
� Details of this step: first part of this talk.

2. Copy this reduced basis on all objects Di and use it as approximation
spaces.

Online procedure:

3. Solve the coupled problem iteratively ”à la Generalized Born series”, but
with the reduced basis space as solution space on each obstacle.
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General idea

D4

Idea: During each iteration, the reflected wave impinging on Di can be ap-
proximated by a linear combination of plane waves. The reduced basis on Di is
trained to be accurate for such cases.

Limitations: Close objects! =� Dipole-like interaction

O�ine procedure:

1. Take a reference shape: Assemble a reduced basis VN that represents ac-
curately all solutions for k � [k�, k+], all possible angles and polarizations
for the incident plane wave.
� 5 parameters only.
� The (certified) reduced basis space VN can represent any solution on

a single scatterer for any incident plane wave accurately.
� Details of this step: first part of this talk.

2. Copy this reduced basis on all objects Di and use it as approximation
spaces.

Online procedure:

3. Solve the coupled problem iteratively ”à la Generalized Born series”, but
with the reduced basis space as solution space on each obstacle.
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General idea

D4

Idea: During each iteration, the reflected wave impinging on Di can be ap-
proximated by a linear combination of plane waves. The reduced basis on Di is
trained to be accurate for such cases.

Remaining discussion:
1. Proper formulation of online part.
2. E�cient implementation (indep. of N = dim(Vh)).
3. Numerical results.

O�ine procedure:

1. Take a reference shape: Assemble a reduced basis VN that represents ac-
curately all solutions for k � [k�, k+], all possible angles and polarizations
for the incident plane wave.
� 5 parameters only.
� The (certified) reduced basis space VN can represent any solution on

a single scatterer for any incident plane wave accurately.
� Details of this step: first part of this talk.

2. Copy this reduced basis on all objects Di and use it as approximation
spaces.

Online procedure:

3. Solve the coupled problem iteratively ”à la Generalized Born series”, but
with the reduced basis space as solution space on each obstacle.
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Integration over reference shape

Goal: State sesquilinear form as integrals over the reference shapes (parameter
indep.).

Here:

Gij
µ (x̂, ŷ) =

eik|Ti(x̂)�Tj(ŷ)|

4⇥|Ti(x̂)� Tj(ŷ)| ,

|Ti(x̂)� Tj(ŷ)| = �i
���x̂� �j

�i
BT
i Bjŷ + 1

�i
BT
i (bi � bj)

��� = �i|x̂� �ijBijŷ + cij|

|Ti(x̂)� Ti(ŷ)| = �i |x̂� ŷ|
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Integration over reference shape

Goal: State sesquilinear form as integrals over the reference shapes (parameter
indep.).

Given the a�ne transformation Ti(x̂) = �iBix̂ + bi, write

aij[u,v;µ]

= ikZ

�

�i(µ)

�

�j(µ)
Gk(x,y)

�
u(y) · v(x)� 1

k2 divyu(y)divxv(x)
�

dy dx

= ikZ�i�j

�

�̂

�

�̂
Gij

µ (x̂, ŷ)
�

Bjû(ŷ) · Biv̂(x̂)� 1
k2�i�j

divŷû(ŷ)divx̂v̂(x̂)
�

dy dx

=: âij[û, v̂;µ]

where û = P̂(u) and v̂ = P̂(v) (Piola transformation).
Here:

Gij
µ (x̂, ŷ) =

eik|Ti(x̂)�Tj(ŷ)|

4⇥|Ti(x̂)� Tj(ŷ)| ,

|Ti(x̂)� Tj(ŷ)| = �i
���x̂� �j

�i
BT
i Bjŷ + 1

�i
BT
i (bi � bj)

��� = �i|x̂� �ijBijŷ + cij|

|Ti(x̂)� Ti(ŷ)| = �i |x̂� ŷ|
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Formulation of Online part
Having previously assembled a reduced basis VN for the reference shape, we re-
strict the solution space to VN .

� VN represents accurately all solutions on the reference shape corresponding
to all wave numbers k � [k�, k+] and incident plane wave of all angles and
polarizations.
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Formulation of Online part
Having previously assembled a reduced basis VN for the reference shape, we re-
strict the solution space to VN .

� VN represents accurately all solutions on the reference shape corresponding
to all wave numbers k � [k�, k+] and incident plane wave of all angles and
polarizations.

Then, solve

Aii
µ ui

1 = fiµ,

Aii
µ ui

k = �
�

i �=j

Aij
µ uj

k�1, k > 1.

The reduced basis approximation uj is then written as uj =
�K

k=1 uj
k.

Thus, assemble the matrices

Aij
µ = âij[·, ·;µ]|VN�VN ,

fjµ = f̂j[·;µ]|VN .
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Formulation of Online part
Having previously assembled a reduced basis VN for the reference shape, we re-
strict the solution space to VN .

� VN represents accurately all solutions on the reference shape corresponding
to all wave numbers k � [k�, k+] and incident plane wave of all angles and
polarizations.

Then, solve

Aii
µ ui

1 = fiµ,

Aii
µ ui

k = �
�

i �=j

Aij
µ uj

k�1, k > 1.

The reduced basis approximation uj is then written as uj =
�K

k=1 uj
k.

Thus, assemble the matrices

Aij
µ = âij[·, ·;µ]|VN�VN ,

fjµ = f̂j[·;µ]|VN .

Remaining task: A�ne decomposition of forms.
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Efficient implementation - Empirical Interpolation 
Method (EIM)

Define the functions on which we apply EIM:

G[x̂, ŷ; �ik, �,B, c] =
ei�ik|x̂��Bŷ+c|

4⇥|x̂� �Bŷ + c| , i ⇤= j

G0[r; �ik] =
ei�ikr

4⇥r
, i = j,

with x̂, ŷ ⇥ �̂ and �ik, � ⇥ R, c ⇥ R3, B ⇥ SO(3).

r = |x̂� ŷ|,
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Efficient implementation - Empirical Interpolation 
Method (EIM)

Define the functions on which we apply EIM:

G[x̂, ŷ; �ik, �,B, c] =
ei�ik|x̂��Bŷ+c|

4⇥|x̂� �Bŷ + c| , i ⇤= j

G0[r; �ik] =
ei�ikr

4⇥r
, i = j,

with x̂, ŷ ⇥ �̂ and �ik, � ⇥ R, c ⇥ R3, B ⇥ SO(3).

r = |x̂� ŷ|,

Denoting µ = (⇥ik, ⇥, c,B) resp. µ = ⇥ik, the EIM provides us {µm}, {µ0
m}

such that

G[x̂, ŷ;µ] �
M�

m=1

�m(µ)G[x̂, ŷ;µm],

G0[r;µ] �
M�

m=1

�0
m(µ)G0[r;µ0

m]
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Efficient implementation - Empirical Interpolation 
Method (EIM)

if i �= j:
� 6-dimensional spatial space ⇥ = �̂� �̂
� 8-dimensional paramater space P.

Define the functions on which we apply EIM:

G[x̂, ŷ; �ik, �,B, c] =
ei�ik|x̂��Bŷ+c|

4⇥|x̂� �Bŷ + c| , i ⇤= j

G0[r; �ik] =
ei�ikr

4⇥r
, i = j,

with x̂, ŷ ⇥ �̂ and �ik, � ⇥ R, c ⇥ R3, B ⇥ SO(3).

r = |x̂� ŷ|,

Denoting µ = (⇥ik, ⇥, c,B) resp. µ = ⇥ik, the EIM provides us {µm}, {µ0
m}

such that

G[x̂, ŷ;µ] �
M�

m=1

�m(µ)G[x̂, ŷ;µm],

G0[r;µ] �
M�

m=1

�0
m(µ)G0[r;µ0

m]
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Efficient implementation - Empirical Interpolation 
Method (EIM)

if i �= j:
� 6-dimensional spatial space ⇥ = �̂� �̂
� 8-dimensional paramater space P.

Define the functions on which we apply EIM:

G[x̂, ŷ; �ik, �,B, c] =
ei�ik|x̂��Bŷ+c|

4⇥|x̂� �Bŷ + c| , i ⇤= j

G0[r; �ik] =
ei�ikr

4⇥r
, i = j,

with x̂, ŷ ⇥ �̂ and �ik, � ⇥ R, c ⇥ R3, B ⇥ SO(3).

r = |x̂� ŷ|,

Simplified: Only translations.

Denoting µ = (⇥ik, ⇥, c,B) resp. µ = ⇥ik, the EIM provides us {µm}, {µ0
m}

such that

G[x̂, ŷ;µ] �
M�

m=1

�m(µ)G[x̂, ŷ;µm],

G0[r;µ] �
M�

m=1

�0
m(µ)G0[r;µ0

m]
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Efficient implementation - Affine decomposition
i = j:

âii[û, v̂;µ] = ikZ�i

�

�̂

�

�̂
G0[r; �ik] û(ŷ) · v̂(x̂) dy dx

� iZ
k

�

�̂

�

�̂
G0[r; �ik] divŷû(ŷ)divx̂v̂(x̂) dy dx

r = |x̂� ŷ|
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Efficient implementation - Affine decomposition

Thus ...

âii[û, v̂;µ] ⇥ ik⇥iZ
M�

m=1

�0
m(µ)

�

�̂

�

�̂
G0[r;µ0

m] ŵ(ŷ) · v̂(x̂) dy dx

� iZ
k�i

M�

m=1

�0
m(µ)

�

�̂

�

�̂
G[r;µ0

m] divŷû(ŷ)divx̂v̂(x̂) dy dx

i = j:

âii[û, v̂;µ] = ikZ�i

�

�̂

�

�̂
G0[r; �ik] û(ŷ) · v̂(x̂) dy dx

� iZ
k

�

�̂

�

�̂
G0[r; �ik] divŷû(ŷ)divx̂v̂(x̂) dy dx

r = |x̂� ŷ|
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Efficient implementation - Affine decomposition

âij[û, v̂;µ] = ikZ�i�j

�

�̂

�

�̂
Gij

µ (x̂, ŷ)Bjû(ŷ) · Biv̂(x̂) dy dx

� iZ
k

�

�̂

�

�̂
Gij

µ (x̂, ŷ)divŷû(ŷ)divx̂v̂(x̂) dy dx

i �= j:
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Efficient implementation - Affine decomposition

Note that:

Bjŵ(ŷ) · Biv̂(x̂) =
3�

l,n=1

ŵ(ŷ)l (BT
j Bi)ln v̂(x̂)n

Gij
µ (x̂, ŷ) = 1

�i
G[x̂, ŷ; �ik, �ij,Bij, cij]

âij[û, v̂;µ] = ikZ�i�j

�

�̂

�

�̂
Gij

µ (x̂, ŷ)Bjû(ŷ) · Biv̂(x̂) dy dx

� iZ
k

�

�̂

�

�̂
Gij

µ (x̂, ŷ)divŷû(ŷ)divx̂v̂(x̂) dy dx

i �= j:
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Efficient implementation - Affine decomposition

Thus ...

Note that:

Bjŵ(ŷ) · Biv̂(x̂) =
3�

l,n=1

ŵ(ŷ)l (BT
j Bi)ln v̂(x̂)n

Gij
µ (x̂, ŷ) = 1

�i
G[x̂, ŷ; �ik, �ij,Bij, cij]

âij[û, v̂;µ] = ikZ�i�j

�

�̂

�

�̂
Gij

µ (x̂, ŷ)Bjû(ŷ) · Biv̂(x̂) dy dx

� iZ
k

�

�̂

�

�̂
Gij

µ (x̂, ŷ)divŷû(ŷ)divx̂v̂(x̂) dy dx

i �= j:
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Efficient implementation - Affine decomposition

Thus ...

Note that:

Bjŵ(ŷ) · Biv̂(x̂) =
3�

l,n=1

ŵ(ŷ)l (BT
j Bi)ln v̂(x̂)n

Gij
µ (x̂, ŷ) = 1

�i
G[x̂, ŷ; �ik, �ij,Bij, cij]

âij[û, v̂;µ] = ikZ�i�j

�

�̂

�

�̂
Gij

µ (x̂, ŷ)Bjû(ŷ) · Biv̂(x̂) dy dx

� iZ
k

�

�̂

�

�̂
Gij

µ (x̂, ŷ)divŷû(ŷ)divx̂v̂(x̂) dy dx

âij[û, v̂;µ] ⇥ ik⇥jZ
M�

m=1

3�

l,n=1

�m(µ)(BT
j Bi)ln

�

�̂

�

�̂
G[x̂, ŷ;µm]ŵ(ŷ)l v̂(x̂)n dy dx

� iZ
k�j

M�

m=1

�m(µ)
�

�̂

�

�̂
G[x̂, ŷ;µm]divŷû(ŷ)divx̂v̂(x̂) dy dx

i �= j:
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Efficient implementation - Affine decomposition

Note, given the interpolation points {µm}M
m=1 from the EIM, and the reduced

basis VN on the reference shape, we can precompute {Am}M
m=1 and {fm}Mf

m=1

We are therefore able to write

Aij
µ =

M�

m=1

�ij
m(µ) Am, and fjµ =

Mf�

m=1

�j
m,f(µ) fm
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Efficient implementation - Affine decomposition

Note, given the interpolation points {µm}M
m=1 from the EIM, and the reduced

basis VN on the reference shape, we can precompute {Am}M
m=1 and {fm}Mf

m=1

Thus: For any new configuration (µ ⇥ P), which is described by

1. the wave number k,
2. the angle and polarization of incident plane wave, and
3. the geometrical configuration of each obstacle 1 � j � J which includes a

rotation, stretch and a translation of the reference shape,

we can solve the coupled problem independently of N = dim(Vh).

We are therefore able to write

Aij
µ =

M�

m=1

�ij
m(µ) Am, and fjµ =

Mf�

m=1

�j
m,f(µ) fm
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Complexity
The computing time (on seq. computer) is dictated by

1. Assembling† matrices Aij
µ : � J2N2M .

2. Solving J N -dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but indep. of N ).

† : Building the sum of matrices
�M

m=1 �ij
m(µ) Aij

m .
‡ : Assembling the matrices, i.e., numerical integration of weakly singular kernel etc.
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Complexity
The computing time (on seq. computer) is dictated by

1. Assembling† matrices Aij
µ : � J2N2M .

2. Solving J N -dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but indep. of N ).

Without reduced basis approach, it would be

1. Assembling‡ matrices Aij
µ : � J2N 2.

2. Solving J N -dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but dep. of N ).

† : Building the sum of matrices
�M

m=1 �ij
m(µ) Aij

m .
‡ : Assembling the matrices, i.e., numerical integration of weakly singular kernel etc.
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Complexity
The computing time (on seq. computer) is dictated by

1. Assembling† matrices Aij
µ : � J2N2M .

2. Solving J N -dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but indep. of N ).

Without reduced basis approach, it would be

1. Assembling‡ matrices Aij
µ : � J2N 2.

2. Solving J N -dimensional dense systems (depending on solver).
3. Computing the RCS (no details, but dep. of N ).

† : Building the sum of matrices
�M

m=1 �ij
m(µ) Aij

m .
‡ : Assembling the matrices, i.e., numerical integration of weakly singular kernel etc.

Comments: Remember that N � N (example of a sphere with k ⇤ [3, 5]: N = 509,
N = 4320):

1. Speed up only if M is moderate: For shape modifications such as stretch and
rotations M is not moderate.
⇥ novel techniques exist and are under development such as hp-EIM etc ...

2. Speed up thanks to N � N
3. No details, but similar comment as in 1.
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Numerical results
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2 Unit spheres - fixed wavenumber

x

y

z

$=I0355 
Lo = kb = I1 048 

6, = m 

kd 

Comparison with [Bruning and Lo]:

Endfire incidence and backscattering
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2 Unit spheres - variable wavenumber
many sources of error

RCS: integral of current 
u_h

Error: Di⇥erence between BEM solution uh(µ) and RB approximation uN (µ) in L2(�)-norm.

Sources of error:
1. Ability of reduced basis space VN to represent the solution space. As closer the

spheres get, as more the interaction is of dipole character. The reduced basis is
however trained to respond for linear combinations of plane waves.

2. Accuracy of EIM and therefore the matrices Aij
µ .

3. Truncation of generalized Born series.

parameter set of all incident angles with ⇥inc = ⇤/2 and 100 samples points distributed
equally for ⌅inc ⇥ [0, ⇤/2] and this includes both the broadside and endfire incidence.

In Figure 2, we give the L2-norm relative error of the reduced basis approximation
wN(µ) with respect to the truth solution wh(µ) depending on the frequency distance
between the two objects, for six online choice of wavenumbers k = 1, 2, 3, 4, 5, 6. Fig-
ure 2 demonstrates low to high-order accuracy of the reduced basis approximation as the
frequency based distance between the moving metallic spheres increases. The correspond-
ing total number of iterations (denoted by L in Section 5.2, with iteration convergence
accuracy tol = 10�8) is presented in Figure 3. The number of iterations decreases alge-
braically as the distance of the two moving spheres increases.

⇤w
N
�

w
h
⇤/

⇤w
h
⇤

kd

(a)
⇤w

N
�
w

h
⇤/

⇤w
h
⇤

kd

(b)

Figure 2: (Example 2.) The relative error of the reduced basis approximation with
respect to the truth solution as a function of the frequency based distance kd between
two moving metallic unit spheres for six online choice of wavenumber.

Example 3. (Two metallic spheres with variable particle size parameters.)
The parameter domain for this simulation includes the shrink parameter (�) interval
[0.5, 1]. The online multiple scattering configuration consists of two spheres that are
shrunken and translated versions of the reference unit sphere, with k = 3, separated by a
fixed physical distance d = 4, and angle of incidence ⇥inc = ⌅inc = 0.

For online iterative reduced basis computation, we choose two arbitrary pair of pa-
rameters, (�1, �2) = (0.865, 0.691) and (�1, �2) = (0.549, 0.982), and compute the RCS
of the resulting configuration for ⌅rcs = 0 and varying ⇥rcs ⇥ [0, �2 ]. In order check
the accuracy of our computation, we also compute the truth RCS using the standard
boundary element method directly for the pair of two particle configurations. Compari-
son between the reduced basis RCS and the truth RCS, illustrated in Figure 4, further
demonstrates the accuracy of our e⇥cient o⇤ine/online iterative reduced basis algorithm.
Next we compute the backscattering (⇥rcs = ⌅rcs = 0) RCS for large number of param-
eters �1, �2 ⇥ [0.5, 1] and plot the RCS as a function of �1, �2 and finally compute the
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2 Unit spheres - variable wavenumber

many sources of error
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Figure 3: (Example 2.) The total number of online multiple scattering iterations a
function of the frequency based distance kd between two moving metallic unit spheres for
six online choice of wavenumber to compute reduced basis approximations.

RCS with varying �1 ⇤ [0.5, 1] and �2 = 1.5 � �1 and plot in the RCS as a function of
⇥rcs ⇤ [0, �2 ] and �1. These results are in Figure 5.

�rcs

R
C
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(a)

�rcs

R
C
S
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Figure 4: (Example 3.) Accuracy of the reduced basis RCS for (�1, �2) = (0.865, 0.691)
(left) and (�1, �2) = (0.549, 0.982) (right).

Example 4. (Metallic spheres with varying wavenumbers and I/O directions.)
Having demonstrated the power of our reduced basis algorithms for two particles config-
urations, we use the some of the reduced basis constructed o⇤ine for the reference unit
sphere in the first three examples to simulate the RCS of a 6⇥6 lattice configuration with
36 metallic spheres, illustrated in Figure 6 (with d = 6), for wavenumbers k ⇤ [1, 5] and
for tens of thousands of incident and observed directions. In Figure 7 we plot the RCS,
with several receivers in the direction ⇥rcs = �

2 , ⌅rcs ⇤ [0, 2⇤] for di�erent wavenumbers
k = 1, 2, 4, 5 and varying incident directions ⌅inc ⇤ [0, 2⇤] (and ⇥inc = �

2 ) of the input
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Lattice of spheres

Sender: � = 0, �
2 , ⇤ = 0

Receiver: �rcs = �
2 , ⇤rcs � [0, 2⇥]
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Figure 7: (Example 4.) The RCS, measured in the directions �rcs =
�
2 , ⇤rcs ⇥ [0, 2⇥], for

a 6� 6-lattice of metallic unit spheres for an incident plane wave of with angles �inc =
�
2 ,

⇤inc ⇥ [0, 2⇥] and di�erent wavenumbers k = 1, 2, 4, 5.
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Figure 8: (Example 4.) The RCS, measured in the directions �rcs = �
2 , ⇤rcs ⇥ [0, 2⇥],

for a 6� 6-lattice of metallic unit spheres for an incident plane wave of angles � = 0 (a)
and � = �

2 (b), ⇤ = 0 and varying wavenumbers k ⇥ [1, 4.972].30
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Figure 7: (Example 4.) The RCS, measured in the directions �rcs =
�
2 , ⇤rcs ⇥ [0, 2⇥], for

a 6� 6-lattice of metallic unit spheres for an incident plane wave of with angles �inc =
�
2 ,

⇤inc ⇥ [0, 2⇥] and di�erent wavenumbers k = 1, 2, 4, 5.

k

6.28⇤rcs0.0
1.0

2.72
2.76

3.84
3.90

4.46
4.52

4.972

(a) � = 0

k

⇤rcs0.0 6.28

1.0

2.72
2.76

3.84
3.90
4.46
4.52
4.972

(b) � = �
2

Figure 8: (Example 4.) The RCS, measured in the directions �rcs = �
2 , ⇤rcs ⇥ [0, 2⇥],

for a 6� 6-lattice of metallic unit spheres for an incident plane wave of angles � = 0 (a)
and � = �

2 (b), ⇤ = 0 and varying wavenumbers k ⇥ [1, 4.972].30
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Figure 16: (Example 7 .) Geometrical setting used to simulate the case of a configuration using two di�erent reference shapes.

⇤rcs

⇤

(a) RCS of the unperturbed configuration in Figure 16(a).

⇤rcs

⇤

(b) RCS of the perturbed configuration in Figure 16(b).

Figure 17: (Example 7 .) The RCS, measured in the directions �rcs = ⇥2 , ⇤rcs ⇥ [0, 2⇥], for a 3�3-lattice of metallic unit spheres and open cavities
for an incident plane wave with angles �inc = ⇥2 , ⇤inc ⇥ [0, 2⇥] and fixed wavenumber k = 3, of the configurations in Figure 16.

7. Concluding remarks

The main goal of this work has been to develop a rigorous and carefully validated approach to the e⇥cient and
accurate simulation of a parameterized multiple particle electromagnetic scattering model. The full model is character-
ized by a large parameter set that describes (i) general scattering configurations comprising a collection of individual
and separated perfectly conducting scatterers, their location, orientation, size, and shape, and number of particles as
well as (ii) the frequency, direction and polarization of the input incident wave impinging on the scatterers and that of
the output radar signature.

We achieved the goal for the full multiple scattering model, for any choice of parameter, in two (o⇥ne and online)
stages. The o⇤ine procedure, based on a standard boundary element method, includes solving a reduced scattering
model only for a few references shapes and the output of the first stage is a relatively small set of selected parameters
and a reduced basis set comprising solutions of the associated reduced model. The online stage, based on the reduced
basis set, facilitates rapid simulation of the full multiple scattering model (for any parameter choice) through an
iterative process that includes e⇥cient construction of individual and interactive scattered fields through the reference
shape reduced basis functions.

A number of both technical and practical challenges had to be addressed to develop an e⇥cient algorithm to
achieve the goal. The numerical results demonstrate both the accuracy and generality of the proposed technique
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Figure 16: (Example 7 .) Geometrical setting used to simulate the case of a configuration using two di�erent reference shapes.
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(a) RCS of the unperturbed configuration in Figure 16(a).
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(b) RCS of the perturbed configuration in Figure 16(b).

Figure 17: (Example 7 .) The RCS, measured in the directions �rcs = ⇥2 , ⇤rcs ⇥ [0, 2⇥], for a 3�3-lattice of metallic unit spheres and open cavities
for an incident plane wave with angles �inc = ⇥2 , ⇤inc ⇥ [0, 2⇥] and fixed wavenumber k = 3, of the configurations in Figure 16.

7. Concluding remarks

The main goal of this work has been to develop a rigorous and carefully validated approach to the e⇥cient and
accurate simulation of a parameterized multiple particle electromagnetic scattering model. The full model is character-
ized by a large parameter set that describes (i) general scattering configurations comprising a collection of individual
and separated perfectly conducting scatterers, their location, orientation, size, and shape, and number of particles as
well as (ii) the frequency, direction and polarization of the input incident wave impinging on the scatterers and that of
the output radar signature.

We achieved the goal for the full multiple scattering model, for any choice of parameter, in two (o⇥ne and online)
stages. The o⇤ine procedure, based on a standard boundary element method, includes solving a reduced scattering
model only for a few references shapes and the output of the first stage is a relatively small set of selected parameters
and a reduced basis set comprising solutions of the associated reduced model. The online stage, based on the reduced
basis set, facilitates rapid simulation of the full multiple scattering model (for any parameter choice) through an
iterative process that includes e⇥cient construction of individual and interactive scattered fields through the reference
shape reduced basis functions.

A number of both technical and practical challenges had to be addressed to develop an e⇥cient algorithm to
achieve the goal. The numerical results demonstrate both the accuracy and generality of the proposed technique
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Conclusions

• RBM was applied to an integral equation � EIM plays an important role.

• Previously, the RBM was designed to get significant speed-up for parametrized
problems. Solving the problem always relied on an established solver (black-box).
Here, we can solve configurations where the black-box solver would fail (memory,
time).
� Similar in spirit to work of Patera, Eftang, etc (“lego”) but no physical interface
condition. Instead communication is through kernel function. In consequence,
heavy use of EIM.
� Use of ROM to solve larger problems, i.e. design new solvers.

• IE are well suited for coupling several RB models.

• Translations only (no stretch, no rotation) simplifies and accelerates the approach.

• Generalization to CFIE straightforward.

• Bottleneck: large number of obstacles (scaling and convergence), low rank-structure
of parametrized interaction
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