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1. Problem to be solved, difficulties and strategy

2. Prior stochastic model of the apparent elasticity random field at mesoscale

3. Multiscale identification of the prior stochastic model using a multiscale
experimental digital image correlation, at macroscale and at mesoscale.

4. Application of the method for multiscale experimental measurements
of cortical bone in 2D plane stresses.
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1. Problem to be solved, difficulties and strategy
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1.1. Multiscale statistical inverse problem to be solved

• Material for which the elastic heterogeneous microstructure cannot be de-
scribed in terms of constituents (example: biological tissues such as the
cortical bone).

Cortical bone: photo : Julius Wolff Institute, Charité - Universitätsmedizin Berlin

• Objective: Identification of the tensor-valued elasticity random field,
{Cmeso(x), x ∈ Ωmeso} (apparent elasticity field) at mesoscale, Ωmeso, using mul-
tiscale experimental data.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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1.2. Difficulties of the statistical inverse problem for the identification

• {Cmeso(x), x ∈ Ωmeso}is a second-order random field in HD,
◃ which is a Non-Gaussian tensor-valued random field.
◃which must verify algebraic properties: deterministic or random bounds;

positive-definite symmetric tensor-valued random field with
invariance properties (induced by material symmetries); etc.

• A methodology has recently been proposed for the experimental identifi-
cation (through a stochastic BVP) of a general parametric representation of
Cmeso in HD, based on the use of its polynomial chaos expansion (PCE).
• This is a very challenging problem due to HD, and due to the fact that the
PCE coefficients belong to a manifold that is very complicated to describe and
to explore for computing the coefficients from experimental data.
[C. Soize], Identification of high-dimension polynomial chaos expansions with random coefficients for non-
Gaussian tensor-valued random fields using partial and limited experimental data, Computer Methods in
Applied Mechanics and Engineering, 199(33-36), 2150-2164 (2010)
[C. Soize], A computational inverse method for identification of non-Gaussian random fields using the
Bayesian approach in very high dimension, Computer Methods in Applied Mechanics and Engineering,
200(45-46), 3083-3099 (2011).

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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1.3. Strategy proposed for the identification of Cmeso

Present work limited to the first two steps of the general methodology:

• Step 1: Constructing a prior stochastic model for Cmeso.

Introducing an adapted prior stochastic model {Cmeso(x; b) , x ∈ Ωmeso} on
(Θ,T,P), depending on a vector-valued hyperparameter b ∈ Bad in low
dimension (statistical mean tensor, dispersion parameters, spatial correlation
lengths, etc).

Comment: In HD, the real possibility to correctly identify random field Cmeso,
through a stochastic BVP, is directly related to the capability of the constructed
prior stochastic model for representing fundamental properties such as lower
bound, positiveness, invariance related to material symmetry, mean value, sup-
port of the spectrum, spatial correlation lengths, level of statistical fluctuations,
etc.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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• Step 2: Identifying hyperparameter b of the prior stochastic model
{Cmeso(x; b) , x ∈ Ωmeso}

◃ Identification of b performed in the framework of a multiscale
identification of random field Cmeso at mesoscale;

◃ Using a multiscale experimental digital image correlation
at macroscale and at mesoscale.

[M. T. Nguyen, C. Desceliers, C. Soize, J. M. Allain, H. Gharbi], Multiscale identification of the random
elasticity field at mesoscale of a heterogeneous microstructure using multiscale experimental observations,
International Journal for Multiscale Computational Engineering, submitted in June 2014.
[M. T. Nguyen, J. M. Allain, H. Gharbi, C. Desceliers, C. Soize], Experimental measurements for iden-
tification of the elasticity field at mesoscale of a heterogeneous microstructure by multiscale digital image
correlation, Experimental Mechanics, submitted in August 2014.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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2. Prior stochastic model of the apparent elasticity
random field at mesoscale

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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2.1. Family {Cmeso(x; b)], x ∈ Ωmeso} of prior stochastic models for the non-
Gaussian tensor-valued random field at mesoscale, and its generator

• Framework:
◃ 3D linear elasticity of microstructures
◃ (6× 6)-matrix notation of the 4th-order tensor: [Ameso(x; b)]IJ = Cmeso

ijkh(x; b).
◃ {[Ameso(x;b)], x ∈ Ωmeso}: apparent elasticity field of microstructure Ωmeso at

mesoscale, depending on a hyperparameter b (that will be defined later and
that is removed below for simplifying notation).

For all x fixed in Ωmeso, random elasticity matrix [Ameso(x)]:

(i) is, in mean, close to a given symmetry class (independent of x),
induced by a material symmetry;

(ii) exhibits more or less anisotropic fluctuations around this symmetry class;

(iii) exhibits a level of statistical fluctuations in the symmetry class, which must
be controlled independently of the level of statistical anisotropic fluctuations.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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• Notation and properties for positive matrices with symmetry classes
M+

n (R) ⊂ MS
n(R) ⊂ Mn(R) (positive-definite, symmetric, all).

A given symmetry class is defined by the subset Msym
n (R) ⊂ M+

n (R) such that,

[M ] =
∑ns

i=1 mi[E
sym
i ] , m = (m1, . . . ,mns) ∈ C , [Esym

i ] ∈ MS
n(R)

C = {m ∈ Rns |
∑ns

i=1 mi[E
sym
i ] ∈ M+

n (R)}

{[Esym
i ], i = 1, . . . , ns} is a matrix basis (Walpole’s tensor basis).

Examples of usual symmetry classes for n = 6 (3D elasticity),
ns = 2: isotropic symmetry
ns = 5: transverse isotropic symmetry
ns = 9: orthotropic symmetry
etc... and, ns = 21: anisotropy

Properties: if [M ] and [M ′] ∈ Msym
n (R), then

[M ] [M ′] ∈ Msym
n (R) , [M ]−1 ∈ Msym

n (R) , [M ]1/2 ∈ Msym
n (R)

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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2.2. An advanced prior stochastic model for {[Ameso(x)], x ∈ Ωmeso}

[C. Soize], Non Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differ-
ential operators, Computer Methods in Applied Mechanics and Engineering, 195(1-3), 26-64 (2006).
[J. Guilleminot, C. Soize], Stochastic model and generator for random fields with symmetry properties:
application to the mesoscopic modeling of elastic random media, Multiscale Modeling and Simulation (A
SIAM Interdisciplinary Journal), 11(3), 840-870 (2013).

Prior algebraic representation (Guilleminot & Soize SIAM MMS 2013):

∀x ∈ Ωmeso , [Ameso(x)] = [Cℓ(x)] + [A(x)]

{[Cℓ(x)], x ∈ Ω}: M+
n (R)-valued deterministic field (lower-bound)

{[A(x)], x ∈ Ω}: M+
n (R)-valued random field

[A(x)] = [S(x)]T [M(x)]1/2[G(x)] [M(x)]1/2 [S(x)]

{[G(x)], x ∈ Ω}: M+
n (R)-valued random field.

{[M(x)], x ∈ Ω}: Msym(R)-valued random field independent of {[G(x)], x ∈ Ω}.
{[S(x)], x ∈ Ω}: Mn(R)-valued deterministic field.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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Anisotropic statistical fluctuations: {[G(x)], x ∈ Ω} which is a non-Gaussian
M+

n (R)-valued random field (MaxEnt construction and generator are given in
Soize, CMAME 2006), for which E{[G(x)]} = [In].
The hyperparameters of {[G(x)], x ∈ Ω} are: d × n(n + 1)/2 spatial correla-
tion lengths and a scalar dispersion parameter δG controlling the anisotropic
statistical fluctuations.

Statistical fluctuations in the given symmetry class: {[M(x)], x ∈ Ω} (inde-
pendent of [G]), which is a non-Gaussian Msym

n (R)-valued random field (alge-
braic representation, MaxEnt construction and generator using an ISDE are
given in Guilleminot & Soize, SIAM MMS 2013), for which

E{[M(x)]} = [M(x)] = Psym([a(x)]),

with Psym the projection operator from M+
n (R) on Msym

n (R), and

[a(x)] = E{[A(x)]} = E{[Ameso(x)]} − [Cℓ(x)] ∈ M+
n (R),

[M(x)] = [M(x)]1/2[N(x)] [M(x)]1/2 with E{[N(x)]} = [In].

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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{[N(x)], x ∈ Ω} is a non-Gaussian Msym
n (R)-valued random field written as

[N(x)] = expm([N (x)]) in which [N (x)] =
∑ns

i=1 νi(x)[E
sym
i ] with {n(x), x ∈

Ω} is a Rns-valued random process.

The hyperparameters of {[M(x)], x ∈ Ω} are: d×ns spatial correlation lengths
and a scalar dispersion parameter δM controlling the statistical fluctuations in
the symmetry class.

Construction of the Mn(R)-valued deterministic field {[S(x)], x ∈ Ω}:

The Cholesky factorizations of [a(x)] = E{[Ameso(x)]}−[Cℓ(x)] ∈ M+
n (R) yields

the upper matrix [La(x)], and [M(x)] = Psym([a(x)]) ∈ Msym
n (R) yields the upper

matrix [LM (x)]. Since [a(x)] = [S(x)]T [M(x)] [S(x)], it can be deduced that

[S(x)] = [LM (x)]−1 [La(x)]

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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2.3. Fully anisotropic case

The "sym class" is chosen as the "anisotropic class" with ns = 21 and δM is
taken as 0; then [A(x)] = [a(x)]1/2[G(x)] [a(x)]1/2. Consequently:

∀x ∈ Ωmeso , [Ameso(x)] = [Cℓ(x)] + [a(x)]1/2[G(x)] [a(x)]1/2

Particular choice: [Cℓ(x)] = ε
1+εE{[Ameso(x)]} with 0 < ε ≪ 1

Hyperparameter b: for a homogeneous mean value, [a] = E{[Ameso(x)]},
b is of dimension 10 and is written as,

b = ( {[a]ij}i≥j , (L1, L2, L3) , δG)

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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3. Multiscale identification of the prior stochastic
model using a multiscale experimental digital
image correlation, at macroscale and at mesoscale

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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3.1. Difficulties and multiscale identification

• Problem consists of the experimental identification of hyperparameter b
of the prior stochastic model of the apparent elasticity random field
{Cmeso(x; b)], x ∈ Ωmeso}

• b is made up of the statistical mean tensor, E{Cmeso(x)}, and other parameters
that control the statistical fluctuations.

• Difficulty: E{Cmeso(x)} cannot directly be identified using only the
measurements of the displacement field umeso

exp at mesoscale in Ωmeso,
and requires macroscale measurements.

=⇒ Experimental multiscale measurements are required and must be
made simultaneously at macroscale and at mesoscale.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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3.2. Hypotheses concerning experimental digital image correlation
at macroscale and at mesoscale

Only a single specimen, submitted to a given load applied at macroscale,
is tested.

◃ A measurement of the strain field at macroscale is carried out in Ωmacro

(spatial resolution 10−3 m, for instance);

◃ Simultaneously, the measurement of the strain field at mesoscale is carried
out in Ωmeso (spatial resolution 10−5 m, for instance)

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014



18

3.3. Hypotheses and strategy for solving the statistical inverse problem

• Hypotheses used for the statistical inverse problem:

- Separation of macroscale Ωmacro from mesoscale Ωmeso that is thus a RVE.

- At macroscale, the elasticity tensor is constant (independent of x).

- At mesoscale, the apparent elasticity random field is homogeneous.

• Constructing:

- A prior deterministic model of the macro elasticity tensor Cmacro(a) at
macroscale, depending on a vector-valued parameter a ∈ Amacro.

- A prior stochastic model of the apparent elasticity random field
{Cmeso(x; b), x ∈ Ωmeso} at mesoscale, depending on a vector-valued
hyperparameter b ∈ Bmeso.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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3.4. Numerical indicators for the multiscale identification

• Macroscopic numerical indicator, J1(a), minimizes the distance between
the experimental strain deformation at macroscale and the computed strain
deformation at macroscale:

J1(a) =
∫
Ωmacro

∥εmacro
exp (x)− εmacro(x; a)∥2F dx

−divσmacro = 0 in Ωmacro

σmacronmacro = fmacro on Σmacro

umacro = 0 on Γmacro

σmacro = Cmacro(a) : εmacro , a ∈ Amacro

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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• Mesoscopic numerical indicator, J2(b), minimizes the distance between
the normalized dispersion coefficient, δmeso(x; b), characterizing the statistical
fluctuations of the computed random strain deformation at mesoscale, and the
corresponding normalized dispersion coefficient, δmeso

exp , for the experimental
strain deformation at mesoscale:

J2(b) =
∫
Ωmeso

(δmeso(x; b)− δmeso
exp )2 dx

−divσmeso = 0 in Ωmeso

Umeso = umeso
exp on ∂Ωmeso

σmeso = Cmeso(b) : εmeso , b ∈ Bmeso

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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• Macroscopic-mesoscopic numerical indicator, J3(a, b), minimizes the dis-
tance between the macro elasticity tensor Cmacro(a) at macroscale and the effec-
tive elasticity tensor Ceff(b) constructed by a stochastic homogenization using
the RVE Ωmeso:

J3(a, b) = ∥Cmacro(a)− E{Ceff(b)}∥2F

The stochastic homogenization (from meso to macro) is formulated in ho-
mogeneous constraints (that is better adapted for the 2D plane stresses) with
σmeso = Cmeso(b) : εmeso.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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3.5. Statistical inverse problem formulated as a multi-objective
optimization problem

(amacro, bmeso) = arg min
a∈Amacro,b∈Bmeso

J (a,b)

minJ (a, b) = (min J1(a),min J2(b),min J3(a, b))

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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3.6. Solving the multi-objective optimization problem

• The deterministic BVP at macroscale is discretized using the FEM.

• The stochastic BVP at mesoscale
- is discretized using the FEM,
- is solved using the Monte Carlo method.

• The multi-objective optimization problem

- is solved using the genetic algorithm, and the Pareto front is iteratively
constructed at each generation of the genetic algorithm,

- the initial value a(0) of a ∈ Amacro is computed solving (using the simplex
algorithm) the optimization problem:

a(0) = arg min
a∈Amacro

J1(a) ,

- bmeso ∈ Bmeso is then chosen as the point on the Pareto front that minimizes
the distance between the Pareto front and the origin.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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4. Application of the method for multiscale
experimental measurements of cortical bone
in 2D plane stresses

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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4.1. Multiscale experimental measurements

• Measurements at LMS of Ecole Polytechnique, using a multiscale experimental digital image correlation.
Left: Specimen of cortical bone (cube with dimensions 0.01×0.01×0.01m3).
Right: Measuring bench.

[M. T. Nguyen, J. M. Allain, H. Gharbi, C. Desceliers, C. Soize], Experimental measurements for identification
of the elasticity field at mesoscale of a heterogeneous microstructure by multiscale digital image correlation,
Experimental Mechanics, submitted in August 2014.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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• Comparison between a reference image (left) and a deformed image (right) at macroscale for a cubic
cortical bovine bone sample.

• Dimensions and spatial resolution of the multiscale measurements.

Experimental measurements

 at macroscale

Experimental measurements

 at mesoscale

1mm

1mm

Ωmacro:0.01×0.01m2 meshed with a 10×10-points grid
yielding a spatial resolution of 10−3×10−3 m2.

Ωmeso:0.001×0.001m2 meshed with a 100×100-points grid
yielding a spatial resolution of 10−5×10−5 m2.

Applied force: 9,000N

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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• Experimental displacement at macroscale:
Component {umacro

exp }1 in direction x1 (horizontal) (left figure),
Component {umacro

exp }2 in direction x2 (vertical) (right figure).
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• Experimental displacement at mesoscale:
Component {umeso

exp }1 in direction x1 (horizontal) (left figure),
Component {umeso

exp }2 in direction x2 (vertical) (right figure).
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4.2. Hypotheses for the stochastic computational model

• 2D-plane-stresses modeling is used.

• At macroscale, the material is assumed to be homogeneous, transverse
isotropic, and linear elastic.
Parameter a = (Emacro

T , νmacro
T ) (transverse Young mod. and Poisson coeff.).

• At mesoscale, the material is assumed to be heterogeneous, anisotropic, and
linear elastic. The stochastic model of the apparent elasticity field is deduced
from the full anisotropic stochastic case, for which the statistical mean value
is assumed to be transverse isotropic (Section 2.3).
Hyperparameter b = (ET , νT , L, δ):
(ET , νT ) = statistical mean values (transverse Young mod. and Poisson coeff.).
(L, δ) = spatial correlation length and dispersion parameter of the statistical

fluctuations of the apparent elasticity field.

[M. T. Nguyen, C. Desceliers, C. Soize, J. M. Allain, H. Gharbi], Multiscale identification of the random
elasticity field at mesoscale of a heterogeneous microstructure using multiscale experimental observations,
International Journal for Multiscale Computational Engineering, submitted in June 2014.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014
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4.3. Results obtained by the multiscale identification procedure

◃ The optimal value of a = (Emacro
T , νmacro

T ) is (6.74× 109 Pa , 0.32).

◃ The optimal values of the components of b = (Lmeso, δmeso, Emeso
T , νmeso

T ) are
Lmeso = 5.06× 10−5 m, δmeso = 0.28, Emeso

T = 6.96× 109 Pa, νmeso
T = 0.37.

• The identified spatial correlation length:

- is in agreement with the assumption introduced concerning the separation
of the scales,

- is of the same order of magnitude than the distance between adjacent
lamellae or osteons in cortical bovine femur.

• The identified values of a and b are coherent with the values published in
literature.

[M. T. Nguyen, C. Desceliers, C. Soize, J. M. Allain, H. Gharbi], Multiscale identification of the random
elasticity field at mesoscale of a heterogeneous microstructure using multiscale experimental observations,
International Journal for Multiscale Computational Engineering, submitted in June 2014.

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014



30

Conclusion

• In the framework of the linear elasticity, a multiscale inverse statistical method
has been presented for the identification of a stochastic model of the apparent
elasticity random field at mesoscale for a heterogeneous microstructure using
experimental measurements at macroscale and at mesoscale.

• The proposed statistical inverse method has been validated with a simulated
experimental database (not presented in the present lecture)

• The method has been applied and presented for multiscale experimental
measurements obtained by the digital-image-correlation method on one sample
of cortical bone observed by a CCD camera at both macroscale and mesoscale.

• Future works:
- posterior stochastic identification of the prior stochastic model in 2D.
- multiscale experimental identification in 3D

C. SOIZE et al, Université Paris-Est, France Workshop, Ecole des Ponts ParisTech, October 2-3, 2014


