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AICES Progress since 2009

• Overview of the AICES project

• New Principal Investigators

• New Young Researchers

• New facilities

• Recent highlights

• Goals and schedule of Advisory Board meeting
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• Excellence Initiative Graduate School

• First period Nov 2006–Oct 2012

• Annually 1 M! + overhead 

• Proposed for 2013–2017

• Funded personnel growth:

Overview of the AICES Project
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• Computational engineering science is maturing

• “Old” challenges are still here:
• complexity increasing intricacy of analyzed systems
• multiscale interacting scales considered at once
• multiphysics interacting physical phenomena

• AICES concentrates on areas of synthesis:
• model identification and discovery supported by

model-based experimental analysis (MEXA)
• understanding scale interaction and scale integration
• optimal design and operation of engineered systems

• Inspiration: Collaborative Research Center 540
• established in 1999, continued until 2009
• Marquardt: coordinator, 6 AICES PIs: project leads

Overview of AICES Academic Aims
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Motivating Example: Manufacturing
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Common Thread

Variational Inequalities (VIs)

Contact

Elliptic VI of the 1st kind (EVI-1)

Friction

Elliptic VI of the 2nd kind (EVI-2)

Elastoplasticity

Parabolic VI (with EVI-1,2)
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RB for Parametrized VIs

Haasdonk, Salomon & Wohlmuth (SIAM J Num Anal, 2012)

I Reduced Basis Method (RBM) for EVI-1

Haasdonk, Salomon & Wohlmuth (Num Math & Adv App, 2011)

I RBM for PVI-1

Glas & Urban (preprint, 2013)

I RBM for PVI-1 through space-time formulation
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RB for Parametrized VIs

[HSW12]

I RB approximation and error estimation for EVI-1

I Partial offline/online computational decomposition

I Online cost to evaluate error estimates depends on NFE

I Numerical results for one-dimensional obstacle problem

Difficulties

I High online cost for more complex 2- or 3-D problems

I Applicable only to EVI-1 (or PVI-1)
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The Plan

EVIs of the 1st kind

I Simple Obstacle Problem

I General Formulation

I Reduced Basis Method [HSW12]

Proposed Methods

I Method D

I Method R

Summary & Perspectives
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Obstacle Problem

Region of no contact

−∇2u− f = 0

u < g

Region of contact

−∇2u− f ≥ 0

u = g
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Obstacle Problem

Admissible Displacements

K = { v sufficiently smooth | v ≤ g in Ω }

Constrained Minimization Statement

u = arg inf
v∈K

∫
Ω

(
1

2
∇v · ∇v − fv

)
dx

Weak Form∫
Ω
∇u · ∇(v − u) dx ≥

∫
Ω
f(v − u) dx, ∀ v ∈ K
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Elliptic Variational Inequality - 1st kind

Admissible Set

K a convex subset of V

Constrained Minimization Statement

u = arg inf
v∈K

1

2
a(v, v)− f(v)

Weak Form

a(u, v − u) ≥ f(v − u) ∀ v ∈ K
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Elliptic Variational Inequality - 1st kind

Admissible Set

K = { v ∈ V | b(v, η) ≤ g(η), ∀ η ∈M }

Saddle Point Inequality

a(u, v) + b(v, λ) = f(v) ∀ v ∈ V

b(u, η − λ) ≤ g(η − λ) ∀ η ∈M

where u ∈ V, λ ∈M.
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Elliptic Variational Inequality - 1st kind

KKT Conditions

The solution (u, λ) ∈ V ×M satisfies

Au+BTλ = f STATIONARITY

g −Bu ≥ 0 PRIMAL FEASIBILITY

λ ≥ 0 DUAL FEASIBILITY

λT (g −Bu) = 0 COMPLEMENTARITY
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Elliptic Variational Inequality - 1st kind

Parametrized KKT Conditions

The solution (u(µ), λ(µ)) ∈ V ×M satisfies

A(µ)u(µ) +BT (µ)λ(µ) = f(µ) STATIONARITY

g(µ)−B(µ)u(µ) ≥ 0 PRIMAL FEASIBILITY

λ(µ) ≥ 0 DUAL FEASIBILITY

λT (g(µ)−B(µ)u(µ)) = 0 COMPLEMENTARITY
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Reduced Basis Method for EVI-1 [HSW12]

Following [HSW12], we introduce 1 ≤ i ≤ N

WN = span{ λ(µi) } λ-SNAPSHOTS

VN = span{ u(µi), Tλ(µi) } u-SNAPSHOTS

+ SUPREMIZERS
= span{ ϕj, 1 ≤ j ≤ Nu }

MN = span+{ λ(µi) } CONVEX CONE

=
{ N∑

i=1

αiλ(µi) |αi ≥ 0
}
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Reduced Basis Method for EVI-1 [HSW12]

We then define our RB approximations as

uN(µ) =
Nu∑
i=1

uNi(µ)ϕi ∈ VN

λN(µ) =
Nλ∑
i=1

λNi(µ)λ(µi) ∈MN

where uN ∈ VN and λN ∈MN satisfy

a(uN , v) + b(v, λN) = f(v) ∀ v ∈ VN

b(uN , η − λN) ≤ g(η − λN) ∀ η ∈MN
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Reduced Basis Method for EVI-1 [HSW12]

The coefficients uN(µ) ∈ RNu and λN(µ) ∈ RNλ satisfy

ANuN +BN
TλN = fN

gN −BNuN ≥ 0

λN ≥ 0

λTN(gN −BNuN) = 0

How can we quantify the error ‖u− uN‖V ?
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Reduced Basis Method for EVI-1 [HSW12]

Substituting uN and λN into the original problem

rE = f −AuN −BTλN EQUALITY RESIDUAL

rI = B uN − g “INEQUALITY RESIDUAL”

Following [HSW12], error is indicated by

rE 6= 0

[rI]+ = [B uN − g]+ component-wise positive part
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Reduced Basis Method for EVI-1 [HSW12]

The RB approximation errors can be bounded by [PROP 4.2]

‖u− uN‖V ≤ ∆u := c1 +
√
c21 + c2

‖λ− λN‖W ≤ ∆λ :=
1

β
(‖rE‖V ′ + γa ∆u)

Here, the constants are given by

c1 :=
1

2α

(
‖rE‖V ′ +

γa

β
δ1

)
c2 :=

1

α

(‖rE‖V ′

β
δ1 + δ2

)

δ1 := ‖π(êI)‖W δ2 := 〈λN , π(êI)〉W

where π : W →M is a (generally nonlinear) projection operator.
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Reduced Basis Method for EVI-1 [HSW12]

For the case W = V ′, [HSW12] proposes

π(η) = (MW )−1[MWη]+

so that

δ1 = [BuN − g]T+M
V [BuN − g]+

δ2 = λTN [BuN − g]+

This requires O(NFE) operations online.
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Method D

Observation

Recall from [HSW12]

rI = B uN − g [rI]+ = [B uN − g]+
“INEQUALITY RESIDUAL” ERROR INDICATOR

Note that −rI is in fact an approximation to the slack variable

s := g −B u ≥ 0

19/45



Method D

Observation

Recall from [HSW12]

rI = B uN − g [rI]+ = [B uN − g]+
“INEQUALITY RESIDUAL” ERROR INDICATOR

Note that −rI is in fact an approximation to the slack variable

s := g −B u ≥ 0

19/45



Method D

Assuming that B is parameter-independent and that B−1 exists,

u = B−1(g − s)

We can introduce, in addition to our primal problem, a dual problem

Au+BTλ = f

g −Bu ≥ 0

λ ≥ 0

λT (g −Bu) = 0

Ãs− λ = f̃

s ≥ 0

λ ≥ 0

λT s = 0

where Ã := B-TAB-1 and f̃ := B-T (AB-1g − f).
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D is for Dual

Approximation

In addition to the primal RB spaces, we introduce 1 ≤ i ≤ Nλ

W ′N = span{ s(µi) } s-SNAPSHOTS

and compute our RB approximation for s

sN(µ) =
Nu∑
i=1

sNi(µ) s(µi) ∈W ′N

by solving . . .
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D is for Dual

. . . for the coefficients sN(µ) ∈ RNs and λsN(µ) ∈ RNλ

ÃNsN − λsN = f̃N

sN ≥ 0

λ
s
N ≥ 0

(λsN)T sN = 0

We now define an intermediate approximation to u

usN := B-1(g − sN)

and make the following observation . . .
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D is for Dual

Note that the condition

gN −BNuN ≥ 0

was insufficient to ensure that

g −BuN ≥ 0

but that
sN ≥ 0

suffices to ensure that

sN = g −BusN ≥ 0
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D is for Dual

However, usN is expensive to compute, so we introduce

W s
N = span{W -1B u(µi)} = span{W -1Bϕi}

and compute our final RB approximation usNN from

〈BusNN , η〉
W ′,W = 〈g − sN , η〉W ′,W , ∀η ∈ W s

N .

We then decompose the error into two parts

‖u− usNN ‖V ≤ ‖u− u
sN‖V + ‖usN − usNN ‖V

and show that . . .
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D is for Dual

. . . the errors in are bounded by

‖u− usN‖V ≤ ∆1
u := c1 +

√
c2

1 + c2

‖usN − usNN ‖V ≤ ∆2
u :=

‖r2‖W ′

β

‖λu − λuN‖W ≤ ∆λ :=
1

β

(
‖r1‖V ′ + γa ∆1

u

)
Here,

c1 :=
1

2α
‖r1‖V ′ c2 :=

1

α
λTN sN

r1 := f −AB-1(g − sN) +BTλN

r2 := g − sN −B usNN
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Numerical Results - 1D
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Numerical Results - 1D
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Numerical Results - 1D
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Numerical Results - 2D
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Numerical Results - 2D
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Numerical Results - 2D
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Mid-Talk Summary

We developed an online-efficient certified reduced basis method
for elliptic variational inequalities of the first kind.

We introduce a dual problem to enable computation of
sharp and inexpensive a posteriori error bounds.

The online computational cost depends on N, Q, but not on NFE.

However, the method is not applicable to

◦ problems where B is µ-dependent

◦ EVIs of the second kind
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Coulomb Friction

Equilibrium −σij,j = 0

Constitutive Law σij = Cijklεkl

Strain-Displacement εij =
1

2
(ui,j + uj,i)

Boundary Conditions

DISPLACEMENT ui = 0 on Γu

APPLIED TRACTION σn = gi on Γg

CONTACT σn < 0 on ΓC

FRICTION: If |σt| < νF |σn| then ut = 0

If |σt| = νF |σn| then ut = −λσt for some λ > 0
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Coulomb Friction

Variational Formulation

The displacement u ∈ K satisfies

a(u, v − u) + j(u, v)− j(u, u) ≥ f(v − u)

∀v ∈ K
where

j(u, v) =

∫
Ω
νF |σn(u)||vt|

See, e.g., [Han & Reddy, 1999]
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Variational Inequalities

First Kind

u = arg inf
v∈K

1

2
a(v, v)− f(v)

where K is a convex subset of V .

Second Kind

u = arg inf
v∈V

1

2
a(v, v) + j(v)− f(v)

where the functional j is nondifferentiable.
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Method R

We transform the constrained minimization problem (EVI-1)
into an unconstrained minimization problem.

Start with an interior point and replace the constraint
with a barrier function.

The barrier causes the objective function to increase without bound
as u approaches the constraint.

See, e.g., [Weiser, SIAM J Optim, 2005]

[Schiela, SIAM J Optim, 2009]

38/45



Method R

We transform the constrained minimization problem (EVI-1)
into an unconstrained minimization problem.

Start with an interior point and replace the constraint
with a barrier function.

The barrier causes the objective function to increase without bound
as u approaches the constraint.

See, e.g., [Weiser, SIAM J Optim, 2005]

[Schiela, SIAM J Optim, 2009]

38/45



Method R

We transform the constrained minimization problem (EVI-1)
into an unconstrained minimization problem.

Start with an interior point and replace the constraint
with a barrier function.

The barrier causes the objective function to increase without bound
as u approaches the constraint.

See, e.g., [Weiser, SIAM J Optim, 2005]

[Schiela, SIAM J Optim, 2009]

38/45



R is for Regularize

Obstacle Problem

Let the admissible set be given by

K = { v ∈ V | v ≤ g in Ω }

We introduce uν

uν = arg inf
v∈V

1

2
a(v, v)− f(v)− ν

∫
Ω

log (g − v) dΩ

⇒ a(u, v)− f(v) + ν

∫
Ω

v

g − u
dΩ = 0, ∀ v ∈ V
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R is for Regularize

For problems of the form

a(u, v)− f(v) + 〈h(u), v〉
V ′,V = 0, ∀ v ∈ V

where h(·;µ) is nonlinear, we can approximate h
using the Empirical Interpolation Method:

h(u(x;µ);µ) ≈ huM(x;µ) =
M∑
m=1

qm(x)ϕuMm(µ)

where

M∑
m=1

qm(xi)ϕ
u
Mm(µ) = h(u(xi;µ);µ), 1 ≤ i ≤M,

xi are interpolation pts, and qm are chosen by a greedy procedure.
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B is for Barrier

The Empirical Interpolation Method provides

◦ affine approximations to non-affine and/or nonlinear forms

◦ efficient a posteriori error estimators (in some cases, bounds)

See, e.g., [Barrault, Maday, Nguyen, & Patera, CR Math, 2004],

[Grepl, Maday, Nguyen, & Patera, M2AN, 2007].
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RB Method for Problems in Solid Mechanics
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Numerical Results - 1D
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Variational Inequalities

First Kind

u = arg inf
v∈K

1

2
a(v, v)− f(v)

where K is a convex subset of V .

Second Kind

u = arg inf
v∈V

1

2
a(v, v) + j(v)− f(v)

where the functional j is nondifferentiable.
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Summary & Perspectives

I We proposed two online-efficient RB approaches for VIs:

◦ Primal-Dual Approach

◦ Regularization Approach

motivated by problems in nonlinear solid mechanics.

I We intend to explore:

◦ extension to Parabolic VIs

◦ combination with work on finite deformation [with L. Zanon]

◦ connection to optimal control problems with control and/or
state constraints [with M. Grepl & M. Kaercher]
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