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Common Thread

Contact

Friction

Elastoplasticity

Variational Inequalities (VIs)
Elliptic VI of the 1st kind (EVI-1)
Elliptic VI of the 2nd kind (EVI-2)

Parabolic VI (with EVI-1,2)
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RB for Parametrized Vls

Haasdonk, Salomon & Wohimuth (SIAM J Num Anal, 2012)
» Reduced Basis Method (RBM) for EVI-1

Haasdonk, Salomon & Wohlmuth (Num Math & Adv App, 2011)
» RBM for PVI-1

Glas & Urban (preprint, 2013)
» RBM for PVI-1 through space-time formulation
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RB for Parametrized Vls

[HSW12]

» RB approximation and error estimation for EVI-1
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RB for Parametrized Vls

[HSW12]

» RB approximation and error estimation for EVI-1

v

Partial offline/online computational decomposition
Online cost to evaluate error estimates depends on Npg

v

» Numerical results for one-dimensional obstacle problem

Difficulties

» High online cost for more complex 2- or 3-D problems
» Applicable only to EVI-1 (or PVI-1)
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The Plan

EVIs of the 1st kind

» Simple Obstacle Problem

» General Formulation

» Reduced Basis Method [HSW12]
Proposed Methods

» Method D

» Method R

Summary & Perspectives
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Obstacle Problem

Region of no contact

_V2u — f =
u <
Region of contact
—Viu—f >
u =
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Obstacle Problem

Admissible Displacements

K = { v sufficiently smooth | v < g in 2 }
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K = { v sufficiently smooth | v < g in 2 }

Constrained Minimization Statement

1
u = arg lél}f{ / <§VU - Vv — fv) dx
v 9)
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Obstacle Problem

Admissible Displacements

K = { v sufficiently smooth | v < gin Q }
Constrained Minimization Statement

1
u = arg 1ng’{ / <2Vv - Vv — fv) dx
v 9)

Weak Form

/Vu-V(v—u)da: > /f(v—u)dcc, Vv e K
Q Q
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Elliptic Variational Inequality - 1st kind
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Elliptic Variational Inequality - 1st kind

Admissible Set

K a convex subset of V'

Constrained Minimization Statement

1
u=arg inf ca(v,v) — f(v)
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Elliptic Variational Inequality - 1st kind

Admissible Set

K a convex subset of V'

Constrained Minimization Statement
inf a(v,v) — £(0)
u = arg JélK Ea(’u,v v

Weak Form

a(u,v —u) > f(v—u) VveK
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Elliptic Variational Inequality - 1st kind

Admissible Set

K={veV|bv,n) <gmn), VneM}
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Elliptic Variational Inequality - 1st kind

Admissible Set

K={veV|bv,n) <gmn), VneM}

Saddle Point Inequality
a(u,v) + b(v,\) = f(v) VvevV
bu,m—A) < g(n—2A) VneM

where u € V, A € M.
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Elliptic Variational Inequality - 1st kind

KKT Conditions

The solution (u, A) € V' X M satisfies

Au + BT
g — Bu

A

AT(g — Bu)

AV AV |

f
0
0
0

STATIONARITY

PRIMAL FEASIBILITY

DUAL FEASIBILITY

COMPLEMENTARITY
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Elliptic Variational Inequality - 1st kind

Parametrized KKT Conditions

The solution (u, A) € V' X M satisfies

Au+ BTN = f STATIONARITY
g—Bu > 0 PRIMAL FEASIBILITY
A >0 DUAL FEASIBILITY
M(g—Bu) = 0 COMPLEMENTARITY
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Elliptic Variational Inequality - 1st kind

Parametrized KKT Conditions

The solution (u(p), A(r)) € V' X M satisfies

A(p)u(p) + BT (u)A(p) = f(p)  STATIONARITY
g(p) — B(p)u(p) > O PRIMAL FEASIBILITY
A(p) > O DUAL FEASIBILITY
AM(g(p) — B(p)u(p)) = 0 COMPLEMENTARITY
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Reduced Basis Method for EVI-1 [HSW12]

Following [HSW12], we introduce 1<:<N

Wn = span{ A(u;) } A-SNAPSHOTS
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Reduced Basis Method for EVI-1

Following [HSW12], we introduce
Wn = span{ A(us) }

VN = span{ u(p;), TA(us) }
= span{ pj, 1 <j < Ny }

[HSW12]

1<i:<N
A-SNAPSHOTS

U-SNAPSHOTS
+ SUPREMIZERS
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Reduced Basis Method for EVI-1

Following [HSW12], we introduce
Wn = span{ A(u;) }
Vv = span{ u(pi), TA(pi) }
= span{ ¢;, 1 <j < Ny }
My = span,{ A(m) }
= { IZ\S i A (i) | o 20}

=1

[HSW12]

1<i:<N
A-SNAPSHOTS

U-SNAPSHOTS
+ SUPREMIZERS

CONVEX CONE
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Reduced Basis Method for EVI-1

We then define our RB approximations as

Ny,

un(p) = ,glﬂm(ﬂ) Pi
Nx

An(p) = .;Am(u)k(m)

[HSW12]

€ VN

€ Mn
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Reduced Basis Method for EVI-1 [HSW12]

We then define our RB approximations as

Ny,
un(p) = > uni(p) e € VN

=1

Nx
AN(p) = -21 Ani(p) A(pni) € Mn
1=
where uny € Vv and Ay € M satisfy
a(un,v) + b(v,An) = f(v) VveVn
blun,n—An) < g(n—AnN) Vne My
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Reduced Basis Method for EVI-1

The coefficients up (1) € RN« and Ap (1) € RN satisfy

4‘11\r1£1\r + <13]\TQH;54\I
gNn — Bnupy

An

A% (gn — Brnuy)

AV

Vv

fn
0

[HSW12]
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Reduced Basis Method for EVI-1 [HSW12]

The coefficients up (1) € RN« and Ap (1) € RN satisfy

fn
0

4‘11\r1£1\r + <13]\TQH;54\I

Vv

gNn — Bnupy

An

Vv

0

0

A% (gn — Brnuy)

How can we quantify the error ||lu — un||v?
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Reduced Basis Method for EVI-1 [HSW12]

Substituting uy and An into the original problem

TE = .f —Aun — BT}\N EQUALITY RESIDUAL

r1T = Buny-— g “INEQUALITY RESIDUAL”
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Reduced Basis Method for EVI-1 [HSW12]

Substituting uy and An into the original problem

TE = f —Aun — BT}\N EQUALITY RESIDUAL

r1T = Buny-— g “INEQUALITY RESIDUAL”

Following [HSW12], error is indicated by

’I"E;é()

[7‘1]+ = [B UN — g]_|_ component-wise positive part
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Reduced Basis Method for EVI-1 [HSW12]

The RB approximation errors can be bounded by [PROP 4.2]
lu —unllv < As = ca+/cf+e
1
IA=Anllw < Ax = 3 (Irellv: +Ya Aw)

Here, the constants are given by

1 Ya 1 (|lrellv >
= — s+ =4 = — o o
c1 20 <”7'E||V + 3 1> (&) o < 3 1+ 02

01 :=||m(én)llw 02 := (An, m(é1))w
where m : W — M is a (generally nonlinear) projection operator.
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Reduced Basis Method for EVI-1 [HSW12]

For the case W = V’, [HSW12] proposes

m(n) = (M) MYVl

so that

61 = [Bun —gli MY [Bun —g],

02 = A%[BUN—Q]-F
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Reduced Basis Method for EVI-1 [HSW12]

For the case W = V’, [HSW12] proposes

m(n) = (M) MYVl

so that
61 = [Bun — g]f_ MY [Bun — gl
02 = )\% [Bun — 9]+
This requires O(NFE) operations online.
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The Plan

EVIls of the 1st kind

» Simple Obstacle Problem

» General Formulation
» Reduced Basis Method [HSW12]

Proposed Methods
» Method D
» Method R
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Method D

Observation

Recall from [HSW12]

rm=Bun—g [ri]+ = [Bun — gl+

“INEQUALITY RESIDUAL” ERROR INDICATOR
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Method D

Observation

Recall from [HSW12]

rt=Bun—g [r1l+ = [Bun — g]+

“INEQUALITY RESIDUAL” ERROR INDICATOR

Note that —y is in fact an approximation to the slack variable

s:==g—Bu>0
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Method D

Assuming that B is parameter-independent and that B~ exists,

u=DB""(g—s)




Method D

Assuming that B is parameter-independent and that B~ exists,

u=B"'(g—s)

We can introduce, in addition to our primal problem,

Au+BTX = f

g—Bu > 0

A >0

M@g—-Bu) = 0
RWTH Al
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Method D

Assuming that B is parameter-independent and that B~ exists,

u=B"'(g—s)

We can introduce, in addition to our primal problem, a dual problem

Au+ BTN = f As—\x = f
g—Bu > 0 s > 0

A >0 A >0
M(g—Bu) = 0 Ms =0

where A := B TAB™ and f = B_T(AB_lg - f)-
RWTH H!lm
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D is for Dual

Approximation
In addition to the primal RB spaces, we introduce 1 <3< Ny

W, = span{ s(u;) } S-SNAPSHOTS
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D is for Dual

Approximation
In addition to the primal RB spaces, we introduce 1 <3< Ny
W, = span{ s(u;) } S-SNAPSHOTS

and compute our RB approximation for s

an() = S sniw)s(u) € Wh

=1

by solving ...
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D is for Dual

.. for the coefficients sx (p) € RN and A%, (p) € RMA

AN§N—AfV = fn
sy =2 0

2 > 0
AN)Tsy = 0
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D is for Dual

... for the coefficients s (p) € RN and A% (u) € RMA

Ansy — Ay = fn
sy =2 0
2 > 0
AN)Tsy = 0

We now define an intermediate approximation to u
u®N := Bl (g — sN)
and make the following observation ...
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D is for Dual
Note that the condition
gN — Bnun >0
was insufficient to ensure that

g—Bun >0
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D is for Dual
Note that the condition
gN — Bnun >0
was insufficient to ensure that
g—Bun >0

but that
sy 20

suffices to ensure that

SN =g— Bu®N >0

RWTH an
Cle]s]

23/45



D is for Dual

However, u®N is expensive to compute, so we introduce

W = span{W'Bu(u;)} = span{W™'By;}

and compute our final RB approximation w2y from

<Bu?\lfv’n>wl,w = <g_3N7n>WI’W7 VTI € WJ‘%-
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D is for Dual

However, u®N is expensive to compute, so we introduce

W = span{W'Bu(u;)} = span{W™'By;}

and compute our final RB approximation w2y from
(BuN sM iy = (9= SNsM s YN € W3
We then decompose the error into two parts
luw —up'llv < llu— Ny + [[u™N — upF[lv

and show that ...

RWTH E!l!
Clels)

24/45



D is for Dual

...the errors in are bounded by
lu—wuN|ly < Al = e+ Vi +e

r
Jusy —uiply < A2 = M72lw

< Ay 3

1
A" = AR llw < Ax = B(IIHIIV/—I-%A})
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D is for Dual

...the errors in are bounded by

lu—wNlly < AL = a+/dte

T ’
||1LSJV' _ qui?f||‘/ < z}kfi e ||:i!l‘4/
u u 1 1
A" = ARllw < Ax = 3 (Irallv: 4+ va AY)
Here, 1 i 1)\T
Cl :—= —||T ’ Co :— — S
1 20e 1l|lv 2 o N N
re = f— AB'I(g —sN) + BTN
re = g—sny— Buyl
RWTH
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Numerical Results - 1D
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Numerical Results - 1D
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Numerical Results - 1D
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Numerical Results - 1D
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Numerical Results - 1D
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Numerical Results - 1D
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Numerical Results - 1D
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Numerical Results - 1D
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Numerical Results - 2D

2D Obstacle

o obstacle
o displacement
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Numerical Results - 2D

2D Obstacle

o obstacle
o displacement
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Numerical Results - 2D
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Numerical Results - 2D
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Numerical Results - 2D
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Numerical Results - 2D
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Numerical Results - 2D
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Numerical Results - 2D
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Mid-Talk Summary

We developed an online-efficient certified reduced basis method
for elliptic variational inequalities of the first kind.

We introduce a dual problem to enable computation of
sharp and inexpensive a posteriori error bounds.

The online computational cost depends on N, @, but not on Nfg.




Mid-Talk Summary

We developed an online-efficient certified reduced basis method
for elliptic variational inequalities of the first kind.

We introduce a dual problem to enable computation of
sharp and inexpensive a posteriori error bounds.

The online computational cost depends on N, @, but not on Nfg.

However, the method is not applicable to

o problems where B is p-dependent
o EVIs of the second kind

RWTH )
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Coulomb Friction

Equilibrium -0 = 0
Constitutive Law oi; = Cijri€n

. . 1
Strain-Displacement € = (ws,5 + wj)

Boundary Conditions

DISPLACEMENT u; = 0 on T,
APPLIED TRACTION on = g; on Iy
CONTACT o, < 0 on T¢

FRICTION: If |o¢| < vp|oyn| then u, =0

If |ot| =vr|on| then wuy = —Aoy for some A > 0

Clels)
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Coulomb Friction

Variational Formulation
The displacement u € K satisfies
a(u,v —u) + j(u,v) — j(u,u) > f(v —u)

Vv € K
where

i) = /ﬂ vplon(w)|v]

See, e.g., [Han & Reddy, 1999]
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Variational Inequalities

First Kind
1
u=arg inf ca(v,v) — f(v)
where K is a convex subset of V.
Second Kind
. inf 1 )
u=arg inf “a(v,v) +j(v) - f(v)
where the functional j is nondifferentiable.
RWTH
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Method R

We transform the constrained minimization problem (EVI-1)
into an unconstrained minimization problem.
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Method R

We transform the constrained minimization problem (EVI-1)
into an unconstrained minimization problem.

Start with an interior point and replace the constraint
with a barrier function.
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Method R

We transform the constrained minimization problem (EVI-1)
into an unconstrained minimization problem.

Start with an interior point and replace the constraint
with a barrier function.

The barrier causes the objective function to increase without bound
as u approaches the constraint.

See, e.g., [Weiser, SIAM J Optim, 2005]
[Schiela, SIAM J Optim, 2009]
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R is for Regularize
Obstacle Problem

Let the admissible set be given by

K={veV|v<ginQ}
We introduce u,

1
Uy = arggg‘f/ ga(v,v) — f(v) — I//Q log (g — v) d2

v
= a(u,'v)—f(v)—{—l// d =0, VveV
Qg

—Uu
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R is for Regularize

For problems of the form
a(u,v) — £(v) + (h(u),v),,, = 0, VveEV

where h(+; ) is nonlinear, we can approximate h
using the Empirical Interpolation Method:
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R is for Regularize

For problems of the form
a’(uav) - f(v) + (h(u),v)v,’v =0, VveV

where h(+; ) is nonlinear, we can approximate h
using the Empirical Interpolation Method:

(s 0); ) % B (@300) = 32 (&) ()

where
M .
Zl G (Ti)PRrm () = h(u(zis p)spn), 1 <1< M,
m=

x; are interpolation pts, and g, are chosen by a greedy procedure.

RWTH _
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B is for Barrier

The Empirical Interpolation Method provides

o affine approximations to non-affine and/or nonlinear forms

o efficient a posteriori error estimators (in some cases, bounds)

See, e.g., [Barrault, Maday, Nguyen, & Patera, CR Math, 2004],
[Grepl, Maday, Nguyen, & Patera, M2AN, 2007].
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RB Method for Problems in Solid Mechanics

Obstacle problem

o 02 0.4 06 0.8 1
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RB Method for Problems in Solid Mechanics

Obstacle problem

o 02 0.4 06 0.8 1
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Numerical Results - 1D

Barrier Method with EIM+RBM
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Variational Inequalities

First Kind
1
u=arg inf ca(v,v) — f(v)
where K is a convex subset of V.
Second Kind
. inf 1 )
u=arg inf “a(v,v) +j(v) - f(v)
where the functional j is nondifferentiable.
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Summary & Perspectives

» We proposed two online-efficient RB approaches for Vis:
o Primal-Dual Approach
o Regularization Approach

motivated by problems in nonlinear solid mechanics.
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Summary & Perspectives

» We proposed two online-efficient RB approaches for Vis:
o Primal-Dual Approach
o Regularization Approach
motivated by problems in nonlinear solid mechanics.

» We intend to explore:

o extension to Parabolic Vls
o combination with work on finite deformation [with L. Zanon]

o connection to optimal control problems with control and/or
state constraints [with M. Grepl & M. Kaercher]




