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Introduction

@ Many problems involve PDEs with spatially varying data which is
subject to uncertainty.

Example: groundwater flow in rock underground.

@ Uncertainty enters PDE via its coefficients (random fields). The
quantity of interest: is a random number or field derived from the
PDE solution.

Examples: effective permeability or
breakthrough time of a pollution plume

@ Typical Computational Goal: expected value of quantity of
interest. (Uncertainty quantification)
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Uncertainty Propagation
The Forward Problem
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Example: Uncertainty in Subsurface Flow
(eg. risk analysis of radwaste disposal or optimisation of oil recovery)
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Stochastic Modelling of Uncertainty:

Model uncertain conductivity tensor k as a lognormal random field
Typical simplified model (prior):

@ log k(x,w) isotropic, scalar, Gaussian

e.g. meanfree with exponential covariance

R(x,y) = o®exp (=[x = yI/})

@ e.g. truncated Karhunen-Loéve expansion typical realisation
(A= 6—14, 0% =8)
log k(x,w) Z\/@b] Zi(w), Z(w)iid N(0,0?)
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Stochastic Modelling of Uncertainty:
Model uncertain conductivity tensor k as a lognormal random field
Typical simplified model (prior):

@ log k(x,w) isotropic, scalar, Gaussian

e.g. meanfree with exponential covariance

R(x,y) = o®exp (=[x = yI/})

@ e.g. truncated Karhunen-Loéve expansion typical realisation
(A= &, 0% =8)
log k(x,w) Z\/WDJ Zi(w), Z(w)iid N(0,0?)

Typical quantities of interest:

@ p(x*), G(x*), travel time, water cut,. ..

@ outflow through lNout: Qour = frout -dn
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Why is this problem so challenging?
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Why is this problem so challenging?

eigenvalue
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Why is this problem so challenging?

eigenvalue

— 1=0.01
— — —A=01
— = A=t

KL-eigenvalues in 1D

@ Small correlation length A\ —

Relative error in quantity of interest

Convergence of g|y—1 w.r.t. s

high dimension s > 10

and fine mesh h<«1

o Large 02 & exponential == large heterogeneity /== > 10°
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Monte Carlo for large scale problems (plain vanilla)

Zs(w) c RS Model(h) X (UJ) c RM: Output Qs s( ) cR }

random input state vector quantity of interest

@ e.g. Z; multivariate Gaussian; X, numerical solution of PDE; Qs a
(non)linear functional of X,
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Monte Carlo for large scale problems (plain vanilla)

Model(h) Output

Z,(w) ER® Xp(w) € RM Qns(w) €R

random input state vector quantity of interest

@ e.g. Z; multivariate Gaussian; X, numerical solution of PDE; Qs a

(non)linear functional of X,

h—>0 5—00

E[Q]

@ Q(w) inaccessible random variable s.t. E[Q} ;]
and [E[Qhs — Q]| = O(h*) +O(s )

@ Standard Monte Carlo estimator for E[Q]:
15 o)
AMC !
= N Z Qh,s
where {Qh N | are i.i.d. samples computed with Model(h)
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@ Convergence of plain vanilla MC (mean square error):

VIQn.s 2
E[(Q-EQ)?] = sl (E[Q,. - q))
=: MSE sampling error model error (“bias”)

@ Typical 2D): =1 = MSE=O(NY)+0O(M, ') = O(?)
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@ Convergence of plain vanilla MC (mean square error):

A V|Qn,s 2
B[(QC Q)] = el (kg - q))
=: MSE sampling error model error (“bias”)

@ Typical 2D): =1 = MSE=O(NY)+0O(M, ') = O(?)

@ Thus M, ~ N ~ 72 and Cost = O(NM},) = O(e™*) (w. MG solver)
(e.g. for e = 1073 we get M), ~ N ~ 10° and Cost = O(10'?) 1)

@ Quickly becomes prohibitively expensive !

Complexity Theorem for (plain vanilla) Monte Carlo

Assume that E[Q, 5| — E[Q] with O(h") and cost per sample is O(h~7).
Then

Cost(@MC) = O(c727%) to obtain MSE = O(£?).
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Numerical Example (Standard Monte Carlo)

D = (0,1)?, covariance R(x,y) := o exp (—@) and Q = — kg—)’(’lHl_l(D)
using mixed FEs and the AMG solver amglr5 [Ruge, Stiiben, 1992]
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Numerical Example (Standard Monte Carlo)

D = (0,1)?, covariance R(x,y) := o2 exp (—@) and Q = — kg—)’(’lHLl(D)
using mixed FEs and the AMG solver amglr5 [Ruge, Stiiben, 1992]

@ Numerically observed FE-error: ~ O(h%/*) = o ~ 3/4.

@ Numerically observed cost/sample: ~ O(M;) = O(h™?) = v~ 2.
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Numerical Example (Standard Monte Carlo)

D = (0,1)?, covariance R(x,y) := o2 exp (—M) and Q= | — kg—xleLl(D)
using mixed FEs and the AMG solver amglr5 [Ruge, Stiiben, 1992]

@ Numerically observed FE-error: ~ O(h%/*) = o ~ 3/4.

@ Numerically observed cost/sample: ~ O(M;) = O(h™2) = ~ =~ 2.

@ Total cost to get RMSE O(¢):

~ 0(6_14/3)

to get error reduction by a factor 2 — cost grows by a factor 25!

Case 1: A\ =03,02=1

Case 2: A\ =0.1,02=3

h~1 N Cost

5 h1 N Cost
0.01 | 129 1.4 x10* 21lmin
0.002 | 1025 3.5 x 10° 30days

€
0.01 | 513 8.5x10° 4h
0.002 | Prohibitively large!!

(actual numbers & CPU times on a 2GHz Intel T7300 processor)
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Multilevel Stochastic Solvers
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Multilevel Monte Carlo [Heinrich, '01], [Giles, '07]
[Barth, Schwab, Zollinger, '11], [Cliffe, Giles, RS, Teckentrup, '11]

Note that trivially

E[Q] =E[Q] + )|
where hy_1 = mhy (hierarchy of grids) and Q; := Qp, s,

L:1 E[Qr — Qr-1]

4
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Multilevel Monte Carlo [Heinrich, '01], [Giles, '07]
[Barth, Schwab, Zollinger, '11], [Cliffe, Giles, RS, Teckentrup, '11]

Note that trivially

E[Q] =E[Q] + )|
where hy_; = mhy (hierarchy of grids) and Qy := Qp, s,

L:1 E[Qr — Qr-1]

4

Idea: Define the following multilevel MC estimator for E[Q]:

A~ N L ¢
ML . MC MC ;
ML QMC 4 2571 Y,"~ where Y, = Q — Q1
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Multilevel Monte Carlo [Heinrich, '01], [Giles, '07]
[Barth, Schwab, Zollinger, '11], [Cliffe, Giles, RS, Teckentrup, '11]
Note that trivially

E[Q.] = E[Qo] + Z;l E[Qr — Qr—1]

where hy_1 = mhy (hierarchy of grids) and Q; := Qp, s,

Idea: Define the following multilevel MC estimator for E[Q]:

~ R L .
ML . MC MC .
= QT+ g - Y,"~ where Y, = Q — Q1

Key Observation: (Variance Reduction! Corrections cheaper!)

If Q — Q then V[Q —Q 1] —0 a ¢ — oo |
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Complexity Theorem for Multilevel Monte Carlo

Assume FE error O(h*) and Cost/sample O(h™7) (as above) as well

as
V[Qg — Qe_l] = O(hg) (variance reduction).

There exist L, {Ny}-_, (computable on the fly) to obtain MSE < &2 with

=8

COSt(AZ\/w) =0 (8_2_max (O’ o )) + possible log-factor

(Note. This is completely abstract! Applies also in other applications!)
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Complexity Theorem for Multilevel Monte Carlo

Assume FE error O(h*) and Cost/sample O(h™7) (as above) as well

as
V[Qg — Qe_l] = O(hg) (variance reduction).

There exist L, {Ny}-_, (computable on the fly) to obtain MSE < &2 with

COSt(AZ\/w) =0 (S_Z_max (O’VQB)) + possible log-factor

(Note. This is completely abstract! Applies also in other applications!)

y

If 5~ 2a and v~ d (as in example above with AMG) then
Cost(QME) = O (g— max(?v%)) = O (max(No, M,))

For a ~ 3/4 (in example above): O(e8/3) instead of O(e~14/3)
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Complexity Theorem for Multilevel Monte Carlo

Assume FE error O(h*) and Cost/sample O(h™7) (as above) as well

as
V[Qg — Qe_l] = O(hg) (variance reduction).

There exist L, {Ny}-_, (computable on the fly) to obtain MSE < &2 with

B

COSt(AZ\/w) =0 (S_Z_max (0’70)) + possible log-factor

(Note. This is completely abstract! Applies also in other applications!)

y

If 5~ 2a and v~ d (as in example above with AMG) then
Cost(QME) = O (g— max(?v%)) = O (max(No, M,))
For a ~ 3/4 (in example above): O(e8/3) instead of O(e~14/3)

Optimality: Same asymptotic cost as one deterministic solve (tol= ¢ 'J
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Numerical Example (Multilevel MC)

D = (0,1)?; covariance R(x,y) := 0% exp (—@); Q = |pllL(p)
Std. FE discretisation, circulant embedding (s, = O(My))
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Numerical Example (Multilevel MC)

D = (0,1)?; covariance R(x,y) := o2 exp (—@); Q = |pllL(p)

Std. FE discretisation, circulant embedding (s, = O(M;))
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Analysis: Verifying Assumptions of Complexity Theorem
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Analysis: Verifying Assumptions of Complexity Theorem

@ [Barth, Schwab, Zollinger, 2011]: case of uniformly elliptic and
bounded k(-,w) € W'>(D) (not satisfied herel)

@ [Charrier, RS, Teckentrup, 2013]: lognormal k = not uniformly
elliptic/bdd. and only k(-,w) € C%"(D), with < 1/2 (exponen. covar.)

R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct '14 14 / 35



Analysis: Verifying Assumptions of Complexity Theorem

@ [Barth, Schwab, Zollinger, 2011]: case of uniformly elliptic and
bounded k(-,w) € W'>(D) (not satisfied herel)

@ [Charrier, RS, Teckentrup, 2013]: lognormal k = not uniformly
elliptic/bdd. and only k(-,w) € C%"(D), with < 1/2 (exponen. covar.)

@ New regularity result: (g-th moment of H*"*-norm)
1plla(@,m+e(py)) < Cegllfllizpy, V't <1/2, g <oo.
@ New FE error result: (g-th moment of H'-norm)

lp = Pullo.mnoy) < Cigllfllzoy b ¥Vt <1/2, g <oo.
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Analysis: Verifying Assumptions of Complexity Theorem

@ [Barth, Schwab, Zollinger, 2011]: case of uniformly elliptic and
bounded k(-,w) € W>(D) (not satisfied here!)

@ [Charrier, RS, Teckentrup, 2013]: lognormal k = not uniformly
elliptic/bdd. and only k(-,w) € C%"(D), with < 1/2 (exponen. covar.)
@ New regularity result: (g-th moment of H*"*-norm)

IpllLa@,H+ (D)) < Ceglifllizpy, ¥Vt <1/2, g <oo.

@ New FE error result: (g-th moment of H'-norm)

P = palla@.rnoy) < Cigllfllzpy b ¥Vt <1/2, g < o0

[Teckentrup, RS, Giles, Ullmann, 2013]: (nonlinear) functionals, corner
domains, discontinuous coefficients, level-dependent truncations

[Teckentrup, 2013]: L>°-, W1*°-norms, random interfaces,. . .

[Graham, RS, Ullmann, 2013]: extension to mixed FEs
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Analysis: Verifying Assumptions of Complexity Theorem

@ [Barth, Schwab, Zollinger, 2011]: case of uniformly elliptic and
bounded k(-,w) € W>(D) (not satisfied here!)

@ [Charrier, RS, Teckentrup, 2013]: lognormal k = not uniformly
elliptic/bdd. and only k(-,w) € C%"(D), with < 1/2 (exponen. covar.)
@ New regularity result: (g-th moment of H*"*-norm)

IpllLa@,H+ (D)) < Ceglifllizpy, ¥Vt <1/2, g <oo.

@ New FE error result: (g-th moment of H'-norm)

lp = pallLs.m oy < Cigllfllzpy ', ¥Vt <1/2, g < oo

[Teckentrup, RS, Giles, Ullmann, 2013]: (nonlinear) functionals, corner
domains, discontinuous coefficients, level-dependent truncations

[Teckentrup, 2013]: L>°-, W1*°-norms, random interfaces,. . .

[Graham, RS, Ullmann, 2013]: extension to mixed FEs

For Fréchet diff'ble functional @ = G(p), assumptions hold for any o < 1, < 2.J
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Reducing # Samples (Quasi—-Monte Carlo)

[Graham, Kuo, Nuyens, RS, Sloan, '10] & [Gr., Ku., Nichols, RS, Schwab, SI., '13]

random w() — deterministically chosen &()

D L4 . L4 .
. ° O.. e . a. 0. . LIS l. . . '. o ° o
° ° o %o % ® . ® . .
o %o ° ° e ° ® . * e
. AR . . o ° o e o
°© o °% % ° L} e . ® e ® e
o ® ° o °, ° . . o o ° o .
° ° i ®e .. . ® . ® . °
o, o o8 o %o ° R o e o R
D ° ..0 ¢ .o ° ° ‘e ° . S e i ¢
. ° 0 . e ° °« o
0o ® . ..o % .‘ ° ® . . ® e

64 random points 64 Sobol’ points 64 lattice points
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Reducing # Samples (Quasi—-Monte Carlo)

[Graham, Kuo, Nuyens, RS, Sloan, '10] & [Gr., Ku., Nichols, RS, Schwab, SI., '1

—> deterministically chosen ()

random w(")
° ¢ {: ° ... ... '0... ...... .0. ..
% ° '.o..:.' % '..c.... ..'...‘.o.
64 Sobol” points 64 lattice points

64 random points

@ Provided KL-eigenvalues decay sufficiently fast (e.g. Matérn):
QMC estimator converges with O(N~!) instead of O(N~1/?)

@ New rigorous theory (for s — o) in weighted Sobolev spaces
Ecole des Ponts, Oct '14
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Reducing # Samples (Quasi—-Monte Carlo)

[Graham, Kuo, Nuyens, RS, Sloan, '10] & [Gr., Ku., Nichols, RS, Schwab, SI., '13]

random w() — deterministically chosen ()

° D ® . ° ° ° . ° o °
° ® %o . R . . e ' * ., * .,
. .' ° o % ° ® . ° ° o
° L4 ° o ° ° o o .
° o %o o oo . o. . ° o . °
° ° e% o, . ° '. ° ° o o o
o ° o o ° ®e . ° ® ® . ° ° o
° % o ° o L L4 o e o L4
oo o o0 o %o . . o o o
° o o o o %o ° o ® .
., . o’ o « ° . . . LI . e o
. e [N . ° . o e o L]
(X3 . . 4 . L4

64 random points 64 Sobol’ points 64 lattice points

@ Provided KL-eigenvalues decay sufficiently fast (e.g. Matérn):
QMC estimator converges with O(N~!) instead of O(N~1/?)

@ New rigorous theory (for s — o) in weighted Sobolev spaces
@ In practice #samples (and thus cost) always significantly smaller
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Multilevel Quasi-Monte Carlo (Gains complimentary!)

[Giles, Waterhouse '09] (SDE), [Kuo, Schwab, Sloan '12] (uniform affine),
[Harbrecht et al, '13] (lognormal, but not s-independent & no efficiency gains)
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Multilevel Quasi-Monte Carlo (Gains complimentary!)

[Giles, Waterhouse '09] (SDE), [Kuo, Schwab, Sloan '12] (uniform affine),
[Harbrecht et al, '13] (lognormal, but not s-independent & no efficiency gains)

NEW: Complexity Theorem for Multilevel QMC (lognormal; G linear)
[Kuo, RS, Schwab, Sloan, Ullmann, in prep.]

Assume FE error O(h®) and Cost/sample O(h~7) (as above) as well as
Va |:Q?Vg (G(pe — ,De_l))] = O(Ngnhf), with 1 <n < 2.

There exist L, {N;}5_, (computable on the fly) to obtain MSE < &2 with

ny—>~8
[e%

o~ 2
COSt(QZ\AEQ) =0 <€_n_max (O’ n )) + possible log’s
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Multilevel Quasi-Monte Carlo (Gains complimentary!)

[Giles, Waterhouse '09] (SDE), [Kuo, Schwab, Sloan '12] (uniform affine),
[Harbrecht et al, '13] (lognormal, but not s-independent & no efficiency gains)

NEW: Complexity Theorem for Multilevel QMC (lognormal; G linear)
[Kuo, RS, Schwab, Sloan, Ullmann, in prep.]

Assume FE error O(h®) and Cost/sample O(h~7) (as above) as well as
Va [Q;,g (Gpe — pg_l))] — O(N;"h}), with1<n <2

There exist L, {N;}5_, (computable on the fly) to obtain MSE < &2 with

ny—

~ 2
Cost(QZV‘LQ) =0 (5_n_max (o no )) + possible log's

@ If n~ 2, f~ 2« and v~ d then Cost = O (e* max(l’g)).
@ Better than MLMC complexity for o > d /2. Optimal for oo < d!
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Numerical Examples

D = (0,1)?; mixed BCs; std. p.w. lin. FE discretisation; Q = fol kVp dx>
Matérn covariance; truncated KLE w. s = 400; randomised lattice rule w. ; = 1/j2

. v=0.75, \=1, 0°=0.25 X V=075, A=1, o%=1
10 10
- © -SL-MC
—&— ML-MC
B
I -6 -SL-QMC .
10°F ~ o —8— ML-QMC[3 10°F
@
3
s
3 10°
@2 3
5
: 2
B w
2
g 10k
@
x
w
10'h
2 3
10’ 10
107 107 107 10° 107
€ €

v=20.75 A=1, 02 =0.25 (left) and 0? = 1 (right)
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Multilevel Markov Chain Monte Carlo

The Inverse Problem
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Incorporating Data — Bayesian Inversion

@ Model was parametrised by Z. := 71, ..., Z] (the “prior”).
In the subsurface flow application a lognormal coefficient

log k ~ 377 1 \/7j¢j(x)Zi(w) and P(Zs) = (27) /2 [[-;exp (727’2)

@ To fit model to output data F,,s (the “posterior”) use
(e.g. pressure measurements or functionals of pressure: Fops = F(p))
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Incorporating Data — Bayesian Inversion

@ Model was parametrised by Z. := 71, ..., Z] (the “prior”).
In the subsurface flow application a lognormal coefficient

log k ~ S5y y750i(x)Z(w) and P(Zs) = (20) 2T, e (5

@ To fit model to output data F,,s (the “posterior”) use
(e.g. pressure measurements or functionals of pressure: Fops = F(p))

Bayes’ Theorem: (proportionality factor 1/P(Fops) expensive to compute!)

7S(Zs) = P(Zs | Fors) = Ln(Fobs|Zs) P(Zs)
N e e U N

posterior likelihood prior
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Incorporating Data — Bayesian Inversion

@ Model was parametrised by Z. := 71, ..., Z] (the “prior”).
In the subsurface flow application a lognormal coefficient

log k ~ S5y y750i(x)Z(w) and P(Zs) = (20) 2T, e (5

@ To fit model to output data F,,s (the “posterior”) use
(e.g. pressure measurements or functionals of pressure: Fops = F(p))

Bayes’ Theorem: (proportionality factor 1/P(Fops) expensive to compute!)

7S(Zs) = P(Zs | Fors) = Ln(Fobs|Zs) P(Zs)
N e e U N

posterior likelihood prior

o Likelihood model (e.g. Gaussian) needs to be approximated:
Ly(Fobs | Zs) =~ exp(—||Fobs — Fh(ZS)H2/Uf2id)
Fn(Zs) ... model response; ogq ... fidelity parameter (data error)
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ALGORITHM 1 (Standard Metropolis Hastings MCMC)

@ Choose Z2.

@ At state n generate proposal Z. from distribution ¢g""(Z% | Z7)
(e.g. preconditioned Crank-Nicholson random walk [Cotter et al, 2012])

@ Accept Z., as a sample with probability

h,s / trans n /
ah,s — min <1’ ﬂ—h (Zs) q (Zs, ‘ Zs)>
mhs(Z3) qvr(Z; | Z3)

i.e. ZTH1 = Z. with probability o; otherwise Z*+1 = Z7.
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ALGORITHM 1 (Standard Metropolis Hastings MCMC)

@ Choose Z2.

@ At state n generate proposal Z. from distribution ¢g""(Z% | Z7)
(e.g. preconditioned Crank-Nicholson random walk [Cotter et al, 2012])

@ Accept Z., as a sample with probability

h,s / trans n /
ah,s — min (1’ ﬂ—h (Zs) q (Zs/ ‘ Zs)>
TR(21) (241 23)

i.e. ZTH1 = Z. with probability o; otherwise Z*+1 = Z7.

Samples Z7 used as usual for inference (even though not i.i.d.):
N
1 n et
Eons [Q] % Eons [Qne] ~ 5 > QM 1= Q™
i=1
where Qi(yns) = g(xh(zg"))) is the nth sample of Q using Model(h, s).
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Comments on Metropolis-Hastings MCMC

Pros:

@ Produces a Markov chain {Z7} cn, with Z7 ~ 75 as n — oo.
@ Can be made dimension independent (e.g. via pCN sampler).

@ Therefore often referred to as the “gold standard” (Stuart et al)
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Comments on Metropolis-Hastings MCMC
Pros:
@ Produces a Markov chain {Z7} cn, with Z7 ~ 75 as n — oo.
@ Can be made dimension independent (e.g. via pCN sampler).

@ Therefore often referred to as the “gold standard” (Stuart et al)

Cons:

@ Evaluation of a™* = a™%(Z. | Z") very expensive for small h.
(heterogeneous deterministic PDE: Cost/sample > O(M) = O(h~%))

@ Acceptance rate o can be very low for large s (< 10%).

d
@ Again =—Cost = O(c > 7), but const depends on a™ & 'burn-in’
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Comments on Metropolis-Hastings MCMC
Pros:
@ Produces a Markov chain {Z7} cn, with Z7 ~ 75 as n — oo.
@ Can be made dimension independent (e.g. via pCN sampler).

@ Therefore often referred to as the “gold standard” (Stuart et al)

Cons:

@ Evaluation of a™* = a™%(Z. | Z") very expensive for small h.
(heterogeneous deterministic PDE: Cost/sample > O(M) = O(h~%))

@ Acceptance rate o can be very low for large s (< 10%).

d
@ Again =—Cost = O(c > 7), but const depends on a™ & 'burn-in’

Prohibitively expensive — significantly more than plain-vanilla MC ! J
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Multilevel Markov Chain Monte Carlo

choose hy—1 = mh; and s; > sp_1, and set Qp := Qp, s, and Z, 1= Z,,
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Multilevel Markov Chain Monte Carlo

choose hy—1 = mh; and s; > sp_1, and set Qp := Qp, s, and Z, 1= Z,,

What are the key ingredients of “standard” multilevel Monte Carlo?

@ Telescoping sum: E[Q.] =E[Qo] + Zé::l E[Q)] — E[Qr_1]
@ Models with less DOFs on coarser levels much cheaper to solve.

@ V[Q— Qr-1] 2 0asl — oo = far less samples on finer levels
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Multilevel Markov Chain Monte Carlo

choose hy—1 = mh; and s; > sp_1, and set Qp := Qp, s, and Z, 1= Z,,

What are the key ingredients of “standard” multilevel Monte Carlo?

@ Telescoping sum: E[Q.] =E[Qo] + Zé::l E[Q)] — E[Qr_1]
@ Models with less DOFs on coarser levels much cheaper to solve.

@ V[Q— Qr-1] 2 0asl — oo = far less samples on finer levels

But Important! In MCMC target distribution depends on /:
E. 0 [Qu] = Eqo [Qo] + ZZ B [Q] = Eret [Qe-1]
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Multilevel Markov Chain Monte Carlo

choose hy—1 = mh; and s; > sp_1, and set Qp := Qp, s, and Z, 1= Z,,

What are the key ingredients of “standard” multilevel Monte Carlo?

@ Telescoping sum: E[Q.] =E[Qo] + Zé::l E[Q)] — E[Qr_1]
@ Models with less DOFs on coarser levels much cheaper to solve.

@ V[Q— Qr-1] 2 0asl — oo = far less samples on finer levels
But Important! In MCMC target distribution depends on /:

Er[Q)= Ep[Q] +  Erx[Q]—En[Q-]

standard MCMC 2 level MCMC (NEW)
1 No L 1 N,y
AML . n n n
Q- = 4~ Z Qo(Z7) + Z o E (Qu(Z]) — Qe-1(z 1))
No Ne
n=1 /=1 n=1
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Multilevel Markov Chain Monte Carlo

choose hy—1 = mh; and s; > sp_1, and set Qp := Qp, s, and Z, 1= Z,,

What are the key ingredients of “standard” multilevel Monte Carlo?

@ Telescoping sum: E[Q.] =E[Qo] + Zé::l E[Q)] — E[Qr_1]
@ Models with less DOFs on coarser levels much cheaper to solve.

@ V[Q— Qr-1] 2 0asl — oo = far less samples on finer levels
But Important! In MCMC target distribution depends on /:

Er[Q)= Ep[Q] +  Erx[Q]—En[Q-]

standard MCMC 2 level MEB?IC (NEW)
R 1 No L 1 N,y
QML = Mo Z Qo(Zf) + Z N Z (Qu(Z]) — Qi-1(z]_1))
n=1 /=1 n=1

H n __ n n —_ n n n N n
Split Z] = [ZZ,C’ZE,F] =2, .coarse.... 2 2] g, finel Z)
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ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q; — Q;_1)

At states zj ;,Z] (of two Markov chains on levels £ — 1 and ¢)

n+1
1

© On level / — 1: Generate new state z, ' using Algorithm 1.
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ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q; — Q;_1)
At states zj ;,Z] (of two Markov chains on levels £ — 1 and ¢)

© On level ¢/ — 1: Generate new state zgfll using Algorithm 1.

@ On level /: Propose Z, = [z]"], Z, -] with Z| - as before
(e.g. generated via a Crank-Nicholson preconditioned random walk)

Novel transition prob. " depends acceptance prob. a/~! on level ¢ — 1!
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ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q; — Q;_1)

At states zj ;,Z] (of two Markov chains on levels £ — 1 and ¢)

n+1
1

© On level / — 1: Generate new state z, ' using Algorithm 1.

@ On level /: Propose Z, = [z]"], Z, -] with Z| - as before
(e.g. generated via a Crank-Nicholson preconditioned random walk)

Novel transition prob. " depends acceptance prob. a/~! on level ¢ — 1!

© Accept Z) with probability

™(Z}) 4"(Z7| 22)>

L n .
a1 20) = min (1 S B2
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ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q; — Q;_1)

At states zj ;,Z] (of two Markov chains on levels £ —1 and ¢)
@ On level £ — 1: Generate new state z”+1 using Algorithm 1.

@ On level /: Propose Z, = [zZ+11,Z ¢] with Z), . as before
(e.g. generated via a Crank-Nicholson preconditioned random walk)

Novel transition prob. " depends acceptance prob. a/~! on level ¢ — 1!

© Accept Z), with probability

e , é_l n trans
a‘é(Zé |Z}) = min <1 Z((Z,’; _ 1§Zn+1)) ((ZZIF ||Zz F)))
Z trans &F eyF

where Z7 - are the coarse modes of Zj (from the chain on level £).
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ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q; — Q¢—1)

At states zj ;,Z; (of two Markov chains on levels £ —1 and ¢)
© On level / — 1: Generate new state zgfll using Algorithm 1.

@ On level /: Propose Z, = [z]"], Z), (] with Z) ¢ as before
(e.g. generated via a Crank-Nicholson precond|t|oned random walk)

Novel transition prob. " depends acceptance prob. a/~! on level ¢ — 1!

© Accept Z), with probability
/-1 rans 7
Cigl |70 - 7 (Z] Z)c)q' 7E1ZoE)
ar(Z,|Z]) = min | 1, 7z Noomizl [ 77
T( Z)'1)q 1Ly F)

where Z7 - are the coarse modes of Zj (from the chain on level £).

v

Unfortunately we discovered an error in our proof, so that this algorithm
creates a small bias in the fine-level posterior ! (not noticable in numerics)
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NEW ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q; — Q¢—1)

At n'" state Z] (of a Markov chain on level £):

© On level £ — 1: Generate an independent sample zgfll ~ 1

(from coarse posterior)
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NEW ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q; — Q¢—1)

At n'" state Z] (of a Markov chain on level £):

@ On level £ — 1: Generate an independent sample z"Jrl ~ -l

(from coarse posterior)

@ On level /: Propose Z, = [z}, Z), | with Z) ¢ as before
(e.g. generated via a Crank-Nicholson precond|t|oned random walk)

Transition prob. ¢ depends on posterior on level £ — 1!

R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct '14 24 / 35



NEW ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q; — Q¢—1)

At n'" state Z] (of a Markov chain on level £):
@ On level £ — 1: Generate an independent sample zgfll ~ -l
(from coarse posterior)

@ On level /: Propose Z, = [z]"],Z -] with Z) - as before
(e.g. generated via a Crank-Nicholson preconditioned random walk)

Transition prob. ¢ depends on posterior on level £ — 1!
© Accept Z), with probability

ak(Z}]25) = min (1,

©(Z;) 4" (2}]Z))
m4(Z}) a"(Z;1Z7)
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NEW ALGORITHM 2 (Two-level Metropolis Hastings MCMC for Q; — Q¢—1)

At n'" state Z] (of a Markov chain on level £):

© On level £ — 1: Generate an independent sample zg+11 mt-1

(from coarse posterior)

@ On level /: Propose Zj = [z]"}, Z) ] with Z/  as before
(e.g. generated via a Crank Nicholson preconditioned random walk)

Transition prob. " depends on posterior on level / — 1!

© Accept Z) with probability

Z / Z—l n trans n /
ag(Z;]Z7) = min <1 E((Zzn; - 1§Zf+c1)) ((Zzl;,F ||ZZZ,F)))
z trans OF ZF

where Zj - are the coarse modes of Z; (from the chain on level /).
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Comments on NEW Multilevel MCMC

Revised version of [Ketelsen, RS, Teckentrup, arXiv:1303.7343], in preperation

@ {Z]},>1 is genuine Markov chain converging to 7t (standard M-H.).

@ Multilevel algorithm is consistent (= no bias between levels)
since samples {Z7},>1 and {2} ,>1 are both from posterior 7 in the limit.
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Comments on NEW Multilevel MCMC

Revised version of [Ketelsen, RS, Teckentrup, arXiv:1303.7343], in preperation

@ {Z]},>1 is genuine Markov chain converging to 7t (standard M.-H.).

@ Multilevel algorithm is consistent (= no bias between levels)
since samples {Z7},>1 and {z]},>1 are both from posterior 7* in the limit.

@ But coarse modes may differ between level £ and ¢ — 1 states:

State n+1 | Level /-1 Level ¢
accept z ) [2771,Z) ]
reject 2 |2l Zid
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Comments on NEW Multilevel MCMC

Revised version of [Ketelsen, RS, Teckentrup, arXiv:1303.7343], in preperation

@ {Z]},>1 is genuine Markov chain converging to 7t (standard M.-H.).

@ Multilevel algorithm is consistent (= no bias between levels)
since samples {Z7},>1 and {z]},>1 are both from posterior 7* in the limit.

@ But coarse modes may differ between level £ and ¢ — 1 states:

State n+1 | Level / —1 Level ¢
accept z)t] (z)71,Z, ]
reject z)"] (20,27 ]

In second case the variance will in general not be small, but this does not

happen often since acceptance probability af: g (see below).
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Comments on NEW Multilevel MCMC

Revised version of [Ketelsen, RS, Teckentrup, arXiv:1303.7343], in preperation

@ {Z]},>1 is genuine Markov chain converging to 7t (standard M.-H.).

@ Multilevel algorithm is consistent (= no bias between levels)
since samples {Z7},>1 and {z]},>1 are both from posterior 7* in the limit.

@ But coarse modes may differ between level £ and ¢ — 1 states:

State n+1 | Level /-1 Level ¢
accept z ) [2771,Z) ]
reject 2 |2l Zid

R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow

In second case the variance will in general not be small, but this does not

happen often since acceptance probability af: g (see below).

@ Practical algorithm: Use sub-sampling on level £ — 1 to get
“independent” samples (see below for more details).

Ecole des Ponts, Oct '14 25 /35



Complexity Theorem for Multilevel MCMC

Let Y, := Qy — Qy_1 and assume

M1. [E«[Q/] —Er<[Q]] < hy (discretisation and truncation error)
M2. V[ Vel + (Ea.g[%] - Ewe,ﬂe,l[%])z < W (MCMC-error)
M3. Ve[ S By, (multilevel variance decay)
M4. Cost(Y\") < k7. (cost per sample)

Then there exist L, {N;};_, s.t. MSE < &2 and

=)

€—COSt(QEAL) Sj 8—2—max(0, [ (+ some log-factors)

(This is totally abstract & applies not only to our subsurface model problem!)

Recall: for standard MCMC (under same assumptions) Cost < =27/,
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Verifying (M1-M4) for the subsurface flow problem

w. exponential covariance, standard FEs & Fréchet-diff'ble functionals on H%*‘S(D)
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Verifying (M1-M4) for the subsurface flow problem

w. exponential covariance, standard FEs & Fréchet-diff'ble functionals on H%*‘s(D)

@ First split bias into truncation and discretization error:

[Ere[Qe] = Enco[Q]] < [Ere[Qr — Q(Z/)]] (M1a)
+ [Ere[Q(Ze)] — Ex=[Q]]  (M1b)
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Verifying (M1-M4) for the subsurface flow problem

w. exponential covariance, standard FEs & Fréchet-diff'ble functionals on H%*E(D)

@ First split bias into truncation and discretization error:

[Ere[Qe] = Enco[Q]] < [Ere[Qr — Q(Z/)]] (M1a)
+ [Ere[Q(Ze)] — Ex=[Q]]  (M1b)

@ For Mla use E_.[|X|7] S Ep, [|X]9] (prior 'bounds’ posterior) &
Ep,[|Qe — Q(Zy)|9] < hg—é [Teckentrup, RS, et al "13] (see above)
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Verifying (M1-M4) for the subsurface flow problem

w. exponential covariance, standard FEs & Fréchet-diff'ble functionals on H%*E(D)

@ First split bias into truncation and discretization error:

[Ere[Qe] = Enco[Q]] < [Ere[Qr — Q(Z/)]] (M1a)
+ [Ere[Q(Ze)] — Ex=[Q]]  (M1b)

@ For Mla use E_.[|X|7] S Ep, [|X]9] (prior 'bounds’ posterior) &
Ep,[|Qe — Q(Zy)|9] < hg—d [Teckentrup, RS, et al "13] (see above)

@ For M1b bound truncation error in posterior [Teckentrup, Thesis, '13]
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Verifying (M1-M4) for the subsurface flow problem

w. exponential covariance, standard FEs & Fréchet-diff'ble functionals on H%"s(D)

@ First split bias into truncation and discretization error:

[Ere[Qe] = Enco[Q]] < [Ere[Qr — Q(Z/)]] (M1a)
+ [Ere[Q(Ze)] — Ero[Q]] (M1b)

@ For Mla use E_.[|X|7] S Ep, [|X]9] (prior 'bounds’ posterior) &
Ep,[|Qe — Q(Zy)|9] < hZ_5 [Teckentrup, RS, et al "13] (see above)

@ For M1b bound truncation error in posterior [Teckentrup, Thesis, '13]

@ M2 not specific to multilevel MCMC; first steps to prove it are in
[Hairer, Stuart, Vollmer, '11] (but still unproved so far for lognormal case!)
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Verifying (M1-M4) for the subsurface flow problem

w. exponential covariance, standard FEs & Fréchet-diff'ble functionals on H%"s(D)

@ First split bias into truncation and discretization error:

[Ere[Qe] = Enco[Q]] < [Ere[Qr — Q(Z/)]] (M1a)
+ [Ere[Q(Ze)] — Ex=[Q]]  (M1b)
@ For Mla use E_.[|X|7] S Ep, [|X]9] (prior 'bounds’ posterior) &
Ep,[|Qe — Q(Zy)|9] < hZ_5 [Teckentrup, RS, et al "13] (see above)
@ For M1b bound truncation error in posterior [Teckentrup, Thesis, '13]

@ M2 not specific to multilevel MCMC; first steps to prove it are in
[Hairer, Stuart, Vollmer, '11] (but still unproved so far for lognormal case!)

@ M4 holds (with suitable multigrid solver)
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Key assumption for multilevel MCMC is (M3)

Key Lemma

Assume k € C%"(D), n < 3 and F" Fréchet diff'ble and suff’ly smooth.

Then
Ep,p |1 - af(])] S 02+ 577 ve>o.
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Key assumption for multilevel MCMC is (M3)

Key Lemma
Assume k € C%"(D), n < 3 and F" Fréchet diff'ble and suff’ly smooth.

Then
— - 4
Ep, », [1 - aﬁ(.w S e G BN )

Proof. First note
m(Zy)

1 =
1(Zy.0)

1-al(zZ,27) <
ap(Z,1Z)) < zzrza‘;z;
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Key assumption for multilevel MCMC is (M3)

Key Lemma

Assume k € C%"(D), n < 3 and F" Fréchet diff'ble and suff’ly smooth.
Then

Ep, », {1 —a‘;(.|.)} S e G BN )

Proof. First note
We(Zg)

g n
1-ak(Z,|20) < L= 1z, 0

max
2,=2,.2

Then recall that 74(Z,) = exp(—||Fobs — Fe(Z¢)||?/024) and use

(| Fobs — Fe(Ze) I = || Fobs — Fe—1(Ze,c)|I* S I1Fe(Ze) — Fe—1(Ze,c)|
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Key assumption for multilevel MCMC is (M3)

Key Lemma

Assume k € C%"(D), n < 3 and F" Fréchet diff'ble and suff’ly smooth.
Then
Ep, », {1 - aé(-|-)} S e G BN )

Proof. First note

tz
1 ad(Z)]Z)) < mZ)

o W“l(zz,c)

X
2,=7,,Z

Then recall that 74(Z,) = exp(—||Fobs — Fe(Z¢)||?/024) and use

(| Fobs — Fe(Ze) I = || Fobs — Fe—1(Ze,c)|I* S I1Fe(Ze) — Fe—1(Ze,c)|

Since |1 — exp(x)| < |x| exp|x] it finally follows from [Teckentrup, RS et al '13]

m(Zy) < piod g g1/2H0

1—m S Mz S

Ep

{4
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Key assumption for multilevel MCMC is (M3)

Theorem

Let Z7 and z;_; be from Algorithm 2 and choose s/ pe h[z. Then

Vot ne1 [Qu(Z7) — Q1(2f_1)] S hy=}, forany 6>0

and M3 holds for any g < 1.
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Key assumption for multilevel MCMC is (M3)

Theorem
Let Z7 and z;_; be from Algorithm 2 and choose s/ pe h[z. Then

Vot e [Qu(Z7) — Q1(zf_1)] S hj=3, forany 6 >0

~

and M3 holds for any g < 1.

Proof. Use the facts that V[Y] < E[Y?] and that all moments w.r.t. the
posterior are bounded by the moments w.r.t. the prior.
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Key assumption for multilevel MCMC is (M3)

Theorem
Let Z7 and z;_; be from Algorithm 2 and choose s/ e hE_Q. Then

Vot pe1 [Qu(Z]) — Qu-1(z7_1)] S hl} f, forany 6 >0
and M3 holds for any g < 1.

Proof. Use the facts that V[Y] < E[Y?] and that all moments w.r.t. the
posterior are bounded by the moments w.r.t. the prior.

Then distinguish two cases: The coarse modes of Z] and zj_; are
@ the same = result follows again from [Teckentrup, RS et al '13]

@ different = this only happens with probability 1 — af and
[l{dlffer}} < EPe Pe [ (Z€|Z, )]

R. Scheichl (Bath, UK) Multilevel MCMC & UQ in Subsurface Flow Ecole des Ponts, Oct '14

29 / 35




Key assumption for multilevel MCMC is (M3)
Theorem

Let Z7 and z;_; be from Algorithm 2 and choose s/ e hE_Q. Then

Vot pe1 [Qu(Z7) — Qi—1(zf_1)] S hl} f, forany 6 >0

~

and M3 holds for any g < 1.

Proof. Use the facts that V[Y] < E[Y?] and that all moments w.r.t. the
posterior are bounded by the moments w.r.t. the prior.

Then distinguish two cases: The coarse modes of Z] and zj_; are
@ the same = result follows again from [Teckentrup, RS et al '13]

@ different = this only happens with probability 1 — af and
E [1girery] < Ep,.p, [1 — a'(Z71Z})]
The result then follows from the Key Lemma, by applying Holder's inequality to
E[1gifter (Qe(Z7) — Qe—1(2_1))?]-
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Numerical Example (OLD method with bias)
D = (0,1)?, exponential covariance with 02 =1 & A =05, Q = Qout, ho = &=
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Numerical Example (OLD method with bias)

D = (0,1)?, exponential covariance with 0> =1 & A = 0.5, @ = Qout, ho = %

o “Data” Fps: Pressure p(x*) at 9 random points x* € D.

@ 7 modes: sp = 96, s; = 121, s, = 153 and s3 = 169
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Numerical Example (OLD method with bias)
D = (0,1)?, exponential covariance with 02 =1 & A = 0.5, Q = Qout, ho = =

16
o “Data” Fps: Pressure p(x*) at 9 random points x* € D.
@ 7 modes: sp = 96, s; = 121, s, = 153 and s3 = 169
Comparison single- vs. multi-level Acceptance rate ct in multilevel estim.
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Proposed NEW Practical Method

@ Recall: L Mo Loy M
QM = o > Q(zh)+ > I > (Qu(Z]) — Qe-1(27-))
n=1 (=1 n=1

@ Note. No independence of estimators needed in multilevel method
= can use same samples on all levels (just extra log in total cost)
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Proposed NEW Practical Method

@ Reacall: L Mo Loq M
Q= Do Q@)+ D0 Do (QulZ) — Qe )
n=1 =1 n=1

@ Note. No independence of estimators needed in multilevel method
= can use same samples on all levels (just extra log in total cost)

@ Practical Algorithm:
@ Use Algorithm 1 to obtain Markov chain {Z(’)’}Lvil on level 0.
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Proposed NEW Practical Method

@ Reacall: L Mo Loq M
Q= Do Q@)+ D0 Do (QulZ) — Qe )
n=1 =1 n=1

@ Note. No independence of estimators needed in multilevel method
= can use same samples on all levels (just extra log in total cost)
@ Practical Algorithm:
@ Use Algorithm 1 to obtain Markov chain {Z] Q’il on level 0.

@ Sub-sample this chain (with sufficiently large period) to get
(essentially) independent set {z{}M,
Above Ny/N; ~ 200; thus could use period 200 with no extra cost!
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Proposed NEW Practical Method

@ Reacall: L Mo Loq M
Q= Do Q@)+ D0 Do (QulZ) — Qe )
n=1 =1 n=1

@ Note. No independence of estimators needed in multilevel method
= can use same samples on all levels (just extra log in total cost)
@ Practical Algorithm:
@ Use Algorithm 1 to obtain Markov chain {Z] Q’il on level 0.

@ Sub-sample this chain (with sufficiently large period) to get
(essentially) independent set {z{}M,
Above Ny/N; ~ 200; thus could use period 200 with no extra cost!

© Use Alg. 2 to get Markov chain {Z]}" . Continue w. Step 2.

Can use shorter period, since af &~ 1 and so autocorrelation smaller!
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Proposed NEW Practical Method

@ Reacall: L Mo Loq M
Q= Do Q@)+ D0 Do (QulZ) — Qe )
n=1 =1 n=1

@ Note. No independence of estimators needed in multilevel method
= can use same samples on all levels (just extra log in total cost)

@ Practical Algorithm:
@ Use Algorithm 1 to obtain Markov chain {Z] Q’il on level 0.

@ Sub-sample this chain (with sufficiently large period) to get
(essentially) independent set {z{}M,
Above Ny/N; ~ 200; thus could use period 200 with no extra cost!

© Use Alg. 2 to get Markov chain {Z]}" . Continue w. Step 2.

Can use shorter period, since af &~ 1 and so autocorrelation smaller!
© May need extra samples on levels 0,...,L —1. Not on level L !
e.g. Ny_1/Ny =~ 4, for £ > 1 above, which may be too short a period.
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Additional Comments

@ In all our tests consistent gains of a factor O(10 — 100)!

@ Using a special “preconditioned” random walk to be dimension
independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]

@ Using multiple chains to reduce dependence on initial state
(and variance estimator suggested by [Gelman & Rubin, 1992])
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Additional Comments

@ In all our tests consistent gains of a factor O(10 — 100)!

Using a special “preconditioned” random walk to be dimension
independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]

Using multiple chains to reduce dependence on initial state
(and variance estimator suggested by [Gelman & Rubin, 1992])

Improved multilevel burn-in also possible (~ 10x cheaper!)
(related to two-level work in [Efendiev, Hou, Luo, 2005])
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Additional Comments

@ In all our tests consistent gains of a factor O(10 — 100)!

@ Using a special “preconditioned” random walk to be dimension
independent (Assumption M2) from [Cotter, Dashti, Stuart, 2012]

@ Using multiple chains to reduce dependence on initial state
(and variance estimator suggested by [Gelman & Rubin, 1992])

@ Improved multilevel burn-in also possible (~ 10x cheaper!)
(related to two-level work in [Efendiev, Hou, Luo, 2005])

@ Related theoretical work by [Hoang, Schwab, Stuart, 2013]
(different multilevel splitting and so far no numerics to compare)
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Conclusions

@ UQ in subsurface flow — PDEs with random coefficients
(with very high-dimensional parameter space)

@ Incorporating data — Bayesian inverse problem

@ Multilevel idea extends to Markov chain Monte Carlo

@ Theory for lognormal subsurface model problem
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Conclusions

@ UQ in subsurface flow — PDEs with random coefficients

@ Incorporating data — Bayesian inverse problem
@ Multilevel idea extends to Markov chain Monte Carlo

@ Theory for lognormal subsurface model problem

Future Work

@ Numerical tests w. NEW method; circulant embedding instead of KL
@ 3D, parallelisation, application to radwaste case studies
[w. Gmeiner, Riide, Wohlmuth]
@ Other proposal distributions (e.g. likelihood informed)
[w. Cui, Law, Marzouk]
@ Other applic. (PDE & non-PDE): statisticians, chemists,...
[w. Lindgren, Simpson]
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Thank You!

Preprints available on my website:

http://people.bath.ac.uk/~masrs/publications.html

(revised version of relevant MLMCMC preprint will be available very soon)

| would like to thank the UK Research Council EPSRC, as well as Lawrence
Livermore National Lab (CA) for the financial support of this work.
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