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Outline

• What is multifidelity modeling?

• Motivation

• Multifidelity modeling approaches:

– Optimization 

– Inverse problems

– Uncertainty quantification
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Multifidelity modeling

Often have available several physical and/or numerical models 
that describe a system of interest.

– Models may stem from different resolutions, different 
assumptions, surrogates, approximate models, etc.

– Each model has its own “fidelity” and computational cost

Today’s focus:

– Multifidelity setup with two models:
a “truth” full-order model and a reduced-order model

– Want to use the reduced model to accelerate solution of 
optimization, uncertainty quantification, or inverse 
problem solution {opt, UQ, inverse}
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Projection-based model reduction
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Why use a multifidelity formulation?

Full model
(“truth”)

Reduced model
(approximate)
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Why use a multifidelity formulation?

Computationally 
expensive

Computationally 
cheap(er)

Full model
(“truth”)

Reduced model
(approximate)
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Why use a multifidelity formulation?

• Replace full model with 
reduced model and solve
{opt, UQ, inverse}

• Propagate error estimates on 
forward predictions to 
determine error in
{opt, UQ, inverse} solutions
(may be non-trivial)

Full model
(“truth”)

Reduced model
(approximate)

Certified?

yes
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Why use a multifidelity formulation?

• Replace full model with 
reduced model and solve
{opt, UQ, inverse}

• Hope for the best

Full model
(“truth”)

Reduced model
(approximate)

Certified?

no



10

Why use a multifidelity formulation?

Full model
(“truth”)

Reduced model
(approximate)

Certified?

• Use a multifidelity formulation that invokes 
both the reduced model and the full model

• Trade computational cost for the ability to 
place guarantees on the solution of
{opt, UQ, inverse}

no
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Why use a multifidelity formulation?

Full model
(“truth”)

Reduced model
(approximate)

Certified?

• Use a multifidelity formulation that invokes 
both the reduced model and the full model

• Trade computational cost for the ability to 
place guarantees on the solution of
{opt, UQ, inverse}

• Certify the solution of {opt, UQ, inverse} 
even in the absence of guarantees on the 
reduced model itself

no
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Multifidelity Strategies

• For optimization:

– adaptive model calibration (corrections)

– combined with trust region model management

• For statistical inverse problems:

– adaptive delayed acceptance Markov chain Monte Carlo 
(MCMC) methods

• For forward propagation of uncertainty:

– control variates



OPTIMIZATION

m𝑖𝑛
𝑥

𝑓(𝑥)

s.t. 𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0
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Design optimization formulation

min
𝑥

𝑓 𝑥

s.t. 𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

Design variables 𝑥
Objective 𝑓(𝑥)
Constraints 𝑔(𝑥), h(𝑥)

• Interested in optimization of systems governed by PDEs
(constraints and objective evaluation is expensive)

optimizer

x
fhi

ghi

hhi

hi-fi model
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Multifidelity optimization formulation

optimizer

x

fhi ghi hhi

hi-fi model

xj

min
𝑥

𝑓 𝑥

s.t. 𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

Design variables 𝑥
Objective 𝑓(𝑥)
Constraints 𝑔(𝑥), h(𝑥)

optimizer

x
fhi

ghi

hhi

hi-fi model
lo-fi

model correction

flo + a
glo + b
hlo+ g
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Multifidelity optimization: Surrogate definition

• Denote a surrogate model of fhigh(𝐱) as 𝑚(𝐱)

• The surrogate model could be:

1. The low-fidelity function (reduced model)

2. The sum of the low-fidelity function and an additive correction

where 𝑒(𝐱) is calibrated to the difference fhigh(𝐱)- flow(𝐱)

3. The product of a low-fidelity function and a multiplicative correction

where 𝛽𝑐 𝐱 is calibrated to the quotient fhigh(𝐱) / flow(𝐱)

• Update the correction terms as the optimization algorithm proceeds and 
additional evaluations of fhigh(𝐱) become available
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Multifidelity optimization: Trust-region model management

• At iteration 𝑘, define a trust region centered on iterate 𝐱𝑘 with 
size Δ𝑘

• 𝑚𝑘 is the surrogate model on the 𝑘th iteration

• Determine a trial step 𝒔𝑘 at iteration 𝑘, by solving a subproblem
of the form:

(unconstrained case)
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Multifidelity optimization: Trust-region model management

• Evaluate the function at the trial point:  fhigh(𝐱𝑘+𝐬𝑘) 

• Compute the ratio of the actual improvement in the function 
value to the improvement predicted by the surrogate model:

• Accept or reject the trial point and update trust region size 
according to (typical parameters):

Reject step

Accept step

Accept step

Accept step

0k

1.00  k

kk   5.01

75.01.0  k

k75.0

kk   5.01

kk  1

kk   21
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Trust-Region Demonstration
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• Provably convergent to local minimum of high-fidelity function if 
surrogate is first-order accurate at center of trust region
[Alexandrov et al., 2001]

• Additive correction:

with surrogate constructed as

• Multiplicative correction: 

with surrogate constructed as

• Only first-order corrections required to guarantee convergence; quasi-
second-order corrections accelerate convergence [Eldred et al., 2004]

• Trust-region POD [Arian, Fahl, Sachs, 2000]

Trust-region model management: Corrections and convergence
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• Derivative-free trust region approaches
[Conn, Scheinberg, and Vicente, 2009]

• Provably convergent under appropriate conditions if the 
surrogate model is “fully linear”

• Achieved through adaptive corrections or adaptive calibration
e.g., radial basis function calibration with sample points chosen 
to make surrogate model fully linear by construction
[Wild, Regis and Shoemaker, 2011; Wild and Shoemaker, 2013]

• Key: never need gradients wrt the
high-fidelity model

Trust-region model management: Derivative-free framework

kgkhigh mf  )()( xx

2)()( kfkhigh mf  xx

Trust Regions and Calibration Points

x1 x1

x2x2
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Multifidelity design optimization example:
Aircraft wing  (with black-box codes)

Design variables: wing geometry, structural members

Objectives: weight, lift-to-drag ratio

Disciplines: aerodynamics, structures

Aerodynamics and structures exchange 
pressure loading and deflections, 
requiring an iterative solve for
each analysis.

Multifidelity models:

Structures: Nastran (commercial finite element code; MSC)

Beam model

Aerodynamics: Panair (panel code for inviscid flows; NASA)

FRICTION (skin friction and form factors; W. Mason)

AVL (vortex-lattice model; M. Drela)

Kriging surrogate

min
𝑥

𝑓 𝑥

s.t. 𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

March PhD 2012; 
March, W., 2012
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Multifidelity design optimization example: Aircraft wing

Multifidelity approach:

• Trust region model management
– Derivative free framework [Conn et al., 2009]

• Adaptive calibration of surrogates
– Radial basis function calibration to provide fully linear models 

[Wild et al., 2009]

– Calibration applied to correction function (difference between 
high- and low-fidelity models) [Kennedy & O’Hagan, 2001]

• Computational speed-up + robustness to code failures

Low-Fidelity Model Nastran Evals. Panair Evals. Time* (days)

None 7,425 7,425 4.73

AVL/Beam Model 5,412 5,412 3.45 

Kriging Surrogate 3,232 3,232 2.06

* Time corresponds to average of 30s per Panair evaluation, 25s per Nastran
evaluation, and serial analysis of designs within a discipline.



INVERSE PROBLEMS

𝜋 𝑥|𝑑 ~𝐿 𝑑|𝑥 𝜋0 𝑥



26

Large-scale statistical inverse problems

Data State Parameters

),( xuA
t

u





Observation: PDE:

• Data are limited in number, noisy, and indirect

• State-space is high dimensional (PDE model)

• Unknown parameters are high-dimensional 

),( euCd 
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Large-scale statistical inverse problems

Data State Parameters

Bayes rule: 𝜋 𝑥|𝑑 ~𝐿 𝑑|𝑥 𝜋0 𝑥

posterior likelihood prior
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Large-scale statistical inverse problems:
Exploiting low-rank structure

Data State Parameters

• Low-rank structure in the state space: 
Data-driven model reduction [Cui, Marzouk, W., 2014]

• Low-rank structure in the parameter space:
Efficient posterior exploration (likelihood-induced subspace) 
[Lieberman, W., 2010; Cui, Martin, Marzouk, 2014]

Bayes rule: 𝜋 𝑥|𝑑 ~𝐿 𝑑|𝑥 𝜋0 𝑥

posterior likelihood prior
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Exploring the posterior: MCMC Sampling

Expensive 
forward model 
solve

• Requires many (many) 
iterations to generate 
enough samples to 
characterize the posterior

• Many samples are 
rejected

Markov chain Monte Carlo (MCMC) methods: black box but expensive 
ways to sample the posterior 𝜋 𝑥|𝑑 [Metropolis et al., 1953; Hastings, 1970]
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Multifidelity: Adaptive delayed acceptance MCMC sampling

Approximate (cheap) 
forward model solve

• Sampling of the exact posterior is 
guaranteed by the second stage 
[Chen & Liu, 1998; Christen & Fox, 2005]

• Speed-up: not all samples are 
evaluated by full model

Full model evaluation 
ensures sampling the 
exact posterior
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Adaptive reduced models for multifidelity inference Cui, Marzouk, W., 
2014

• Reduced model is evaluated from “snapshots”
(solutions at selected parameter values)

• These evaluations are used to construct the reduced basis

• Standard approach: snapshots are
selected offline from the prior
(e.g., Wang and Zabaras, 2004;
Lieberman et al., 2010)

• We propose a data-driven adaptive
approach using delayed acceptance:

to provide a formal framework to
manage use of the ROM
(multifidelity)

and to adaptively select snapshots
and update the ROM on the fly
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Simultaneous model reduction and posterior exploration

• Suppose we have a reduced model constructed from an initial 
reduced basis

• Stage 1:
– At each MCMC iteration, first sample the approximate posterior 

distribution (𝜋∗) based on the reduced model for 𝑚 steps using a 
standard Metropolis-Hasting algorithm

– Decreases the sample correlation with low computational cost by 
simulating an approximate Markov chain [Cui, 2010]

• Stage 2: 

– The last state of the Stage 1 Markov chain is the proposal candidate

– Compute acceptance probability (𝛼) based on full posterior density 
value (ensures that we sample the exact posterior)

– After each full posterior density evaluation, the state of the associated 
forward model evaluation is a potential new snapshot
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Simultaneous model reduction and posterior exploration

• Compute the error of the reduced model output estimate at each 
new posterior sample

• Update the reduced basis with the new snapshot when the error 
exceeds a threshold 𝜖

• The resulting reduced model is data-driven, since it uses the 
information provided by the observed data (in the form of the 
posterior distribution) to select samples for computing the 
snapshots
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Simultaneous model reduction and posterior exploration

• Can also use error estimator (  𝑡) (e.g., dual weighted residual [Meyer, Matthies

2003]) but then we lose the strong guarantee of sampling the exact posterior
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Inverse problem example: 9D test case
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Inverse problem example: Sampling efficiency
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Inverse problem example: Sampling accuracy
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Inverse problem example: Reduced model performance
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Inverse problem example: A high-dimensional case
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Inverse problem example: Sampling efficiency
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Inverse problem example: Sampling accuracy

21 hours 17 minutes 5 minutes



UNCERTAINTY QUANTIFICATION

min
𝑥

𝑓 𝑥, 𝑠 𝑥

s.t. 𝑔 𝑥, 𝑠 𝑥 ≤ 0

ℎ 𝑥, 𝑠 𝑥 = 0



The challenge of optimization under uncertainty (OUU)

High-fidelity model embedded in a UQ loop in an optimization loop
• Large computational cost
• Need an optimizer that is tolerant to noisy estimates of statistics

min
𝑥

𝑓 𝑥, 𝑠 𝑥

s.t. 𝑔 𝑥, 𝑠 𝑥 ≤ 0

ℎ 𝑥, 𝑠 𝑥 = 0

Design variables 𝑥
Uncertain parameters 𝑢
Model outputs 𝑦 𝑥, 𝑢
Statistics of model 𝑠 𝑥

UQ

optimizer

forward model

𝑓hi

ghi , hhi

u 𝑦hi

𝑥



Multifidelity optimization under uncertainty

min
𝑥

𝑓 𝑥, 𝑠 𝑥

s.t. 𝑔 𝑥, 𝑠 𝑥 ≤ 0

ℎ 𝑥, 𝑠 𝑥 = 0

Design variables 𝑥
Uncertain parameters 𝑢
Model outputs 𝑦 𝑥, 𝑢
Statistics of model 𝑠 𝑥

UQ

optimizer

hi-fi model

𝑥
𝑓hi

ghi , hhi

u 𝑦hi



Multifidelity OUU approach: Control variates

min
𝑥

𝑓 𝑥, 𝑠 𝑥

s.t. 𝑔 𝑥, 𝑠 𝑥 ≤ 0

ℎ 𝑥, 𝑠 𝑥 = 0

Design variables 𝑥
Uncertain parameters 𝑢
Model outputs 𝑦 𝑥, 𝑢
Statistics of model 𝑠 𝑥

UQ

optimizer

hi-fi model

𝑥
𝑓hi

ghi , hhi

u 𝑦hi

hi-fi
model

control 
variate

UQ

optimizer
𝑓hi

ghi , hhi

u 𝑦hi

Control variates: Exploit model correlation
• Estimate correlation between high- and low-fidelity models
• Related to multilevel Monte Carlo (Giles, 2008; Speight, 2009)
• RB models also used with control variates in Boyaval & Lelièvre, 2010

𝑥

Leo Ng
PhD 2013



Problem setup
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𝑓high 𝑥, 𝑈
𝑥

𝑈

𝐴

𝐵𝑓low 𝑥, 𝑈

design
variables

random
uncertain
parameters

random output of high-fidelity model

random output of low-fidelity model

𝑢𝑖 = samples of 𝑈
𝑎𝑖 = 𝑓high 𝑥, 𝑢𝑖 = samples of 𝐴

𝑏𝑖 = 𝑓low 𝑥, 𝑢𝑖 = samples of 𝐵 = 𝑎𝑖 + error

min
𝑥

𝑓 𝑥, 𝑠𝐴 𝑥

s.t. 𝑔 𝑥, 𝑠𝐴 𝑥 ≤ 0

min
𝑥

𝑓 𝑥,  𝑠𝐴

s.t. 𝑔 𝑥,  𝑠𝐴 𝑥 ≤ 0
approximated by

𝑠𝐴 = statistics of 𝐴 (e.g., mean, variance)
 s𝐴 = estimator of 𝑠𝐴



Variance reduction with control variate
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• Regular MC estimator for 𝑠𝐴 = 𝔼 𝐴 using 𝑛 samples of 𝐴:

• Control variate (CV) estimator of 𝑠𝐴:

– Additional random variable 𝐵 with known 𝑠𝐵 = 𝔼 𝐵

• Minimize Var  𝑠𝐴 with respect to 𝛼

 𝑎𝑛 =
1

𝑛
 

𝑖=1

𝑛

𝑎𝑖 Var  𝑎𝑛 =
𝜎𝐴

2

𝑛

Definitions:

𝜎𝐴
2 = Var 𝐴

𝜎𝐵
2 = Var 𝐵

𝜌𝐴𝐵 = Corr 𝐴, 𝐵

 𝑠𝐴 =  𝑎𝑛 + 𝛼 𝑠𝐵 −  𝑏𝑛

Var  𝑠𝐴 =
𝜎𝐴

2 + 𝛼2𝜎𝐵
2 − 2𝛼𝜌𝐴𝐵𝜎𝐴𝜎𝐵

𝑛

Var  𝑠𝐴
∗ = 1 − 𝜌𝐴𝐵

2
𝜎𝐴

2

𝑛

≤ 1
n Samples of B

n
 S

a
m

p
le

s
 o

f 
A

𝛼

 𝑏𝑛 𝑠𝐵

 𝑎𝑛

 𝑠𝐴



Low-fidelity model as control variate
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• Multifidelity estimator of 𝑠𝐴 based on control variate method:

– 𝐴 = random output of high-fidelity model

– 𝐵 = random output of low-fidelity model (𝑠𝐵 unknown)

• Using difference  𝑏𝑚 −  𝑏𝑛 as correction to  𝑎𝑛

• Leveraging correlation between 𝐴 and 𝐵

– Correlation captured in 𝛼

 𝑠𝐴,𝑝 =  𝑎𝑛 + 𝛼  𝑏𝑚 −  𝑏𝑛 with 𝑚 ≫ 𝑛

Var  𝑠𝐴,𝑝 =
𝜎𝐴

2 + 𝛼2𝜎𝐵
2 − 2𝛼𝜌𝐴𝐵𝜎𝐴𝜎𝐵

𝑛
−

𝛼2𝜎𝐵
2 − 2𝛼𝜌𝐴𝐵𝜎𝐴𝜎𝐵

𝑚

Definitions:

𝜎𝐴
2 = Var 𝐴

𝜎𝐵
2 = Var 𝐵

𝜌𝐴𝐵 = Corr 𝐴, 𝐵

n Samples of B

n
 S

a
m

p
le

s
 o

f 
A

𝛼

 𝑏𝑛
 𝑏𝑚

 𝑎𝑛

 𝑠𝐴,𝑝

Ng PhD 2013
Ng, W., 2013



Computational budget allocation

• Define computational effort 𝑝 as equivalent # of high-fidelity model 
evaluations

• For fixed 𝑝, minimize Var  𝑠𝐴,𝑝 with respect to 𝛼 and 𝑟

• Limiting cases:

(i) Low-fidelity model “free”: as 𝑤 → ∞, then Var  𝑠𝐴,𝑝
∗ → 1 − 𝜌𝐴𝐵

2 𝜎𝐴
2

𝑝

(ii) Low-fidelity model “perfect”: as 𝜌𝐴𝐵 → 1, then Var  𝑠𝐴,𝑝
∗ →

1

𝑤

𝜎𝐴
2

𝑝
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𝑝 = 𝑛 +
𝑚

𝑤
= 𝑛 1 +

𝑟

𝑤
where 𝑟 =

𝑚

𝑛
and 𝑤 =

high−fidelity evaluation time

low−fidelity evaluation time

𝛼∗ = 𝜌𝐴𝐵

𝜎𝐴
𝜎𝐵

Var  𝑠𝐴,𝑝
∗ = 1 − 1 −

1

𝑟∗ 𝜌𝐴𝐵
2 1 +

𝑟∗

𝑤

𝜎𝐴
2

𝑝
𝑟∗ =

𝑤𝜌𝐴𝐵
2

1 − 𝜌𝐴𝐵
2

Definitions: 𝜎𝐴
2 = Var 𝐴 , 𝜎𝐵

2 = Var 𝐵 , 𝜌𝐴𝐵 = Corr 𝐴, 𝐵



Model correlation over design space
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• At current design point 𝑥𝑘

– Define 𝐴 = 𝑀high 𝑥𝑘 , 𝑈

– Want to compute  𝑠𝐴 as estimator of 𝑠𝐴 = 𝔼 𝐴

• Previously visited design point 𝑥ℓ where ℓ < 𝑘

– Define surrogate as 𝐶 = 𝑀high 𝑥ℓ, 𝑈

– Reuse available data:  𝑠𝐶 as estimator of 𝑠𝐶 = 𝔼 𝐶 with error Var  𝑠𝐶

Simulation𝑥𝑘  𝑠𝐴 𝑥𝑘

Simulation𝑥𝑘−1  𝑠𝐴 𝑥𝑘−1

Simulation𝑥ℓ  𝑠𝐴 𝑥ℓ

⋮
optimization

progress

design variables estimators
⋮

• What if low-fidelity model unavailable?

– Use 𝑀high 𝑥 + Δ𝑥, 𝑈 as surrogate for 𝑀high 𝑥, 𝑈

Information 
Reuse 

Estimator
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Acoustic horn example

• Helmholtz equation for propagation of acoustic waves through 2-D horn

– High-fidelity model: Finite element model (FEM) with 35,895 states

– Low-fidelity model I: Reduced basis model (RBM) with N = 25 states

– Low-fidelity model II: Reduced basis model (RBM) with N = 30 states

– Ratio of evaluation cost 𝑤 = 40

 

 

Input: wave number
𝐾 ∼ uniform

Input: upper horn wall impedance
𝑍𝑢 ∼ normal

Input: lower horn wall impedance
𝑍𝑙 ∼ normal

Output: reflection 
coefficient, 𝑆𝑟

Acoustic horn models 
due to D.B.P. Huynh
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Acoustic horn example – uncertainty propagation

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

Computational Effort

R
M

S
E

Mean Estimator

 

 

Regular MC

Multifidelity (N = 25)

Multifidelity (N = 30)

10
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-5

10
-4
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Computational Effort

R
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E

Variance Estimator

 

 

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

Computational Effort

R
M

S
E

Robust Objective Estimator

 

 

𝑓 = 𝔼 𝑆𝑟 + Std 𝑆𝑟 Estimator

100 1800600

• 𝑤 = 40 in both cases

• Correlation between FEM and

– RBM (N = 25) ≈ 0.928

– RBM (N = 30) ≈ 0.996

• Increasing correlation increases 
efficiency of multifidelity estimator
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Acoustic horn example – uncertainty propagation

• Apply regular MC simulation directly to reduced basis model?

– Bias of the low-fidelity model cannot be reduced regardless of # 
of samples used

– Multifidelity MC simulation can achieve arbitrarily small error 
tolerance

• “Good” low-fidelity model based on correlation, not difference in 
outputs

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

Computational Effort

R
M

S
E

Mean Estimator

 

 

Regular MC

Multifidelity (N = 25)

Multifidelity (N = 30)

Bias of reduced basis model
(N = 30) with respect to FEM
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Acoustic horn example – robust optimization

min
𝑏

𝔼 𝑠𝑟 + 𝕍ar 𝑠𝑟

Equivalent number of 
hi-fi evaluations

Regular MC 44,343

Multifidelity MC 6,979 (-84%)

Decision variables: horn geometry, b

Uncertainty: wavenumber, wall impedances

Output of interest: reflection coefficient, sr

Optimization algorithm:
Implicit filtering [Kelley, 2011]

Robust optimal horn flare shape
described by 6 design variables
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Example: High-fidelity wing optimization

• Shape optimization of (roughly) Bombardier Q400 wing

– Free-form deformation geometry control [Kenway et al. 2010]

• Coupled aerostructural solver [Kennedy and Martins 2010]

– Aerodynamics: TriPan panel method

– Structures: Toolkit for the Analysis of Composite Structures (TACS)
finite element method

55

Coarse Fine

Aerodynamic 
Panels

1000 2960

Structural 
d.o.f.

5624 14,288

Eval time 6 s 24 s
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High-fidelity wing optimization

56

• 46 design variables:

– 8 wing twist angles, 19 forward spar thicknesses, 19 aft spar thicknesses

• 7 random inputs:

– Take-off weight, Mach number, material properties (density, elastic 
modulus, Poisson ratio, yield stress), wing weight fraction

• Objective = drag (formulated as mean + 2 std)

• 4 nonlinear stress constraints (formulated as mean + 2 std ≤ 0)

• 36 linear geometry constraints (deterministic)

• Optimization loop:COBYLA constrained derivative-free solver [Powell 1994]

• Simulation loop: Fixed RMSE for estimators specified, number of samples 
allowed to vary
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High-fidelity wing optimization

• Solved on 16-processor desktop 
machine

• Combined estimator enable OUU 
solution in reasonable turnaround 
time

• Regular Monte Carlo estimator 
would take about 3.2 months

57

Computational 
Effort

Total Time 
(days)

Regular MC -- --

Info Reuse 7 × 104 13.4

Combined 5 × 104 9.7
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Summary

Full model
(“truth”)

Reduced model
(approximate)

Certified?

• Use a multifidelity formulation that invokes 
both the reduced model and the full model

• Trade computational cost for the ability to 
place guarantees on the solution of
{opt, UQ, inverse}

• Certify the solution of {opt, UQ, inverse} 
even in the absence of guarantees on the 
reduced model itself

no
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Conclusions

“All models are wrong, but some are useful.” 

George Box, 1979

• A formal framework for multifidelity modeling can
– help us understand when our (reduced) models are useful

– provide a responsible way to use our wrong-but-useful models for 
optimization, inversion, and uncertainty quantification

• Towards a richer definition of fidelity:
– In almost all existing multifidelity methods, “fidelity” = a linear ranking 

of models, with some “high-fidelity” model denoted as “truth” 

– In practice, the relationship between models and reality—and among 
different sources of information—is much richer than just a ranking

– Models and/or experiments they tell us different things about the 
design problem, with the collective information they provide being 
greater than the individual parts


