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• Principle of sensor array imaging:

- probe an unknown medium with waves,

- record the waves transmitted through or reflected by the medium,

- process the recorded data to extract relevant information.

→ What about imaging in the presence of measurement noise, medium noise, or

source noise ?
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Reflector imaging through a homogeneous medium

~xs ~xr

~yref

• Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Measured data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

• Mathematical model:

( 1

c2
0

+
1

c2
ref

1Bref
(~x− ~yref)

)∂2u

∂t2
(t, ~x; ~xs)−∆~xu(t, ~x; ~xs) = f(t)δ(~x− ~xs)

• Purpose of imaging: using the measured data, build an imaging function I(~yS) that

would ideally look like 1

c2
ref

1Bref
(~yS − ~yref), in order to extract the relevant

information (~yref , Bref , cref) about the reflector.
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• Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate

(~ytest, Btest, ctest).

2) Reverse Time imaging: simplify Least-Squares imaging by “linearization” of the

forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.
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• Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate

(~ytest, Btest, ctest).

2) Reverse Time imaging: simplify Least-Squares imaging by “linearization” of the

forward problem.

3) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.

• Kirchhoff Migration function:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
( |~xs − ~yS |

c0
+

|~yS − ~xr|

c0
, ~xr; ~xs

)

It forms the image with the superposition of the backpropagated traces.

Here the travel time from ~x to ~yS is |~yS − ~x|/c0.

- Very robust with respect to (additive) measurement noise [1].

- Sensitive to medium noise: If the medium is scattering, then Kirchhoff Migration

does not work.

[1] H. Ammari, J. Garnier, and K. Sølna, Waves in Random and Complex Media 22, 40 (2012).



Imaging through a scattering medium

~xs ~xr

~yref

• Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

( 1

c2(~x)
+

1

c2
ref

1Bref
(~x− ~yref)

)∂2u

∂t2
(t, ~x; ~xs)−∆~xu(t, ~x; ~xs) = f(t)δ(~x− ~xs)

• Random medium model:

1

c2(~x)
=

1

c2
0

(

1 + µ(~x)
)

c0 is a reference speed,

µ(~x) is a zero-mean random process.
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Imaging through a scattering medium

~xs ~xr

~yref

• Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Data: {û(ω, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

ω2

( 1

c2(~x)
+

1

c2
ref

1Bref
(~x− ~yref)

)

û(ω, ~x; ~xs) + ∆~xû(ω, ~x; ~xs) = −f̂(ω)δ(~x− ~xs)

• Random medium model:

1

c2(~x)
=

1

c2
0

(

1 + µ(~x)
)

c0 is a reference speed,

µ(~x) is a zero-mean random process.
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Strategy: Stochastic and multiscale analysis

• A stochastic and multiscale analysis is possible in different regimes of separation of

scales (small wavelength, large propagation distance, small correlation length, . . .).

→֒ Analysis of the moments of û.

• Compute the mean and variance of an imaging function I(~yS).

→֒ resolution and stability analysis.

• Resolution analysis: What is the size of the smallest feature that can be

distinguished ? Can be obtained by studying the mean imaging function E
[

I(~yS)
]

.

• Criterium for statistical stability:

SNR :=
E
[

I(~yS)
]

Var
(

I(~yS)
)1/2

> 1

→֒ design the imaging function to get good trade-off between stability and resolution.
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Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2

z +∆⊥)û+
ω2

c2
0

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2

z φ̂
ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c2
0

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.
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Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2

z +∆⊥)û+
ω2

c2
0

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2

z φ̂
ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c2
0

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

2i
ω

c0
∂zφ̂+∆⊥φ̂+

ω2

c2
0

Ḃ(x, z)φ̂ = 0

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2

z +∆⊥)û+
ω2

c2
0

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2

z φ̂
ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c2
0

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0
2ω

∆⊥φ̂dz +
iω

2c0
φ̂ ◦ dB(x, z)

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2

z +∆⊥)û+
ω2

c2
0

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2

z φ̂
ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c2
0

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0
2ω

∆⊥φ̂dz +
iω

2c0
φ̂dB(x, z)−

ω2γ(0)

8c2
0

φ̂dz

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

• We introduce the fundamental solution Ĝ
(

ω, (x, z), (x0, z0)
)

:

dĜ =
ic0
2ω

∆⊥Ĝdz +
iω

2c0
Ĝ ◦ dB(x, z)

starting from Ĝ
(

ω, (x, z = z0), (x0, z0)
)

= δ(x− x0).

• In a homogeneous medium (B ≡ 0) the fundamental solution is

Ĝ0

(

ω, (x, z), (x0, z0)
)

=
exp

(

iω|x−x0|
2

2c0|z−z0|

)

2iπc0
|z−z0|

ω

.
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Wave propagation in the random paraxial regime

• We introduce the fundamental solution Ĝ
(

ω, (x, z), (x0, z0)
)

:

dĜ =
ic0
2ω

∆⊥Ĝdz +
iω

2c0
Ĝ ◦ dB(x, z)

starting from Ĝ
(

ω, (x, z = z0), (x0, z0)
)

= δ(x− x0).

• In a homogeneous medium (B ≡ 0) the fundamental solution is

Ĝ0

(

ω, (x, z), (x0, z0)
)

=
exp

(

iω|x−x0|
2

2c0|z−z0|

)

2iπc0
|z−z0|

ω

.

• In a random medium,

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

exp
(

−
γ(0)ω2|z − z0|

8c2
0

)

,

where γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

• Strong damping of the coherent wave.

=⇒ Coherent imaging methods (such as Kirchhoff migration) fail.
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Wave propagation in the random paraxial regime

• In a random medium,

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)

Ĝ
(

ω, (x′, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

Ĝ0

(

ω, (x′, z), (x0, z0)
)

exp
(

−
γ2(x− x

′)ω2|z − z0|

4c2
0

)

,

where γ2(x) =
∫

1

0
γ(0)− γ(xs)ds (note γ2(0) = 0).

• The fields at nearby points are correlated.

• Same results in frequency: The fields at nearby frequencies are correlated.

=⇒ One should migrate cross correlations for imaging.
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Wave propagation in the random paraxial regime

• In a random medium,

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)

Ĝ
(

ω, (x′, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

Ĝ0

(

ω, (x′, z), (x0, z0)
)

exp
(

−
γ2(x− x

′)ω2|z − z0|

4c2
0

)

,

where γ2(x) =
∫

1

0
γ(0)− γ(xs)ds (note γ2(0) = 0).

• The fields at nearby points are correlated.

• Same results in frequency: The fields at nearby frequencies are correlated.

=⇒ One should migrate cross correlations for imaging.

• In a random medium,

one can write a closed-form equation for the n-th order moment.

The fourth-order moments can be studied [1].

[1] J. Garnier and K. Sølna, Comm. Part. Differ. Equat. 39, 626 (2014).



Wave propagation in the randomly layered regime

• Other regimes can be analyzed, for instance the randomly layered regime.

• Random medium model (~x = (x, z)):

1

c2(~x)
=

1

c2
0

(

1 + µ(z)
)

c0 is a reference speed,

µ(z) is a zero-mean random process.

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2

z +∆⊥)û+
ω2

c2
0

(

1 + µ(z)
)

û = 0

Consider the scaled regime “lc ≪ λ ≪ L”:

ω →
ω

ε
, µ(z) → µ

( z

ε2
)

The moments of the solutions are known in the limit ε → 0 [1].

They are characterized by transport equations.

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave propagation ..., Springer, 2007.



• General results obtained by multiscale analysis: wave propagation can be described

by a stochastic partial differential equation.

• General results obtained by stochastic analysis: the moments of the wave are

solutions of transport equations.

• The mean (coherent) wave is small.

=⇒ The Kirchhoff Migration function is unstable in randomly scattering media.

E
[

IKM(~yS)
]

Var
(

IKM(~yS)
)1/2

≪ 1

• The wave fluctuations at nearby points and nearby frequencies are correlated.

The wave correlations carry information about the medium.

=⇒ One should use local cross correlations for imaging.

• Results obtained with media with rapid decorrelations. Not so many results with

media with long-range correlations.
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Imaging below an “overburden”

From van der Neut and Bakulin (2009)
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Imaging below an overburden

~xs

~xr

~yref

Array imaging of a reflector at ~yref . ~xs is a source, ~xr is a receiver located below the

scattering medium. Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

If the overburden is scattering, then Kirchhoff Migration does not work:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
( |~xs − ~yS |

c0
+

|~yS − ~xr|

c0
, ~xr; ~xs

)
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Numerical simulations

Computational setup Kirchhoff Migration

(simulations carried out by Chrysoula Tsogka, University of Crete)
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Imaging below an overburden

~xs

~xr

~yref

~xs is a source, ~xr is a receiver. Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

Image with migration of the cross correlation matrix:

I(~yS) =

Nr
∑

r,r′=1

C
( |~xr − ~yS |

c0
+

|~yS − ~xr′ |

c0
, ~xr, ~xr′

)

,

with

C(τ, ~xr, ~xr′) =

Ns
∑

s=1

∫

u(t, ~xr; ~xs)u(t+ τ, ~xr′ ; ~xs)dt , r, r′ = 1, . . . , Nr

The choice of the cross correlations to be migrated (which pairs of receivers, which

pairs of sources) is important !
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Numerical simulations

Kirchhoff Migration Cross Correlation Migration
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Further results

• Use of ambient noise sources.

One can apply correlation-based imaging techniques to signals emitted by ambient

noise sources.

→֒ Useful for applications in seismology: travel time tomography, volcano monitoring,

oil reservoir monitoring.

• Use of higher-order correlations.

One can apply imaging techniques based on special fourth-order cross correlations.
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Passive sensor imaging of a reflector

• Ambient noise sources (◦) emit stationary random signals.

• The signals (u(t, ~xr))r=1,...,Nr
are recorded by the receivers (~xr)r=1,...,Nr

(N).

• The cross correlation matrix is computed and migrated:

I(~yS) =

Nr
∑

r,r′=1

CT

( |~xr′ − ~yS |

c0
+

|~xr − ~yS |

c0
, ~xr, ~xr′

)

with CT (τ, ~xr, ~xr′) =
1

T

∫ T

0

u(t+ τ, ~xr′)u(t, ~xr)dt
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Provided the ambient noise illumination is long (in time) and diversified (in angle and

frequency): good stability [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009).



Conclusions

• Multiscale and stochastic analysis are useful to understand the structure of the data

in sensor array imaging.

• In scattering media one should migrate well chosen cross correlations of data, not

data themselves.

• Method can be applied with ambient noise sources instead of controlled sources.
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