
An introduction to homogenization
Setting

Least square formulation

A parameter identification problem
in stochastic homogenization

William Minvielle

CERMICS, École des Ponts ParisTech,

Matherials research-team, INRIA Rocquencourt

william.minvielle@cermics.enpc.fr

École Nationale des Ponts et Chaussées – 2014, October 2nd.
William Minvielle An inverse problem in stochastic homogenization



An introduction to homogenization
Setting

Least square formulation
Multiscale materials
Truncation

Multiscale materials often leads to very expensive
computations, and practical difficulties.
We consider a simple (linear) problem for a complex materials:{

−div [Aε(x)∇uε(x)] = f (x) x ∈ D ⊂⊂ Rd ,
uε = 0 ∂D.

Airplane wing.
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−div (Aε(x)∇uε) = f in D, uε = 0 on ∂D

Application Aε uε f

Elasticity elastic moduli displacement mechanical load
Thermal conductivity thermal conductivity temperature heat source

Electrostatics permittivity electric potential charge density
Darcy flow flow conductivity pressure sources
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Consider A(y) a Zd-periodic matrix field.

−div
(

A
(x

ε

)
∇uε

)
= f in D, uε = 0 on ∂D (1)

This difficult oscillatory problem homogenizes to:

− div (A?∇u?) = f in D, u? = 0 on ∂D, (2)

The homogenized matrix A? is defined by an average in the unit cell
Q = (0, 1)d involving so-called correctors functions w:

A?ej =
∫

Q
A(x) (∇wej (x) + ej) dx, (3)

and the (easy) corrector equation reads:
−div [A(∇wp + p)] = 0 on Rd ,

∇wp periodic,
∫

Q
∇wp = 0.

(4)
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Setting
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Consider A(y, ω) a stationary matrix field.

− div
(

A
(x

ε
, ω
)
∇uε

)
= f in D, uε = 0 on ∂D.

This difficult oscillatory problem homogenizes to:

− div (A?∇u?) = f in D, u? = 0 on ∂D,

where A? is defined by:

A?ej =
∫

Q
E
[
A(y, ·) (∇wej (y, ·) + ej)

]
dy,

and the corrector equation, in Rd , reads, for any p ∈ Rd :
−div [A(∇wp + p)] = 0 in Rd a.s.,

∇wp stationary,
∫

Q
E[∇wp] = 0.

Note that A? (and hence u?) is deterministic.
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In practice, truncate over QN := (0, N )d :
− div

[
A(∇wN

p + p)
]

= 0 in QN a.s., wN
p QN − periodic.

A?
N (ω)ej := 1

|QN |

∫
QN

A(y, ω)(ej +∇wN
ej (y, ω))dy.

For that reason alone, randomness comes again in the picture.

In the sequel, we focus on computing E[A?
N ].

Introduce the estimator IMC
M := 1

M

M∑
m=1

A?
N (ωm), where (ωm) are i.i.d.

A? − IMC
M = A? − E[A?

N ] + E[A?
N ]− IMC

M (5)

The bias error is often small. The statistical error is controlled by the
variance. Variance reduction approaches are useful to reduce the error.∣∣E[A?

N ]− IMC
M
∣∣ ≤ 1.96

√
Var[A?

N ]
√

M
F. Legoll and WM A control variate approach based on a defect-type theory for variance reduction

in stochastic homogenization, 2014, Submitted. ArXiv 1407.8029
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An inverse problem
in stochastic homogenization

joint work with

F. Legoll, A. Obliger, M. Simon.

F. Legoll, W.M., A. Obliger, M. Simon. A parameter identification problem in stochastic

homogenization, 2014, arXiv 1402.0982. Accepted in ESAIM:ProcS.
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Subsurface modeling (Courtesy PECSA, Paris VI)
Diffusion in clay modeled by the so-called Pore Network Model.

e2

e1

x y
e

Discrete elliptic equation −div [A( x
ε , ω)∇uε] = f
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Can we recover some microscopic quantities

on the basis of

a few macroscopic quantities?
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Forward problem

Modelling:
I Diameters of channel: Weibull law de ∼W (λ, k) i.i.d.
I Conductance: A(x, ω) = diag((d4

x,x+ej (ω))j∈{1,...,d}).

Figure 1 : Weibull distributions.

Forward problem: given A(·, ω), compute
I Macroscopic permeability A?

N (ω).
I Macroscopic variance Var[A?

N ].

Inverse problem: given observed A?
N and Var[A?

N ], find λ, k.
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Figure 1 : For two choices of (λ, k), convergence of E[A?
N ] wrt |QN |

Continuous line: empirical mean.
Dashed line: confidence intervals.

∣∣∣E[A?
N ]− IMC

M

∣∣∣ ≤ 1.96

√
Var[A?

N ]
√

M
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A minimization problem

Aobs: observed macroscopic permeability.
Vobs: observed relative variance ⇒ VarR[X ] := Var[X ]/E[X ]2

Fix M realizations ω = (ωm)m∈{1,...,M}.

Problem: Find (λ, k) which minimizes FM :

FM (λ, k;ω) :=
(
IMC

M (ω)
Aobs

− 1
)2

+
(

V MC
M (ω)
Vobs

− 1
)2

,

where IMC
M (ω) := 1

M

M∑
m=1

A?
N (ωm), V MC

M (ω) := VarRM [A?
N ](ω).

Newton algorithm (Derivatives of FM ⇒ OK!)
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,

where IMC
M (ω) := 1

M

M∑
m=1

A?
N (ωm), V MC

M (ω) := VarRM [A?
N ](ω).

with VarRM [A?
N ](ω) :=

1
M

∑M
m=1

(
A?

N (ωm)− IMC
M (ω)

)2

IMC
M (ω)2

Newton algorithm (Derivatives of FM ⇒ OK!)
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An introduction to homogenization
Setting

Least square formulation
Minimization formulation
Numerical results

1D
I Homogenization ⇒ OK!
I Minimization problem ⇒ Well posed!
I Numerics ⇒ Easy!

2D
I Homogenization ⇒ OK.
I Minimization problem ⇒ Theoretically unknown
I Numerics ⇒ More difficult
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Landscape - Overview

Figure 2 : F(λ, k) for λ ∈ [1± 50%], k ∈ [15± 50%].
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Landscape - Close-up

Figure 3 : F(λ, k) for λ ∈ [1± 10%], k ∈ [15± 10%].
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Forward problem: statistical error

Figure 4 : Left: A?
N , right: VarR[A?

N ] (k? = 15; λ? = 1).
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Random environment
- Compute a numerical target Aobs,Vobs with λ = 1, k = 15
- Run Newton

I Starting from an initial guess 10% off,
I Using a different environment.

Figure 5 : Absolute error (k? = 15; λ? = 1).
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I Forward problem statistical error:

VarR [A?
N (λ?, k?)] ≈ 1.4 10−6 VarR

[
V MC

M (λ?, k?)
]
≈ 10−3,

I Inverse problem error:

VarR[λopt] ≈ 7.9 10−7 VarR[kopt] ≈ 1.7 10−4.

Accurate determination of the best λ, k.
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2D Preliminary results

Figure 6 : Relative error (k? = 15; λ? = 1).

With low values of N ,M (N = 10, M = 30 !) we still get
meaningful values of λ, k.
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2D Preliminary results

Figure 6 : Relative error (k? = 15; λ? = 1).

With low values of N ,M (N = 10, M = 30 !) we still get
meaningful values of λ, k.
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Conclusion

Future work: extension to the 2D case
I Homogenization with unbounded coefficients:

without c ≤ A(x, ω) ≤ C ∀x, ω.
I Numerical computations.

Modeling issues
I Robustness of the best (λ, k) with respect to the observed

values Aobs,Vobs ?

Numerical issues
I Tradeoff between N (RVE size) and M (# realizations)?
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