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e Principle of sensor array imaging;:
- probe an unknown medium with waves,
- record the waves transmitted through or reflected by the medium,

- process the recorded data to extract relevant information.

— What about imaging in the presence of measurement noise, medium noise, or

source noise ?
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Reflector imaging through a homogeneous medium
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e Sensor array imaging of a reflector located at yer. €5 iS a source, &, is a receiver.
Measured data: {u(t,@,;&s),r=1,...,Ny,s=1,..., Ng}.

e Mathematical model:

1 1 L. \N\O0%u,, . Lo L
(—2 + 518, (% — yref)) g (L& &) — Agu(t, & &) = f(1)6(Z - &)
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e Purpose of imaging: using the measured data, build an imaging function Z(%°) that

would ideally look like 15, (§° — %ref), in order to extract the relevant
Cref

re

information (y;er, Bret, Crer) about the reflector.
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e Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate

=
(ytest 3 Btest 3 Ctest ) .

2) Reverse Time imaging: simplify Least-Squares imaging by “linearization” of the

forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.
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e Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate
(gtesty Btest; Ctest)-
2) Reverse Time imaging: simplify Least-Squares imaging by “linearization” of the

forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.

e Kirchhoff Migration function:
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Co Co

r=1 s=1

It forms the image with the superposition of the backpropagated traces.

Here the travel time from & to 4 is |§° — &|/co.

- Very robust with respect to (additive) measurement noise [1].

- Sensitive to medium noise: If the medium is scattering, then Kirchhoff Migration

does not work.

[1] H. Ammari, J. Garnier, and K. Sglna, Wawves in Random and Complex Media 22, 40 (2012).



Imaging through a scattering medium

e Sensor array imaging of a reflector located at yret. €s iS a source, &, is a receiver.
Data: {u(t,@,;@s),r=1,...,Ny,s =1,..., Ng}.
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e Random medium model: 10, Q8 ‘s_‘_'. R o:'
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Imaging through a scattering medium

e Sensor array imaging of a reflector located at yret. €s iS a source, &, is a receiver.
Data: {tu(w,®,;&s),r=1,...,Ny,s=1,..., Ng}.
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e Random medium model: 10 o “l-' ‘.'; ‘- j'
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C2(£) N % (1 —'_ M(w)) " "‘ .‘..‘\‘ — 5‘ .

N 0 _ .‘

co is a reference speed, .‘, - "'::7‘; ~
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Strategy: Stochastic and multiscale analysis

e A stochastic and multiscale analysis is possible in different regimes of separation of
scales (small wavelength, large propagation distance, small correlation length, ...).

— Analysis of the moments of .

e Compute the mean and variance of an imaging function Z(%°).

— resolution and stability analysis.

e Resolution analysis: What is the size of the smallest feature that can be
distinguished ? Can be obtained by studying the mean imaging function E[I (4° )}

e Criterium for statistical stability:

E[Z(y")]
Var (Z(g5))"/*

> 1

— design the imaging function to get good trade-off between stability and resolution.
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Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (€ = (x, 2))

2

(92 + AL)i+ =5 (L+ (@, 2)) i = 0.
0

Consider the paraxial regime “A\ < [ < L”:
W 3 r =z
w—>€—4, u(x,z) — ¢ 'u(g_2’5_2)

The function ¢° (slowly-varying envelope of a plane wave) defined by

) Cwz T
4% (w, @, 2) = e =ic0 §° (w z)

78_27
satisfies ,
Nz LW = Nz w1 AN
1020° + <2z—az¢ + AL+ = —p(z, =)o ) = 0.
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Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (£ = (x, 2))

2

(02 + AL)a+ —(1 + p(zx, 2))a = 0.
€0
Consider the paraxial regime “A < [ < L”:
W 3 r =z
w—>€—4, u(x,z) — ¢ ,u(g—2,€—2)

The function ¢° (slowly-varying envelope of a plane wave) defined by

€ G e £
U (w,x,z) =€ "0 ¢ (w,—Q,z)
€

satisfies

. 21 .
48§¢8—|— (22— qu —|—AL¢ —|———,u(a:,€%)gb€> = 0.

Co Cpy €
e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid
and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation 1]

2
2= d.d + Aﬂ/ﬁ—l— — B(, z)cﬁ =
Co O
with B(x, z) Brownian field E[B(x, z) B(x',2")] = v(x — ') min(z, 2'),
= [°. E[u(0,0)u(x, 2)]dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (£ = (x, 2))

2

(0% + AL )i+ ‘;’—2 (1+ (e, 2))a = 0.
0

Consider the paraxial regime “A\ < . < L”:

w

W= =, wlx, z) = e p(=

The function ¢° (slowly-varying envelope of a plane wave) defined by

c 'L wz Ag w
0 (w, e, 2) = e =0 ¢° (w, =, 2)
£

satisfies ,
Te . Te Te 1 Te
20247 + (mﬂang +ALP + (=) d ) —0.
Co ch € €

e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid

and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation 1]
iﬂ
2w
with B(x, z) Brownian field E[B(x, 2) B(x', 2')] = v(x — ') min(z, 2'),
V() = [ Elu(0,0)u(w, 2)|dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).

dd = A | pdz + ;—wggodB(m,z)
Co



Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (€ = (x, 2))

2

(02 + AL)a+ —(1 + p(zx, 2))a = 0.
€0
Consider the paraxial regime “A < [ < L”:
w 3 L 2
w—>€—4, u(x,z) — ¢ 'u(g_2’5_2)

The function ¢° (slowly-varying envelope of a plane wave) defined by

w2 x
0 (w, e, 2) = e =0 ¢ (w, =, 2)
£

satisfies
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e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid

and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation 1]

do = @Amdz i —quB( 2) — wQ'V(O)quz

2¢o 8¢
with B(«, z) Brownian field E[B(x, z) B(x', 2')] = v(x — ') min(z, 2’),
= [7. E[u(0,0)u(z, 2)]dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).




Wave propagation in the random paraxial regime

e We introduce the fundamental solution G’(w, (z,2), (20, 20)):

1Co A W A
= —A + — B
900 LGdz 260 G od (CB, Z)

dG

starting from G’(w, (x,z = 20), (®0, 20)) = 6(x — o).
e In a homogeneous medium (B = 0) the fundamental solution is

ex iw|e—mxg|?
A P\ 2¢olz=20]

Go(w, (z, 2), (X0, 20)) =

2T Co lz—z0]
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Wave propagation in the random paraxial regime

e We introduce the fundamental solution G’(w, (z,2), (20, 20)):

dG = ;ﬂALGdz—i—Q—G dB(x, z)

c
starting from é’(w, (z, 2 = 20), (z0, 20)) = §(x — x0).
e In a homogeneous medium (B = 0) the fundamental solution is

iw|z—mxg|?

é’o (w, (a:, z), (azo, Zo)) _ exXp ( 2¢q|z—20]| ) .

2T Co lz—z0]

e In a random medium,

E[G(w, (x, 2), (xo, zo))} = Go (w, (x, 2), (o, zo)) exp ( — (0)w|z — 20 ),

2
8¢c§

where y(x) = [7°_E[u(0,0)u(x, 2)]dz.
e Strong dampmg of the coherent wave.

—> Coherent imaging methods (such as Kirchhoff migration) fail.
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Wave propagation in the random paraxial regime

e In a random medium,

A A

E[G(w, (w, Z), (CUO, Zo))G(W, (mlv Z)? (5130, ZO))]

= G (w, (x, 2), (0, zo))é'o (w, (x', 2), (xo, zo)) exp ( — 72(

x — x')w?|z — zO|)
4¢3 ’

where v (x fo v(xs)ds (note y2(0) = 0).
e The ﬁelds at nearby points are correlated.
e Same results in frequency: The fields at nearby frequencies are correlated.

— One should migrate cross correlations for imaging.
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Wave propagation in the random paraxial regime

e In a random medium,

A

E[G’(w, (x, 2), (xo, Zo))G(Wa (z', 2), (@0, ZO))]

_ Go (w7 (w’ Z), (w07 Zo))GAO (w7 (.’L'/, Z), (-’L'O; z0>) exp ( . ’72(% — w’)w |Z — ZO|>3

2
4cg

where v (x fo v(xs)ds (note y2(0) = 0).
e The ﬁelds at nearby points are correlated.
e Same results in frequency: The fields at nearby frequencies are correlated.

—> One should migrate cross correlations for imaging.

e In a random medium,
one can write a closed-form equation for the n-th order moment.

The fourth-order moments can be studied [1].

[1] J. Garnier and K. Sglna, Comm. Part. Differ. Equat. 39, 626 (2014).



Wave propagation in the randomly layered regime

e Other regimes can be analyzed, for instance the randomly layered regime.

e Random medium model (£ = (x, 2)): 10:
1 1
= = (14 p(2)) ;

c?(x) Co

co is a reference speed,
p(z) is a zero-mean random process.

-10 -5 0 5 10
X

e Consider the time-harmonic form of the scalar wave equation (€ = (x, 2))

U.)2

(02 + AL)a + — (1+u(z))a=0
0
Consider the scaled regime “l. <K A < L”:
w 2z
— = — (=
== pz) ()
The moments of the solutions are known in the limit € — 0 [1].

They are characterized by transport equations.

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sglna, Wave propagation ..., Springer, 2007.



e General results obtained by multiscale analysis: wave propagation can be described

by a stochastic partial differential equation.

e General results obtained by stochastic analysis: the moments of the wave are

solutions of transport equations.

e The mean (coherent) wave is small.

—> The Kirchhoff Migration function is unstable in randomly scattering media.

E[Zinm(57)]
Var (ZKM (gS))

<1

1/2

e The wave fluctuations at nearby points and nearby frequencies are correlated.
The wave correlations carry information about the medium.

—> One should use local cross correlations for imaging.

e Results obtained with media with rapid decorrelations. Not so many results with

media with long-range correlations.
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Imaging below an “overburden”
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From van der Neut and Bakulin (2009)
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Imaging below an overburden

I
3 NI
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Array imaging of a reflector at y.et. €5 is a source, &, is a receiver located below the

scattering medium. Data: {u(t,&,;&s),r=1,..., Ny, s =1,..., Ns}.

If the overburden is scattering, then Kirchhoff Migration does not work:

i LS o
T (Y ZZ (|ws_ |-|-|y C_Omr|,£r;£s>

r=1 s=1
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Numerical simulations

-200
-400 §
-600
-800
-1000
-1200
-1400
-1600

-1800

=300 -200 -100 0 100 200 300

Computational setup Kirchhoff Migration

(simulations carried out by Chrysoula Tsogka, University of Crete)
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Imaging below an overburden

—

&s is a source, &, is a receiver. Data: {u(t,@,;&s),r =1,..., Ny, s =1,..., Ns}.

Image with migration of the cross correlation matrix:

sy o= (@ =g 155 - &

— T r - =

Iy”) = Z C( Co + Co ,w,,a,:cr/>,

. r,r’ =1

with

Ns
C(7, @r, X,r) :Z u(t, @r; &s)u(t + 7, &5 &s)dt | ror'=1,..., Ny

s=1

The choice of the cross correlations to be migrated (which pairs of receivers, which

pairs of sources) is important !
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Numerical simulations

-200 *
-400jﬁf
-600 |+
-800 |-
-1000
1200
-1400
-1600

1800

-1500 = -1500

-1600 = -1600
1700 | -1700
1800 -1800

-1800

2000 [— —— — ——— -2000

-2100

-300 -200 -100 0 100 200 300 300 -200 -100 0 100 200 300

Kirchhoftf Migration Cross Correlation Migration
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Further results

e Use of ambient noise sources.

One can apply correlation-based imaging techniques to signals emitted by ambient
noise sources.

— Useful for applications in seismology: travel time tomography, volcano monitoring,

oil reservoir monitoring.

e Use of higher-order correlations.

One can apply imaging techniques based on special fourth-order cross correlations.
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Passive sensor imaging of a reflector

e Ambient noise sources (o) emit stationary random signals.
e The signals (u(t,&,))r=1,... n, are recorded by the receivers (&,),=1,... N, (A).
e The cross correlation matrix is computed and migrated:

Ny _4£;|

— -9 —
— zc’r’/ _ wr _ — —
I(ys) — Z CT(| Coy | + | Y ,ZBT,.CBT/>

Co

1 T
with  Cr(7,&,, %) = T / u(t + 7, &, )u(t, &,)dt
0

1
0.5 signal recorded at X,
0
-0.5 . , 1
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t

1 1 1 signal recorded at x
5 : ‘ | 0 *
i ; -0.5 : : : )
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,,,,,,,,,,

coda correlation X X
50 100
-0. 5

—150 —100 -

80 85 90 95 100 105 110 115 120

Provided the ambient noise illumination is long (in time) and diversified (in angle and
frequency): good stability [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. I'maging Sciences 2, 396 (2009).



Conclusions

e Multiscale and stochastic analysis are useful to understand the structure of the data

in sensor array imaging.

e In scattering media one should migrate well chosen cross correlations of data, not

data themselves.

e Method can be applied with ambient noise sources instead of controlled sources.
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