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Position of the problem

Electrical impedance tomography

Cheap

Low side effects

Good differentiation of soft tissues

Good differentiation of pathological state

Poor resolution (ill posed inverse problem)

Ultrasound Imaging

Cheap

Low side effects

Good resolution

Poor differention of soft tissues

Poor differentiation of pathological state
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Goal

Image conductivity map, especially the conductivity jumps in a
medium with the resolution of ultrasound imaging.
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1 How to create currents with an acoustic beam and a constant
magnetic field ?

The ultrasonically induced Lorenz force tomography
Ionic description of the conductivity in aqueous tissues
Boundary measurements

2 From boundary measurements to meaningful internal data
Introduction of a virtual potential
Deconvolution
Geometric integral transform or asymptotic formula

3 Recovering the conductivity from an internal current
By optimization
By solving a transport equation
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The experiment

absorber

sample with
electrodes

magnet
(300 mT)

transducer
(500 kHz)

oil tank
degassed water
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How to create currents with an acoustic beam and a constant magnetic field ?

The ultrasonically induced Lorenz force tomography
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Assumptions

Ω mechanically homogeneous and is a conductive medium. Γ1 and
Γ2 are perfect conductors. Γ0 is a perfect isolator. B is constant.
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How to create currents with an acoustic beam and a constant magnetic field ?

The ultrasonically induced Lorenz force tomography
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Velocity field

For any x ∈ Ω, written x = y + zξ + r with z > 0, r ∈ ξ⊥,

vy ,ξ(y + zξ + r , t) = A(z , |r |)w(z − ct)ξ
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How to create currents with an acoustic beam and a constant magnetic field ?

The ultrasonically induced Lorenz force tomography
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As Ω is electrically neutral, can we explain the origin of the current
measured at the electrodes ?
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How to create currents with an acoustic beam and a constant magnetic field ?

Ionic description of the conductivity in aqueous tissues

Assume that Ω is an electrolyte medium (saline gel, living
tissues,. . . ) the conductivity phenomenon is due to the presence of
ions. Assume that we have N types of ions of charge qi and
volume density ni (x), i ∈ {1, . . . ,N}. We have, for any x ∈ Ω

Neutrality ∑
i

qini (x) = 0

Kolhrausch’s law

σ(x) = e+
∑
i

µiqini (x)

with µi ∈ R, satisfying µiqi > 0 is called the ionic mobility and e+

is the elementary charge.
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How to create currents with an acoustic beam and a constant magnetic field ?

Ionic description of the conductivity in aqueous tissues

We can understand now understand the source of current as the
deviation of the ions by the magnetic field B.

Consider an ion i at position x at time t. The acoustic beam
imposes to it a velocity in the direction ξ : v(x , t)ξ. The Lorentz
force applied to i is

Fi = qivξ × Be3

and the ion get almost immediately an additional drift speed

vd ,i =
µi
qi
Fi = Bµivτ

where τ = ξ × e3. At first order in the displacement length, its
total velocity is

vi = vξ + Bµivτ.

Defining the current as the total amount of charges displacement,

jS =
∑

i niqivi = (
∑

i niqi ) vξ + B (
∑

i niµiqi ) vτ = B
e+σvτ .
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How to create currents with an acoustic beam and a constant magnetic field ?

Boundary measurements

The interaction between the velocity field v(x , t)ξ and the
magnetic field Be3 create a source of current

jS(x , t) =
B

e+
σ(x)v(x , t)τ

Our measure is the indirect effect of jS on the boundary. Assume
that the electromagnetic propagation is much faster than the
acoustic propagation, we adopt the electrostatic approximation.

j = jS + σ∇u

satisfying
∇ · j = 0

then the potential satisfies at a fixed time t,

−∇ · (σ∇u) = ∇ · jS in Ω
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How to create currents with an acoustic beam and a constant magnetic field ?

Boundary measurements
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support of jS

u :


−∇ · (σ∇u) = ∇ · jS in Ω

u = 0 on ∂Γ1 ∪ Γ2

∂νu = 0 on Γ0

The intensity that we measure is

I =

∫
Γ2

σ∂νu



Recovering discontinuous conductivity from internal current : case of the ultrasonically-induced Lorentz force electrical impedance tomography

From boundary measurements to meaningful internal data

Introduction of a virtual potential

In order to understand the measurements, we multiply the
potential equation by a well chosen test function U called virtual
potential defined by

−∇ · (σ∇U) = 0 in Ω

U = 0 on Γ1

U = 1 on Γ2

∂νU = 0 on Γ0

and through integration by part it comes

I =

∫
Ω
jS · ∇U =

B

e+

∫
Ω
v(x , t)σ(x)∇U(x)dx · τ

and we define the measurments function as

My ,ξ(z) =

∫
Ω
vy ,ξ

(
x ,

z

c

)
σ(x)∇U(x)dx · τξ
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From boundary measurements to meaningful internal data

Introduction of a virtual potential

The inverse problem posed by this hybrid method is

Inverse problem

Find σ : Ω→ R from the knowledge of

My ,ξ : z →
∫

Ω
vy ,ξ

(
x ,

z

c

)
σ(x)∇U(x)dx · τξ

known for any y ∈ Y ⊂ Rd and ξ ∈ Θ ⊂ Sd−1

In general, Y is supposed to be a bounded smooth surface of Rd .

Idea

If Y and Θ are well chosen, we show that the virtual current
J(x) = (σ∇U)(x) can be recovered.
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From boundary measurements to meaningful internal data

Deconvolution

Step 1 : Deconvolution

As vy ,ξ
(
y + z ′ξ + r , zc

)
= w(z ′ − z)A(z ′, |r |) we rewrite the

measurments My ,ξ as

My ,ξ(z) = (w ∗ Φy ,ξ)(z)

where

Φy ,ξ(z) =

∫
ξ⊥

(σ∇U)(y + zξ + r)A(z , |r |)dr · τξ

To recover Φy ,ξ with stability, we need short pulses and/or changes
of the frequency. To recover the largest spectral band in the
Fourrier domain.
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From boundary measurements to meaningful internal data

Geometric integral transform or asymptotic formula

Step 2 : Getting the current

Once we know

Φy ,ξ(z) =

∫
ξ⊥

(σ∇U)(y + zξ + r)A(z , |r |)dr · τξ

we can notice that it looks like a weighted Radon transform of the
current density. If we assume that the support of A is thin,

Φy ,ξ(z) = (σ∇U)(y + zξ)

∫
ξ⊥

A(z , |r |)dr · τξ +O(R)

where R is such that supp(ρ 7→ A(z , ρ)) ⊂ [0,R] and with a
remainder depending on |σ∇U|TV (Ω). Finally, choosing x ∈ Ω and
consider Φy ,ξ(z) for any (y , ξ, z) such that x = y + zξ we
reconstruct

J(x) = (σ∇U)(x)
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Recovering the conductivity from an internal current

By optimization

Virtual potential operator

For a < b, L∞a,b(Ω) := {f ∈ L∞(Ω) : a < f < b}.

Definition

F : L∞a,b(Ω) −→ H1(Ω) such that

F [σ] = U :



−∇ · (σ∇U) = 0

U = 0 on Γ1

U = 1 on Γ2

∂νU = 0 on Γ0
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Recovering the conductivity from an internal current

By optimization

Minimisation functionnal

Definition

K :=
L∞a,b(Ω) −→ R

σ 7−→ 1
2

∫
Ω |σ∇F [σ]− J|2

We look for minimisers of K .
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Recovering the conductivity from an internal current

By optimization

Gradient descent

Proposition

K is Frechet-differentiable and

dK [σ] = (σ∇F [σ]− J −∇p) · ∇F [σ], ∀σ ∈ L∞a,b(Ω),

where p is the solution of the adjoint problem :
∇ · (σ∇p) = ∇ · (σ2∇F [σ]− σJ)

p = 0 on Γ1 ∪ Γ2

∂νp = 0 on Γ0

This works but the convexity is not good (numerically).
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Recovering the conductivity from an internal current

By optimization
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Figure : Conductivity map σ to be reconstructed and the reconstruction
by optimisation.
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Recovering the conductivity from an internal current

By solving a transport equation

Orthogonal field transport equation

If we know σ∇U, we know the direction of ∇U. From this we can
try to reconstruct the potential U. Define F = (J2,−J1). Then U
satisfies:

∇U · F = 0 in Ω

and U|Γ1 = 0, U|Γ2 = 1 and if the variations of σ are supposed far
from Γ0, we can look for U in H1(Ω) as a solution of{

F · ∇U = 0 in Ω

U = x2 on ∂Ω

This idea is good only if the previous problem admits a unique
solution !
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Recovering the conductivity from an internal current

By solving a transport equation

The transport problem{
F · ∇U = 0 in Ω

U = x2 on ∂Ω

is highly related to the corresponding characteristic flow problem{
∂tX (x , t) = F (X (x , t)) on [0,T [

X (x , 0) = x ∈ Ω

because t 7→ U(X (x , t)) would be a constant function. We would
need F to be local Lipschitz in Ω...

Problem

F is not even continuous !
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Recovering the conductivity from an internal current

By solving a transport equation

About Cauchy problem with non smooth field

Theorem [DiPerna-Lions 89]

Consider u ∈ L1(Ω) satisfying{
F · ∇u = 0 in Ω

u = 0 on ∂Ω

with F ∈ L1(Ω) ∩W 1,1
loc (Ω)d , ∇ · F ∈ L∞(Ω), then

u = 0.

Controlling the divergence is necessary to control the measure
transport by the flow. We have

e−ctλ ≤ λ ◦ X (t) ≤ λect

where c = ‖∇ · F‖L∞(Ω) and λ is the Lebesgue measure. Basically,
this prevents two different characteristic lines from touching each
other. Then Lions in 96 extended it to ”piecewise” W 1,1 regularity.
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Recovering the conductivity from an internal current

By solving a transport equation

And with BV regularity ?

Theorem [Ambrosio 03]

Assume that F ∈ L∞(Ω) ∩ BVloc(Ω), ∇ · F ∈ L∞loc(Ω), then there
exists a unique lagrangian flow X satisfying

X (x , t) = x +

∫ t

0
F (X (x , u))du.

That would assure the uniqueness for our transport equation. But
in our case if we compute formally
∇ · F = ∇ · (σ∇U × e3) = ∇σ ×∇U · e3+ something. No chance
to fit in L∞(Ω) even locally. We shall try another approach.
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Recovering the conductivity from an internal current

By solving a transport equation

We remarked that we need only existence of a flow and we do not
really care about uniqueness. To fixe the ideas,

existence of outgoing flow⇒ uniqueness for the transport

Theorem [Bressan-Shen 98]

Assume that F (x) = g(τ(x), x) where
τ : Rd → R is C 1, t 7→ g(t, x) is measurable
x 7→ g(t, x) is Lipschitz.
If there exist a compact set K such that f (x) ∈ K and
∇τ(x) · z > 0 for all x ∈ Ω, z ∈ K Then the Cauchy problem{

∂tX (x , t) = F (X (x , t)) on [0,T [

X (x , 0) = x ∈ Ω

has at least solution.

Problem : F cannot be tangent to its own discontinuities. This is
called by Bressan the ”transversality condition”.
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Recovering the conductivity from an internal current

By solving a transport equation

Dead end ?

Our flow cannot be Lagranian so neither fits with the
DiPerna-Lions theory nor the Ambrosio’s one. The flow can be
tangent to the discontinuities so it does not fit with the
Bressan-Shen Cauchy problem.

We can try our own (local) existence of a characteristic flow which
may fit our problem.
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Recovering the conductivity from an internal current

By solving a transport equation

For any surface S ∈ Ω of class C 2 cutting Ω in connected Lipschitz
domains Ωi , we say that f ∈ C k,α

S (Ω) if f |Ωi
∈ C k,α(Ωi )

Theorem : Local existence for characteristic flow

Consider a smooth surface S ⊂ Ω and F ∈ C k,α
S (Ω)2. Assume that

the jump of F on S can be written

F+ = f τ + gh+ν

F− = f τ + gh−ν

where ν is the normal to S and τ the tangent vector and with f ,
g , h+ and h− are in C 0,α(S), h+ and h− are positive and g locally
signed. Then for any x ∈ Ω, there exists T > 0 and
X ∈ C 1([0,T ],Ω) such that t 7→ F (X (t)) is measurable and

X (t) = x +

∫ t

0
F (X (s))ds ∀t ∈ [0,T [.



Recovering discontinuous conductivity from internal current : case of the ultrasonically-induced Lorentz force electrical impedance tomography

Recovering the conductivity from an internal current

By solving a transport equation

Enough difficulties ! To assure that the characteristics reach the
boundary, we add the hypothesis

F · e1 ≥ c > 0

Theorem : Existence of outgoing characteristics

If F satisfies the previous conditions, for any x ∈ Ω there exists
T ∈]0, diam(Ω)/c[ and X ∈ C0([0,T [,Ω) such that t 7→ F (X (t))
is measurable and

X (t) = x +

∫ t

0
F (X (s))ds ∀t ∈ [0,T [

and
lim
t→T

X (t) ∈ ∂Ω.
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Recovering the conductivity from an internal current

By solving a transport equation

We have a uniqueness result,

Corollary

If F satisfies the previous conditions, and u ∈ C 0(Ω) ∩ C 0,α
S (Ω)

satisfies {
F · ∇u = 0 in Ω

u = 0 on ∂Ω,

then u = 0 in Ω.
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Recovering the conductivity from an internal current

By solving a transport equation

If the current is such that F satisfies all the previous conditions,
the virtual potential U can be found solving{

F · ∇U = 0 in Ω

U = x2 on ∂Ω,

To solve this we introduce the regularized problem{
−∇ · (ε(I + FFT )∇Uε) = 0 in Ω

Uε = x2 on ∂Ω,

and prove

Proposition

The sequence (Uε − U)ε>0 converges strongly to zero in H1
0 (Ω).
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Recovering the conductivity from an internal current

By solving a transport equation

Sketch of proof :

∇(Uε − U) is bounded in L2(Ω)

up to an extraction (Uε − U) converges in H1
0 (Ω) for the

weak − ∗ topology.

The limit U∗ satisfies{
F · ∇U∗ = 0 in Ω

U∗ = 0 on ∂Ω,

so using the previous work, U∗ = 0.

We prove that the convergence is strong and we do not need
extraction.

Corollary

The sequence
1

σε
:= J·∇Uε

|J|2 converges to
1

σ
strongly in L2(Ω).
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Recovering the conductivity from an internal current

By solving a transport equation
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Figure : Conductivity map σ to be reconstructed and the reconstruction
through transport equation.
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Recovering the conductivity from an internal current

By solving a transport equation

Conclusion

We provided a mathematical model for the Lorentz force
E.I.T,

And two algorithms to reconstruct the conductivity map from
measurements.

The limitations of this method are, for now:

Poor signal strenght

Numerical instability in the deconvolution

Interesting developpments for the future:

Improving the deconvolution process

Conductivity speckle imaging in random mediums
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Recovering the conductivity from an internal current
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Recovering the conductivity from an internal current

By solving a transport equation

Conclusion
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Recovering the conductivity from an internal current

By solving a transport equation

Thank You !
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