Online-Efficient RB Methods for Contact and Other Problems in Nonlinear Solid Mechanics

K. Veroy

Aachen Institute for Advanced Study in Computational Engineering Science

Joint work with Z. Zhang and E. Bader 14–18 April 2014

Motivating Example: Manufacturing

Contact

Friction

Variational Inequalities (VIs)

Contact

Friction

Variational Inequalities (VIs)

Contact

Elliptic VI of the 1st kind (EVI-1)

Friction

Variational Inequalities (VIs)

Contact Elliptic VI of the 1st kind (EVI-1)

Friction Elliptic VI of the 2nd kind (EVI-2)

Variational Inequalities (VIs)

- Contact Elliptic VI of the 1st kind (EVI-1)
- Friction Elliptic VI of the 2nd kind (EVI-2)
- **Elastoplasticity** Parabolic VI (with EVI-1,2)

Haasdonk, Salomon & Wohlmuth (SIAM J Num Anal, 2012)

▶ Reduced Basis Method (RBM) for EVI-1

Haasdonk, Salomon & Wohlmuth (Num Math & Adv App, 2011)

RBM for PVI-1

Glas & Urban (preprint, 2013)

▶ RBM for PVI-1 through space-time formulation

[HSW12]

▶ RB approximation and error estimation for EVI-1

Partial offline/online computational decomposition

- \triangleright Online cost to evaluate error estimates depends on $\mathcal{N}_{ extsf{FE}}$
- Numerical results for one-dimensional obstacle problem

Difficulties

High online cost for more complex 2- or 3-D problems

[HSW12]

- ▶ RB approximation and error estimation for EVI-1
- Partial offline/online computational decomposition
- Online cost to evaluate error estimates depends on $\mathcal{N}_{\mathbf{FE}}$
- Numerical results for one-dimensional obstacle problem

Difficulties

[HSW12]

- ▶ RB approximation and error estimation for EVI-1
- Partial offline/online computational decomposition
- Online cost to evaluate error estimates depends on $\mathcal{N}_{
 m FE}$
- Numerical results for one-dimensional obstacle problem

Difficulties

[HSW12]

- ▶ RB approximation and error estimation for EVI-1
- Partial offline/online computational decomposition
- Online cost to evaluate error estimates depends on $\mathcal{N}_{
 m FE}$
- Numerical results for one-dimensional obstacle problem

Difficulties

[HSW12]

- ▶ RB approximation and error estimation for EVI-1
- Partial offline/online computational decomposition
- \blacktriangleright Online cost to evaluate error estimates depends on $\mathcal{N}_{\rm FE}$
- Numerical results for one-dimensional obstacle problem

Difficulties

[HSW12]

- ▶ RB approximation and error estimation for EVI-1
- Partial offline/online computational decomposition
- \blacktriangleright Online cost to evaluate error estimates depends on $\mathcal{N}_{\rm FE}$
- Numerical results for one-dimensional obstacle problem

Difficulties

High online cost for more complex 2- or 3-D problems

[HSW12]

- ▶ RB approximation and error estimation for EVI-1
- Partial offline/online computational decomposition
- \blacktriangleright Online cost to evaluate error estimates depends on $\mathcal{N}_{\rm FE}$
- Numerical results for one-dimensional obstacle problem

Difficulties

- High online cost for more complex 2- or 3-D problems
- ► Applicable only to EVI-1 (or PVI-1)

The Plan

EVIs of the 1st kind

- Simple Obstacle Problem
- General Formulation
- Reduced Basis Method [HSW12]

Proposed Methods

- Method D
- Method R

Summary & Perspectives

Region of no contact

$$egin{array}{rcl} -
abla^2 u - f &=& 0 \ u &<& g \end{array}$$

Region of contact

$$egin{array}{rcl} -
abla^2 u - f &\geq 0 \ u &= g \end{array}$$

Obstacle Problem

Admissible Displacements

$$K = \{ v \text{ sufficiently smooth } | v \leq g \text{ in } \Omega \}$$

$$u = rg \ \inf_{v \in K} \ \int_\Omega \left(rac{1}{2}
abla v \cdot
abla v - f v
ight) \, dx$$

Weak Form

$$\int_{\Omega}
abla u \cdot
abla (v-u) \, dx \ \geq \ \int_{\Omega} f(v-u) \, dx, \qquad orall v \in K$$

Admissible Displacements

$$K = \{ \ v \ {
m sufficiently \ smooth} \mid v \leq g \ {
m in} \ \Omega \ \}$$

Constrained Minimization Statement

$$u = rg \ \inf_{v \in K} \ \int_\Omega \left(rac{1}{2}
abla v \cdot
abla v - f v
ight) \, dx$$

 $\int_{\Omega}
abla u \cdot
abla (v-u) \, dx \ \geq \ \int_{\Omega} f(v-u) \, dx, \qquad orall \, v \in K$

Admissible Displacements

$$K = \{ \ v \ {
m sufficiently \ smooth} \mid v \leq g \ {
m in} \ \Omega \ \}$$

Constrained Minimization Statement

$$u = rg \ \inf_{v \in K} \ \int_\Omega \left(rac{1}{2}
abla v \cdot
abla v - fv
ight) \, dx$$

Weak Form

$$\int_\Omega
abla u \cdot
abla (v-u) \, dx \; \geq \; \int_\Omega f(v-u) \, dx, \qquad orall \, v \in K$$

Admissible Set

 $oldsymbol{K}$ a convex subset of $oldsymbol{V}$

Constrained Minimization Statement

Weak Form

 $a(u,v-u) \geq f(v-u) \qquad orall \; v \in K$

Admissible Set

 $oldsymbol{K}$ a convex subset of $oldsymbol{V}$

Constrained Minimization Statement

$$u = rg \ \inf_{v \in K} \ rac{1}{2} a(v,v) - f(v)$$

Weak Form

 $a(u,v-u) \geq f(v-u) \qquad orall \; v \in K$

Admissible Set

 \boldsymbol{K} a convex subset of \boldsymbol{V}

Constrained Minimization Statement

$$u = rg \ \inf_{v \in K} \ rac{1}{2} a(v,v) - f(v)$$

Weak Form

$$a(u,v-u) \ge f(v-u) \qquad orall \ v \in K$$

Admissible Set

 $K = \{ \ v \in V \mid b(v,\eta) \leq g(\eta), \ \forall \ \eta \in M \ \}$

Saddle Point Inequality

where $u \in V, \lambda \in M$.

Admissible Set

$$K = \left\{ \; v \in V \mid b(v,\eta) \leq g(\eta), \; orall \; \eta \in M \;
ight\}$$

Saddle Point Inequality

where $u \in V, \lambda \in M$.

KKT Conditions

The solution $(u,\lambda)\in V imes M$ satisfies

$$Au + B^T \lambda = f$$

$$g - Bu \geq 0$$

$$\lambda \geq 0$$

$$\lambda^T(g-Bu) = 0$$

- STATIONARITY
- PRIMAL FEASIBILITY
- DUAL FEASIBILITY
- COMPLEMENTARITY

Parametrized KKT Conditions

The solution $(u,\lambda)\in V imes M$ satisfies

$$Au + B^T \lambda = f$$

$$g - Bu \geq 0$$

$$\lambda \geq 0$$

$$\lambda^T(g-Bu) = 0$$

PRIMAL FEASIBILITY

STATIONARITY

- DUAL FEASIBILITY
- COMPLEMENTARITY

Parametrized KKT Conditions

The solution $(u(\mu),\lambda(\mu))\in V imes M$ satisfies

- $A(\mu)u(\mu)+B^T(\mu)\lambda(\mu) = f(\mu)$ stationarity
 - $g(\mu)-B(\mu)u(\mu) ~\geq~ 0$ primal feasibility
 - $\lambda(\mu) ~\geq~ 0$ DUAL FEASIBILITY
 - $\lambda^T(g(\mu)-B(\mu)u(\mu)) ~=~ 0$

Parametrized KKT Conditions

The solution $(u,\lambda)\in V imes M$ satisfies

$$Au + B^T \lambda = f$$

$$g - Bu \geq 0$$

$$\lambda \geq 0$$

$$\lambda^T(g-Bu) = 0$$

PRIMAL FEASIBILITY

STATIONARITY

- DUAL FEASIBILITY
- COMPLEMENTARITY

Parametrized KKT Conditions

The solution $(u,\lambda)\in V imes M$ satisfies

$$Au + \mathbf{B}^T \lambda = f$$

$$g - Bu \geq 0$$

$$\lambda \geq 0$$

$$\lambda^T(g-{B u}) = 0$$

STATIONARITY

- PRIMAL FEASIBILITY
- DUAL FEASIBILITY
- COMPLEMENTARITY

Following [HSW12], we introduce

 $1 \leq i \leq N$

 $W_N = \operatorname{span} \{ \lambda(\mu_i) \}$

 λ -snapshots

Following [HSW12], we introduce

 $W_N = \operatorname{span} \{ \lambda(\mu_i) \}$

 $1 \leq i \leq N$

 λ -snapshots

 $V_N = \operatorname{span} \{ u(\mu_i), T\lambda(\mu_i) \}$

 $= \quad \mathrm{span} \{ \; \varphi_j, \; 1 \leq j \leq N_u \; \}$

u-snapshots

+ SUPREMIZERS

Following [HSW12], we introduce

 $W_N = \operatorname{span} \{ \lambda(\mu_i) \}$

 $1 \leq i \leq N$

 λ -snapshots

u-SNAPSHOTS

+ SUPREMIZERS

$$egin{array}{rcl} M_N &=& ext{span}_+ \set{\lambda(\mu_i)} \ &=& \Big\{ egin{array}{c} \sum\limits_{i=1}^N lpha_i \lambda(\mu_i) \,|\, lpha_i \geq 0 \ \Big\} \end{array}$$

= span{ $\varphi_i, 1 \leq j \leq N_u$ }

 $V_N = \text{span}\{ u(\mu_i), T\lambda(\mu_i) \}$

CONVEX CONE

We then define our RB approximations as

$$egin{array}{rcl} u_N(\mu) &=& \sum\limits_{i=1}^{N_u} {\underline u}_{Ni}(\mu) \, arphi_i & \in V_N \ \lambda_N(\mu) &=& \sum\limits_{i=1}^{N_\lambda} {\underline \lambda}_{Ni}(\mu) \, \lambda(\mu_i) & \in M_N \end{array}$$

where $u_{oldsymbol{N}}\in V_{oldsymbol{N}}$ and $\lambda_{oldsymbol{N}}\in M_{oldsymbol{N}}$ satisfy

 $egin{array}{rcl} m{a}(m{u}_N,m{v})+m{b}(m{v},\lambda_N)&=&f(m{v})&&orall\,m{v}\in V_N\ &&b(m{u}_N,\eta-\lambda_N)&\leq&g(\eta-\lambda_N)&&orall\,m{v}\in M_N \end{array}$

We then define our RB approximations as

$$egin{array}{rcl} u_N(\mu) &=& \sum\limits_{i=1}^{N_u} {\underline{u}}_{Ni}(\mu) \, arphi_i & \in V_N \ \lambda_N(\mu) &=& \sum\limits_{i=1}^{N_\lambda} {\underline{\lambda}}_{Ni}(\mu) \, \lambda(\mu_i) & \in M_N \end{array}$$

where $u_N \in V_N$ and $\lambda_N \in M_N$ satisfy

 $egin{array}{rcl} a(u_N,v)+b(v,\lambda_N)&=&f(v)&&orall\,v\in V_N\ &&b(u_N,\eta-\lambda_N)&\leq&g(\eta-\lambda_N)&&orall\,\eta\in M_N \end{array}$

The coefficients $\underline{u}_N(\mu)\in\mathbb{R}^{N_u}$ and $\underline{\lambda}_N(\mu)\in\mathbb{R}^{N_\lambda}$ satisfy

$$egin{array}{rcl} A_N ar{u}_N + egin{array}{rcl} B_N^T ar{\lambda}_N &=& f_N \ g_N - eta_N ar{u}_N &\geq& 0 \ & ar{\lambda}_N &\geq& 0 \ & ar{\lambda}_N &\geq& 0 \ & ar{\lambda}_N^T (g_N - eta_N ar{u}_N) &=& 0 \end{array}$$

How can we quantify the error $\|u - u_N\|_V$?

[HSW12]

The coefficients $\underline{u}_N(\mu)\in\mathbb{R}^{N_u}$ and $\underline{\lambda}_N(\mu)\in\mathbb{R}^{N_\lambda}$ satisfy

How can we quantify the error $||u - u_N||_V$?

[HSW12]

[HSW12]

Substituting u_N and λ_N into the original problem

$$r_{
m E} ~=~ f - A\,u_N - B^T\lambda_N$$
 equality residual $r_{
m I} ~=~ B\,u_N - g$ "inequality residual"

Following [HSW12], error is indicated by

 $[r_1]_+ = [B u_N - g]_+$

component-wise positive part

[HSW12]

Substituting u_N and λ_N into the original problem

$$egin{array}{r_{
m E}} &=& f-A\,u_N-B^T\lambda_N & {
m equality residual} \ r_{
m I} &=& B\,u_N-g & {
m ``inequality residual''} \end{array}$$

Following [HSW12], error is indicated by

$$r_{
m E} \
eq 0$$

 $[r_{
m I}]_+ \ = \ [B \, u_N - g]_+$ component-wise positive part

Reduced Basis Method for EVI-1

The RB approximation errors can be bounded by

$$egin{array}{rcl} \|u-u_N\|_V&\leq&\Delta_u&:=&c_1+\sqrt{c_1^2+c_2}\ \|\lambda-\lambda_N\|_W&\leq&\Delta_\lambda&:=&rac{1}{eta}\left(\|r_{
m E}\|_{V'}+\gamma_a\,\Delta_u
ight) \end{array}$$

Here, the constants are given by

$$egin{aligned} c_1 &:= rac{1}{2lpha} \left(\|r_{\mathrm{E}}\|_{V'} + rac{\gamma_a}{eta} \delta_1
ight) \qquad c_2 &:= rac{1}{lpha} \left(rac{\|r_{\mathrm{E}}\|_{V'}}{eta} \delta_1 + \delta_2
ight) \ \delta_1 &:= \|\pi(\hat{e}_{\mathrm{I}})\|_W \qquad \delta_2 &:= \langle \lambda_N, \pi(\hat{e}_{\mathrm{I}})
angle_W \end{aligned}$$

where $\pi:W
ightarrow M$ is a (generally nonlinear) projection operator.

[HSW12]

[PROP 4.2]

For the case W = V', [HSW12] proposes

$$\underline{\pi}(\underline{\eta}) = (\underline{M}^W)^{-1} [\underline{M}^W \underline{\eta}]_+$$

so that

$$egin{array}{rcl} \delta_1 &=& \left[Bu_N-g
ight]_+^T M^V \left[Bu_N-g
ight]_+ \ \delta_2 &=& \lambda_N^T \left[Bu_N-g
ight]_+ \end{array}$$

For the case W = V', [HSW12] proposes

$$\underline{\pi}(\underline{\eta}) = (\underline{M}^{W})^{-1} [\underline{M}^{W} \underline{\eta}]_{+}$$

so that

$$\begin{array}{lll} \delta_{1} & = & \left[Bu_{N}-g\right]_{+}^{T}M^{V}\left[Bu_{N}-g\right]_{+} \\ \\ \delta_{2} & = & \lambda_{N}^{T}\left[Bu_{N}-g\right]_{+} \end{array}$$

This requires $O(\mathcal{N}_{FE})$ operations online.

For the case W = V', [HSW12] proposes

$$\underline{\pi}(\underline{\eta}) = (\underline{M}^{W})^{-1} [\underline{M}^{W} \underline{\eta}]_{+}$$

so that

This requires $O(\mathcal{N}_{FE})$ operations online.

The Plan

EVIs of the 1st kind

- Simple Obstacle Problem
- ► General Formulation
- ▶ Reduced Basis Method [HSW12]

Proposed Methods

- Method D
- Method R

Summary & Perspectives

Observation

Recall from [HSW12]

$$r_{\mathrm{I}} = B \, u_N - g$$

$$[r_\mathrm{I}]_+ = [B\,u_N - g]_+$$

"INEQUALITY RESIDUAL"

ERROR INDICATOR

ъ

Г. 1

Observation

Recall from [HSW12]

 $r_{
m I} = B\,u_N - g \qquad [r_{
m I}]_+ = [B\,u_N - g]_+$ "Inequality residual" error indicator

Note that $-r_{\mathrm{I}}$ is in fact an approximation to the slack variable

$$s:=g-B\,u\geq 0$$

Assuming that B is parameter-independent and that B^{-1} exists,

$$u = \mathbf{B}^{-1}(g - s)$$

Assuming that B is parameter-independent and that B^{-1} exists,

$$u = \mathbf{B}^{-1}(g - s)$$

We can introduce, in addition to our primal problem,

$$egin{array}{rcl} Au+B^T\lambda&=&f\ g-Bu&\geq&0\ \lambda&\geq&0\ \lambda&\geq&0\ \lambda^T(g-Bu)&=&0 \end{array}$$

Assuming that B is parameter-independent and that B^{-1} exists,

$$u = \mathbf{B}^{-1}(g - s)$$

We can introduce, in addition to our primal problem, a **dual** problem

where $\tilde{A} := B^{-T}AB^{-1}$ and $\tilde{f} := B^{-T}(AB^{-1}g - f)$.

Approximation

In addition to the primal RB spaces, we introduce $1 \leq i \leq N_\lambda$ $W'_N = ext{span} \{ \ s(\mu_i) \ \}$ s-SNAPSHOTS

and compute our RB approximation for s

 $s_N(\mu) \;\;=\;\; \sum_{i=1}^{N_u} {s_{Ni}(\mu) \, s(\mu_i)} \;\;\in W'_N$

by solving ...

Approximation

In addition to the primal RB spaces, we introduce $1 \le i \le N_\lambda$ $W'_N = ext{span} \{ s(\mu_i) \}$ s-SNAPSHOTS

and compute our RB approximation for \boldsymbol{s}

$$s_N(\mu) \hspace{.1in} = \hspace{.1in} \sum\limits_{i=1}^{N_u} \underline{s}_{Ni}(\mu) \hspace{.1in} s(\mu_i) \hspace{.1in} \in W'_N$$

by solving ...

. . . for the coefficients $\underline{s}_N(\mu)\in\mathbb{R}^{N_s}$ and $\underline{\lambda}_N^s(\mu)\in\mathbb{R}^{N_\lambda}$

$$egin{array}{rcl} ilde{A}_N & \underline{s}_N - \underline{\lambda}_N^s & = & ilde{f}_N \ & & \underline{s}_N & \geq & 0 \ & & \underline{\lambda}_N^s & \geq & 0 \ & & & (\underline{\lambda}_N^s)^T \underline{s}_N & = & 0 \end{array}$$

We now define an intermediate approximation to $oldsymbol{u}$

$$u^{s_N}:=B^{\text{-}1}(g-s_N)$$

and make the following observation ...

. . . for the coefficients $\underline{s}_N(\mu)\in\mathbb{R}^{N_s}$ and $\underline{\lambda}_N^s(\mu)\in\mathbb{R}^{N_\lambda}$

$$egin{array}{rcl} ilde{A}_N & \underline{s}_N - \underline{\lambda}_N^s & = & ilde{f}_N \ & \underline{s}_N & \geq & 0 \ & \underline{\lambda}_N^s & \geq & 0 \ & (\underline{\lambda}_N^s)^T \underline{s}_N & = & 0 \end{array}$$

We now define an intermediate approximation to \boldsymbol{u}

$$u^{s_N} := B^{\text{-}1}(g - s_N)$$

and make the following observation

Note that the condition

$$g_N - B_N \underline{u}_N \ge 0$$

was insufficient to ensure that

$$g - Bu_N \geq 0$$

but that

 $s_N = g - B u^{s_N} \ge 0$

Note that the condition

$$g_N - B_N \underline{u}_N \ge 0$$

was insufficient to ensure that

$$g - Bu_N \ge 0$$

but that

$$\underline{s}_N \geq 0$$

suffices to ensure that

$$s_N = g - Bu^{s_N} \ge 0$$

However, u^{s_N} is expensive to compute, so we introduce

$$W^s_N \ = \ {
m span}\{W^{-1}{}^{m B}\, u(\mu_i)\} \ = \ {
m span}\{W^{-1}{}^{m B}\, arphi_i\}$$

and compute our final RB approximation $u_N^{s_N}$ from

$$egin{array}{lll} \left\langle Bu_{N}^{s_{N}},\eta
ight
angle _{W^{\prime},W} &= \left\langle g-s_{N},\eta
ight
angle _{W^{\prime},W}, & orall \eta \ \in \ W_{N}^{s}. \end{array}$$

We then decompose the error into two parts

 $\|u-u_N^{s_N}\|_V \le \|u-u^{s_N}\|_V + \|u^{s_N}-u_N^{s_N}\|_V$

and show that .

However, u^{s_N} is expensive to compute, so we introduce

$$W^s_N \ = \ {
m span}\{W^{-1}{}^{m B}\, u(\mu_i)\} \ = \ {
m span}\{W^{-1}{}^{m B}\, arphi_i\}$$

and compute our final RB approximation $u_N^{s_N}$ from

$$ig\langle Bu_{N}^{s_{N}},\eta ig
angle_{W',W} \;=\; ig\langle g-s_{N},\eta ig
angle_{W',W}, \qquad orall \eta \;\in\; W_{N}^{s}.$$

We then decompose the error into two parts

$$\|u-u_N^{s_N}\|_V \le \|u-u^{s_N}\|_V + \|u^{s_N}-u_N^{s_N}\|_V$$

and show that ...

... the errors in are bounded by

$$egin{array}{rcl} \|u-u^{s_N}\|_V&\leq&\Delta^1_u&:=&c_1+\sqrt{c_1^2+c_2}\ \|u^{s_N}-u^{s_N}_N\|_V&\leq&\Delta^2_u&:=&rac{\|r_2\|_{W'}}{eta}\ \|\lambda^u-\lambda^u_N\|_W&\leq&\Delta_\lambda&:=&rac{1}{eta}\left(\|r_1\|_{V'}+\gamma_a\,\Delta^1_u
ight) \end{array}$$

25/45

... the errors in are bounded by

$$egin{array}{rcl} \|u-u^{s_N}\|_V&\leq&\Delta^1_u&:=&c_1+\sqrt{c_1^2+c_2}\ \|u^{s_N}-u^{s_N}_N\|_V&\leq&\Delta^2_u&:=&rac{\|r_2\|_{W'}}{eta}\ \|\lambda^u-\lambda^u_N\|_W&\leq&\Delta_\lambda&:=&rac{1}{eta}\left(\|r_1\|_{V'}+\gamma_a\,\Delta^1_u
ight) \end{array}$$

Here,

$$c_{1} := \frac{1}{2\alpha} \|r_{1}\|_{V'} \qquad c_{2} := \frac{1}{\alpha} \lambda_{N}^{T} s_{N}$$
$$r_{1} := f - AB^{-1}(g - s_{N}) + B^{T} \lambda_{N}$$
$$r_{2} := g - s_{N} - B u_{N}^{s_{N}}$$

26/45

RMTHA

A I C C S 27/45

27/45

RM

30/45

RMT

A I Ces

31/45

A I Ces
Numerical Results - 2D

RM

Numerical Results - 2D

Numerical Results - 2D

We developed an **online-efficient certified** reduced basis method for elliptic variational inequalities of the first kind.

We introduce a **dual problem** to enable computation of **sharp** and **inexpensive** *a posteriori* error bounds.

The online computational cost depends on N, Q, but not on $\mathcal{N}_{\mathrm{FE}}$.

However, the method is not applicable to

 \circ problems where $oldsymbol{B}$ is $oldsymbol{\mu}$ -dependent

o EVIs of the second kind

We developed an **online-efficient certified** reduced basis method for elliptic variational inequalities of the first kind.

We introduce a **dual problem** to enable computation of **sharp** and **inexpensive** *a posteriori* error bounds.

The online computational cost depends on N, Q, but not on $\mathcal{N}_{\mathrm{FE}}$.

However, the method is not applicable to

- \circ problems where B is μ -dependent
- EVIs of the second kind

Coulomb Friction

Equilibrium	$-\sigma_{ij,j}$	=	0		
Constitutive Law	σ_{ij}	=	$C_{ijkl}arepsilon_{kl}$		
Strain-Displacement	$arepsilon_{ij}$	=	$rac{1}{2}$	$(u_{i,j}$	$+ u_{j,i})$
Boundary Conditions					
DISPLACEMENT	u_i	=	0	on	Γ_u
APPLIED TRACTION	σ_n	=	g_i	on	Γ_g
CONTACT	σ_n	<	0	on	Γ_C
FRICTION: If $ \sigma_t <$ If $ \sigma_t =$	$ u_F \sigma_n u_F \sigma_n $	the the	n a n a	$u_t = u_t =$	$0 \ -\lambda \sigma_t$ for some $\lambda > 0$

Variational Formulation

The displacement $u \in K$ satisfies

$$a(u,v-u)+oldsymbol{j}(u,v)-oldsymbol{j}(u,u)\geq f(v-u)$$
 $orall v\in K$

where

$$j(u,v) = \int_{\Omega}
u_F |\sigma_n(u)| |v_t|$$

See, e.g., [Han & Reddy, 1999]

Variational Inequalities

First Kind

$$u = \arg \inf_{v \in K} \frac{1}{2} a(v,v) - f(v)$$

where K is a convex subset of V.

Second Kind

$$u = \arg \inf_{v \in V} \frac{1}{2} a(v,v) + j(v) - f(v)$$

where the functional \boldsymbol{j} is nondifferentiable.

Method R

We transform the **constrained** minimization problem (EVI-1) into an **unconstrained** minimization problem.

Start with an **interior point** and replace the constraint with a **barrier function**.

The barrier causes the objective function to increase without bound as *u* approaches the constraint.

See, e.g., [Weiser, SIAM J Optim, 2005] [Schiela, SIAM J Optim, 2009]

Method R

We transform the **constrained** minimization problem (EVI-1) into an **unconstrained** minimization problem.

Start with an **interior point** and replace the constraint with a **barrier function**.

The barrier causes the objective function to increase without bound as u approaches the constraint.

See, e.g., [Weiser, SIAM J Optim, 2005] [Schiela, SIAM J Optim, 2009]

38/45

Method R

We transform the **constrained** minimization problem (EVI-1) into an **unconstrained** minimization problem.

Start with an **interior point** and replace the constraint with a **barrier function**.

The barrier causes the objective function to increase without bound as \boldsymbol{u} approaches the constraint.

See, e.g., [Weiser, SIAM J Optim, 2005] [Schiela, SIAM J Optim, 2009]

Obstacle Problem

Let the admissible set be given by

$$K = \{ \; v \in V \mid v \leq g \; ext{in} \; \Omega \; \}$$

We introduce $u_{
u}$

$$u_
u = rg \inf_{v \in V} rac{1}{2} a(v,v) - f(v) -
u \int_\Omega \log \left(g - v
ight) \, d\Omega$$

$$\Rightarrow \quad a(u,v) - f(v) +
u \int_\Omega rac{v}{g-u} \, d\Omega \; = \; 0, \quad orall \; v \in V$$

R is for Regularize

For problems of the form

$$a(u,v)-f(v)+\left\langle h(u),v
ight
angle _{V',V}\ =\ 0,\ \ orall\ v\in V$$

where $h(\cdot; \mu)$ is nonlinear, we can approximate h using the Empirical Interpolation Method:

$$h(u(x;\mu);\mu) \approx h_{M}^{u}(x;\mu) = \sum_{m=1}^{\infty} g_{m}(x)\varphi_{Mm}^{u}(\mu)$$
where
$$\sum_{m=1}^{M} g_{m}(x_{i})\varphi_{Mm}^{u}(\mu) = h(u(x_{i};\mu);\mu), \quad 1 \leq i \leq M,$$
we are interpolation pts, and g_{m} are chosen by a greedy procedure

R is for Regularize

For problems of the form

$$a(u,v)-f(v)+ig\langle h(u),v
angle_{V',V} \ = \ 0, \ \ orall \ v \in V$$

where $h(\cdot; \mu)$ is nonlinear, we can approximate h using the Empirical Interpolation Method:

$$h(u(x;\mu);\mu)pprox h^u_M(x;\mu)=\sum\limits_{m=1}^M q_m(x)arphi^u_{Mm}(\mu)$$

where

$$\sum\limits_{m=1}^M q_m(x_i) arphi_{Mm}^u(\mu) = h(u(x_i;\mu);\mu), \quad 1 \leq i \leq M,$$

 x_i are interpolation pts, and q_m are chosen by a greedy procedure.

The Empirical Interpolation Method provides

- o affine approximations to non-affine and/or nonlinear forms
- o efficient a posteriori error estimators (in some cases, bounds)

See, e.g., [Barrault, Maday, Nguyen, & Patera, CR Math, 2004], [Grepl, Maday, Nguyen, & Patera, M2AN, 2007].

RB Method for Problems in Solid Mechanics

RB Method for Problems in Solid Mechanics

42/45

Numerical Results - 1D

43/45

Variational Inequalities

First Kind

$$u = \arg \inf_{v \in K} \frac{1}{2} a(v,v) - f(v)$$

where K is a convex subset of V.

Second Kind

$$u = \arg \inf_{v \in V} \frac{1}{2} a(v,v) + j(v) - f(v)$$

where the functional \boldsymbol{j} is nondifferentiable.

Summary & Perspectives

▶ We proposed two **online-efficient** RB approaches for VIs:

- Primal-Dual Approach
- Regularization Approach

motivated by problems in nonlinear solid mechanics.

- We intend to explore
 - o extension to Parabolic VIs
 - o combination with work on finite deformation [with L. Zanon]
 - connection to optimal control problems with control and/or state constraints [with M. Grepl & M. Kaercher]

Summary & Perspectives

▶ We proposed two **online-efficient** RB approaches for VIs:

- Primal-Dual Approach
- Regularization Approach

motivated by problems in nonlinear solid mechanics.

- We intend to explore:
 - o extension to Parabolic VIs
 - o combination with work on finite deformation [with L. Zanon]
 - connection to optimal control problems with control and/or state constraints [with M. Grepl & M. Kaercher]

