Hybrid high-order methods

Alexandre Ern

ENPC and INRIA, Paris, France joint work with E. Burman (UCL), G. Delay (Sorbonne), O. Duran (Bergen) collaboration and support: CEA

MFET, Mülheim an der Ruhr, 22 August 2023

Outline

Hybrid high-order (HHO) methods ...

- In a nutshell
- Links to other methods
- Wave propagation problems

Outline

Hybrid high-order (HHO) methods ...

- In a nutshell
- Links to other methods
- Wave propagation problems
- Seminal references: [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]

Outline

Hybrid high-order (HHO) methods ...

- In a nutshell
- Links to other methods
- Wave propagation problems
- Seminal references: [Di Pietro, AE, Lemaire 14; Di Pietro, AE 15]
- Two textbooks
 - HHO on polytopal meshes [Di Pietro, Droniou 20]
 - A primer with application to solid mechanics [Cicuttin, AE, Pignet 21]

HHO in a nutshell

Basic ideas

- Degrees of freedom (dofs) located on mesh cells and faces
- Let us start with polynomials of the same degree *k* ≥ 0 on cells and faces

Basic ideas

- Degrees of freedom (dofs) located on mesh cells and faces
- Let us start with polynomials of the same degree *k* ≥ 0 on cells and faces

- In each cell, one devises a local gradient reconstruction operator
- One adds a local stabilization to weakly enforce the matching of cell dofs trace with face dofs
- The global problem is assembled cellwise as in FEM

Basic ideas

- Degrees of freedom (dofs) located on mesh cells and faces
- Let us start with polynomials of the same degree *k* ≥ 0 on cells and faces

- In each cell, one devises a local gradient reconstruction operator
- One adds a local stabilization to weakly enforce the matching of cell dofs trace with face dofs
- The global problem is assembled cellwise as in FEM
- Generalization to higher order of ideas from Hybrid FV and Hybrid Mimetic Mixed methods [Eymard, Gallouet, Herbin 10; Droniou et al. 10]

Gradient reconstruction and stabilization

• Mesh cell $T \in \mathcal{T}$, cell dofs $u_T \in \mathbb{P}^k(T)$, face dofs $u_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T})$

$$\hat{u}_T = (u_T, u_{\partial T}) \in \hat{U}_T := \mathbb{P}^k(T) \times \mathbb{P}^k(\mathcal{F}_{\partial T})$$

• Local potential reconstruction $R_T : \hat{U}_T \to \mathbb{P}^{k+1}(T)$ s.t.

 $(\nabla R_T(\hat{u}_T), \nabla q)_T = -(u_T, \Delta q)_T + (u_{\partial T}, \nabla q \cdot \mathbf{n}_T)_{\partial T}, \quad \forall q \in \mathbb{P}^{k+1}(T)/\mathbb{R}$ together with $(R_T(\hat{u}_T), 1)_T = (u_T, 1)_T$

Gradient reconstruction and stabilization

• Mesh cell $T \in \mathcal{T}$, cell dofs $u_T \in \mathbb{P}^k(T)$, face dofs $u_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T})$

$$\hat{u}_T = (u_T, u_{\partial T}) \in \hat{U}_T := \mathbb{P}^k(T) \times \mathbb{P}^k(\mathcal{F}_{\partial T})$$

• Local potential reconstruction $R_T : \hat{U}_T \to \mathbb{P}^{k+1}(T)$ s.t.

 $(\nabla R_T(\hat{u}_T), \nabla q)_T = -(u_T, \Delta q)_T + (u_{\partial T}, \nabla q \cdot \mathbf{n}_T)_{\partial T}, \quad \forall q \in \mathbb{P}^{k+1}(T)/\mathbb{R}$ together with $(R_T(\hat{u}_T), 1)_T = (u_T, 1)_T$

- Local gradient reconstruction $\mathbf{G}_T(\hat{u}_T) := \nabla R_T(\hat{u}_T) \in \nabla \mathbb{P}^{k+1}(T)$
- Local stabilization operator acting on $\delta_{\hat{u}_T} := u_T |_{\partial T} u_{\partial T}$

$$S_{\partial T}(\delta_{\hat{u}_T}) := \prod_{\partial T}^k \left(\delta_{\hat{u}_T} - \underbrace{\left((I - \prod_T^k) R_T(0, \delta_{\hat{u}_T}) \right) |_{\partial T}}_{\mathcal{O}} \right)$$

high-order correction

Taking $S_{\partial T}(\delta_{\hat{u}_T}) := \delta_{\hat{u}_T}$ is suboptimal ...

• Local bilinear form for Poisson model problem

 $a_T(\hat{u}_T, \hat{w}_T) := (\mathbf{G}_T(\hat{u}_T), \mathbf{G}_T(\hat{w}_T))_T + h_T^{-1}(S_{\partial T}(\delta_{\hat{u}_T}), S_{\partial T}(\delta_{\hat{w}_T}))_{\partial T}$

(recall $\delta_{\hat{u}_T} := u_T |_{\partial T} - u_{\partial T}$)

• Local bilinear form for Poisson model problem

 $a_T(\hat{u}_T, \hat{w}_T) := (\mathbf{G}_T(\hat{u}_T), \mathbf{G}_T(\hat{w}_T))_T + h_T^{-1}(S_{\partial T}(\delta_{\hat{u}_T}), S_{\partial T}(\delta_{\hat{w}_T}))_{\partial T}$

(recall $\delta_{\hat{u}_T} := u_T |_{\partial T} - u_{\partial T}$)

• Stability and boundedness

$$\alpha \|\hat{u}_{T}\|_{\hat{U}_{T}}^{2} \leq a_{T}(\hat{u}_{T}, \hat{u}_{T}) \leq \omega \|\hat{u}_{T}\|_{\hat{U}_{T}}^{2}, \quad \forall \hat{u}_{T} \in \hat{U}_{T}$$

with $\|\hat{u}_{T}\|_{\hat{U}_{T}}^{2} := \|\nabla u_{T}\|_{T}^{2} + h_{T}^{-1} \|\delta_{\hat{u}_{T}}\|_{\partial T}^{2}$

Assembly of discrete problem

• Global dofs $\hat{u}_h = (u_{\mathcal{T}}, u_{\mathcal{F}}) \ (\mathcal{T} := \{\text{mesh cells}\}, \mathcal{F} := \{\text{mesh faces}\})$

$$\hat{U}_h := \mathbb{P}^k(\mathcal{T}) \times \mathbb{P}^k(\mathcal{F}), \quad \mathbb{P}^k(\mathcal{T}) := \sum_{T \in \mathcal{T}} \mathbb{P}^k(T), \quad \mathbb{P}^k(\mathcal{F}) := \sum_{F \in \mathcal{F}} \mathbb{P}^k(F)$$

• Dirichlet conditions enforced on face boundary dofs

$$\hat{U}_{h0} := \{ \hat{v}_h \in \hat{U}_h \mid v_F = 0 \; \forall F \subset \partial \Omega \}$$

Assembly of discrete problem

• Global dofs $\hat{u}_h = (u_{\mathcal{T}}, u_{\mathcal{F}}) \ (\mathcal{T} := \{\text{mesh cells}\}, \mathcal{F} := \{\text{mesh faces}\})$

$$\hat{U}_h := \mathbb{P}^k(\mathcal{T}) \times \mathbb{P}^k(\mathcal{F}), \quad \mathbb{P}^k(\mathcal{T}) := \sum_{T \in \mathcal{T}} \mathbb{P}^k(T), \quad \mathbb{P}^k(\mathcal{F}) := \sum_{F \in \mathcal{F}} \mathbb{P}^k(F)$$

• Dirichlet conditions enforced on face boundary dofs

$$\hat{U}_{h0} := \{ \hat{v}_h \in \hat{U}_h \mid v_F = 0 \; \forall F \subset \partial \Omega \}$$

• Discrete problem: Find $\hat{u}_h \in \hat{U}_{h0}$ s.t.

$$a_h(\hat{u}_h, \hat{w}_h) := \sum_{T \in \mathcal{T}} a_T(\hat{u}_T, \hat{w}_T) = (f, w_{\mathcal{T}})_{\Omega}, \quad \forall \hat{w}_h \in \hat{U}_{h0}$$

(only cell component of test function used on rhs)

Algebraic realization and static condensation

• Algebraic realization

$$\begin{bmatrix} \mathsf{A}_{\mathcal{T}\mathcal{T}} & \mathsf{A}_{\mathcal{T}\mathcal{F}} \\ \mathsf{A}_{\mathcal{F}\mathcal{T}} & \mathsf{A}_{\mathcal{F}\mathcal{F}} \end{bmatrix} \begin{bmatrix} \mathsf{U}_{\mathcal{T}} \\ \mathsf{U}_{\mathcal{F}} \end{bmatrix} = \begin{bmatrix} \mathsf{F}_{\mathcal{T}} \\ 0 \end{bmatrix}$$

 \implies submatrix $A_{\mathcal{TT}}$ is block-diagonal!

Algebraic realization and static condensation

• Algebraic realization

$$\begin{bmatrix} \mathsf{A}_{\mathcal{T}\mathcal{T}} & \mathsf{A}_{\mathcal{T}\mathcal{F}} \\ \mathsf{A}_{\mathcal{F}\mathcal{T}} & \mathsf{A}_{\mathcal{F}\mathcal{F}} \end{bmatrix} \begin{bmatrix} \mathsf{U}_{\mathcal{T}} \\ \mathsf{U}_{\mathcal{F}} \end{bmatrix} = \begin{bmatrix} \mathsf{F}_{\mathcal{T}} \\ 0 \end{bmatrix}$$

 \implies submatrix $A_{\mathcal{TT}}$ is block-diagonal!

- Cell dofs can be eliminated locally by static condensation
 - global problem couples only face dofs
 - cell dofs recovered by local post-processing
- Summary

Main assets of HHO methods

• General meshes: polytopal cells, hanging nodes

Main assets of HHO methods

• General meshes: polytopal cells, hanging nodes

Local conservation

- optimally convergent and algebraically balanced fluxes on faces
- as any face-based method, balance at the cell level

• Attractive computational costs

- only face dofs are globally coupled
- compact stencil (slightly less compact than DG though)

Error estimates

- Smooth solutions (in $H^{k+2}(\Omega)$)
 - $O(h^{k+1}) H^1$ -error estimate (face dofs of order $k \ge 0$)
 - $O(h^{k+2})$ L²-error estimate (with full elliptic regularity)

Error estimates

- Smooth solutions (in $H^{k+2}(\Omega)$)
 - $O(h^{k+1}) H^1$ -error estimate (face dofs of order $k \ge 0$)
 - $O(h^{k+2})$ L²-error estimate (with full elliptic regularity)
- Less regularity
 - $O(h^t) H^1$ -error estimate if $u \in H^{1+t}(\Omega), t \in (\frac{1}{2}, k+1]$
 - for $t \in (0, \frac{1}{2})$, see [AE, Guermond 21 (FoCM)]
 - for $f \in H^{-1}(\Omega)$, see [AE, Zanotti 20 (IMAJNA)]

Error estimates

- Smooth solutions (in $H^{k+2}(\Omega)$)
 - $O(h^{k+1}) H^1$ -error estimate (face dofs of order $k \ge 0$)
 - $O(h^{k+2}) L^2$ -error estimate (with full elliptic regularity)
- Less regularity
 - $O(h^t) H^1$ -error estimate if $u \in H^{1+t}(\Omega), t \in (\frac{1}{2}, k+1]$
 - for $t \in (0, \frac{1}{2})$, see [AE, Guermond 21 (FoCM)]
 - for $f \in H^{-1}(\Omega)$, see [AE, Zanotti 20 (IMAJNA)]
- Main consistency property: Introduce reduction operator

$$\hat{l}_T : H^1(T) \to \hat{U}_T, \qquad \hat{l}_T(v) := (\Pi^k_T(v), \Pi^k_{\partial T}(v|_{\partial T}))$$

Then we have

•
$$h_T^{-1} \| v - R_T(\hat{l}_T(v)) \|_T + \| \nabla (v - R_T(\hat{l}_T(v))) \|_T \leq h_T^{k+1} |v|_{H^{k+2}(T)}$$

• $h_T^{-\frac{1}{2}} \| S_{\partial T}(\hat{l}_T(v)) \|_{\partial T} \leq h_T^{k+1} |v|_{H^{k+2}(T)}$

Variants

• Variant on gradient reconstruction $\mathbf{G}_T : \hat{U}_T \to \mathbb{P}^k(T; \mathbb{R}^d)$ s.t.

$$(\mathbf{G}_T(\hat{u}_T), \mathbf{q})_T = -(\mathbf{u}_T, \operatorname{div} \mathbf{q})_T + (\mathbf{u}_{\partial T}, \mathbf{q} \cdot \mathbf{n}_T)_{\partial T}, \quad \forall \mathbf{q} \in \mathbb{P}^k(T; \mathbb{R}^d)$$

- same scalar mass matrix for each component of $\mathbf{G}_T(\hat{u}_T)$
- useful for nonlinear problems [Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]

Variants

• Variant on gradient reconstruction $\mathbf{G}_T : \hat{U}_T \to \mathbb{P}^k(T; \mathbb{R}^d)$ s.t.

 $(\mathbf{G}_T(\hat{u}_T), \mathbf{q})_T = -(\mathbf{u}_T, \operatorname{div} \mathbf{q})_T + (\mathbf{u}_{\partial T}, \mathbf{q} \cdot \mathbf{n}_T)_{\partial T}, \quad \forall \mathbf{q} \in \mathbb{P}^k(T; \mathbb{R}^d)$

- same scalar mass matrix for each component of $\mathbf{G}_T(\hat{u}_T)$
- useful for nonlinear problems
 [Di Pietro, Droniou 17; Botti, Di Pietro, Sochala 17; Abbas, AE, Pignet 18]
- Variants on cell dofs and stabilization
 - mixed-order setting: $k \ge 0$ for face dofs and (k + 1) for cell dofs
 - this variant allows for the simpler Lehrenfeld-Schöberl HDG stabilization

$$S_{\partial T}(\delta_{\hat{u}_T}) := \Pi^k_{\partial T}(\delta_{\hat{u}_T})$$

• another variant is $k \ge 1$ for face dofs and (k - 1) for cell dofs

HHO on unfitted meshes

• Model problem with curved interface/boundary

HHO on unfitted meshes

• Model problem with curved interface/boundary

- HHO works optimally on cells with planar faces
- One idea is to use unfitted meshes
 - curved interface can cut arbitrarily through mesh cells
 - numerical method must deal with ill cut cells

HHO on unfitted meshes

• Model problem with curved interface/boundary

- HHO works optimally on cells with planar faces
- One idea is to use unfitted meshes
 - curved interface can cut arbitrarily through mesh cells
 - numerical method must deal with ill cut cells
- Well developed paradigm for unfitted FEM
 - double unknowns in cut cells and use a consistent Nitsche's penalty technique to enforce jump conditions [Hansbo, Hansbo 02]
 - ghost penalty [Burman 10] to counter ill cuts (gradient jump penalty across faces near curved boundary/interface)

Unfitted HHO

- Main ideas [Burman, AE 18 (SINUM)]
 - double cell and face dofs in cut cells, no dofs on curved boundary/interface
 - mixed-order setting: $k \ge 0$ for face dofs and (k + 1) for cell dofs
 - local cell agglomeration as an alternative to ghost penalty see [Sollie, Bokhove, van der Vegt 11; Johansson, Larson 13] for dG context

Unfitted HHO

- Main ideas [Burman, AE 18 (SINUM)]
 - double cell and face dofs in cut cells, no dofs on curved boundary/interface
 - mixed-order setting: $k \ge 0$ for face dofs and (k + 1) for cell dofs
 - local cell agglomeration as an alternative to ghost penalty see [Sollie, Bokhove, van der Vegt 11; Johansson, Larson 13] for dG context
- Improvements in [Burman, Cicuttin, Delay, AE 21 (SISC)]
 - novel gradient reconstruction $\Rightarrow O(1)$ penalty parameter
 - robust cell agglomeration procedure (ensures locality)
- Extensions
 - Stokes interface problems [Burman, Delay, AE 20 (IMANUM)]
 - wave propagation [Burman, Duran, AE 21 (CMAME)]

Global dofs

$$\hat{u}_h \in \hat{U}_h := \bigotimes_{T \in \mathcal{T}^1} \mathbb{P}^{k+1}(T_1) \times \bigotimes_{T \in \mathcal{T}^2} \mathbb{P}^{k+1}(T_2) \times \bigotimes_{F \in \mathcal{F}^1} \mathbb{P}^k(F_1) \times \bigotimes_{F \in \mathcal{F}^2} \mathbb{P}^k(F_2)$$

- $\bullet\,$ We set to zero all the face components attached to $\partial\Omega$
- All the cell dofs are eliminated locally by static condensation
- Only the face dofs are globally coupled

Illustration of agglomeration procedure

• Circular interface

• Flower-like interface

Links to other methods

HHO \equiv WG \equiv HDG \equiv ncVEM

- [Cockburn, Di Pietro, AE 16 (M2AN)], [Di Pietro, Droniou, Manzini 18 (JCP)], [Cicuttin, AE, Pignet 21 (SpringerBriefs)]
- !! Different devising viewpoints should be mutually enriching !!

Weak Galerkin (WG)

- WG methods devised in [Wang, Ye 13] (vast litterature...)
- Similar devising of HHO and WG
- HHO gradient reconstruction is called weak gradient in WG

Weak Galerkin (WG)

- WG methods devised in [Wang, Ye 13] (vast litterature...)
- Similar devising of HHO and WG
- HHO gradient reconstruction is called weak gradient in WG
- WG often uses plain LS stabilization

$$S_{\partial T}^{\rm wG}(\delta_{\hat{u}_T}) := \delta_{\hat{u}_T} \quad \text{vs.} \quad S_{\partial T}^{\rm HHO}(\delta_{\hat{u}_T}) := \begin{cases} \Pi_{\partial T}^k (\delta_{\hat{u}_T} - ((I - \Pi_T^k)R_T(0, \delta_{\hat{u}_T}))|_{\partial T}) & (l = k) \\ \Pi_{\partial T}^k (\delta_{\hat{u}_T}) & (l = k+1) \end{cases}$$

Plain LS stabilization leads to O(h^k) H¹-error bounds (not O(h^{k+1}) ...)
 achieving O(h^{k+1}) bounds requires using face polynomials of order (k + 1) ⇒ more expensive

Hybridizable DG

- HDG methods devised in [Cockburn, Gopalakrishnan, Lazarov 09]
 - reviews in [Cockburn 16; Du, Sayas 19]

Hybridizable DG

- HDG methods devised in [Cockburn, Gopalakrishnan, Lazarov 09]
 - reviews in [Cockburn 16; Du, Sayas 19]
- HDG methods are formulated using a triple: dual variable (σ), primal variable (u), and its skeleton trace (λ)
 - the local equation for the dual variable is the grad. rec. formula in HHO!
 - one passes from HDG to HHO formulation by static condensation of dual variable

$$\begin{bmatrix} \mathsf{A}_{\sigma\sigma}^{\mathsf{HDG}} & \mathsf{A}_{\sigma\iota\iota}^{\mathsf{HDG}} & \mathsf{A}_{\sigma\iota\iota}^{\mathsf{HDG}} \\ \mathsf{A}_{u\sigma}^{\mathsf{HDG}} & \mathsf{A}_{uu}^{\mathsf{HDG}} & \mathsf{A}_{u\iota\iota}^{\mathsf{HDG}} \\ \mathsf{A}_{u\sigma}^{\mathsf{HDG}} & \mathsf{A}_{\lambda u}^{\mathsf{HDG}} & \mathsf{A}_{\lambda\iota\iota}^{\mathsf{HDG}} \end{bmatrix} \begin{bmatrix} \mathsf{S}_{\mathcal{T}} \\ \mathsf{U}_{\mathcal{T}} \\ \mathsf{U}_{\mathcal{F}} \end{bmatrix} = \begin{bmatrix} \mathsf{0} \\ \mathsf{F}_{\mathcal{T}} \\ \mathsf{0} \end{bmatrix} \qquad \Longleftrightarrow \qquad \begin{cases} \mathsf{A}_{\sigma\sigma}^{\mathsf{HDG}} \mathsf{S}_{\mathcal{T}} = -(\mathsf{A}_{\sigma\iota\iota}^{\mathsf{HDG}} \mathsf{U}_{\mathcal{T}} + \mathsf{A}_{\sigma\iota\iota}^{\mathsf{HDG}} \mathsf{U}_{\mathcal{F}}) \\ \left[\mathsf{A}_{uu}^{\mathsf{HHO}} & \mathsf{A}_{u\iota\iota}^{\mathsf{HHO}} \\ \mathsf{A}_{u\iota\iota}^{\mathsf{HHO}} & \mathsf{A}_{\iota\iota\iota}^{\mathsf{HHO}} \\ \mathsf{A}_{\lambda\iota\iota}^{\mathsf{HHO}} & \mathsf{A}_{\lambda\iota\iota}^{\mathsf{HHO}} \end{bmatrix} \begin{bmatrix} \mathsf{U}_{\mathcal{T}} \\ \mathsf{U}_{\mathcal{F}} \end{bmatrix} = \begin{bmatrix} \mathsf{F}_{\mathcal{T}} \\ \mathsf{0} \end{bmatrix}$$

Hybridizable DG

- HDG methods devised in [Cockburn, Gopalakrishnan, Lazarov 09]
 - reviews in [Cockburn 16; Du, Sayas 19]
- HDG methods are formulated using a triple: dual variable (σ), primal variable (u), and its skeleton trace (λ)
 - the local equation for the dual variable is the grad. rec. formula in HHO!
 - one passes from HDG to HHO formulation by static condensation of dual variable

$$\begin{bmatrix} \mathsf{A}^{\mathsf{HDG}}_{\sigma\sigma} & \mathsf{A}^{\mathsf{HDG}}_{\sigma\mathcal{U}} & \mathsf{A}^{\mathsf{HDG}}_{\sigma\mathcal{\lambda}} \\ \mathsf{A}^{\mathsf{HDG}}_{u\sigma} & \mathsf{A}^{\mathsf{HDG}}_{uu} & \mathsf{A}^{\mathsf{HDG}}_{u\mathcal{\lambda}} \\ \mathsf{A}^{\mathsf{HDG}}_{\lambda\sigma} & \mathsf{A}^{\mathsf{HDG}}_{\mathcal{\lambda}u} & \mathsf{A}^{\mathsf{HDG}}_{\mathcal{\lambda}\mathcal{\lambda}} \end{bmatrix} \begin{bmatrix} \mathsf{S}_{\mathcal{T}} \\ \mathsf{U}_{\mathcal{T}} \\ \mathsf{U}_{\mathcal{F}} \end{bmatrix} = \begin{bmatrix} \mathsf{0} \\ \mathsf{F}_{\mathcal{T}} \\ \mathsf{0} \end{bmatrix} \qquad \Longleftrightarrow \qquad \begin{cases} \mathsf{A}^{\mathsf{HDG}}_{\sigma\sigma}\mathsf{S}_{\mathcal{T}} = -(\mathsf{A}^{\mathsf{HDG}}_{\sigma\mathcal{U}}\mathsf{U}_{\mathcal{T}} + \mathsf{A}^{\mathsf{HDG}}_{\sigma\mathcal{U}}\mathsf{U}_{\mathcal{F}}) \\ \left[\mathsf{A}^{\mathsf{HHO}}_{uu} & \mathsf{A}^{\mathsf{HHO}}_{u\mathcal{\lambda}} \\ \mathsf{A}^{\mathsf{HHO}}_{\mathcal{\lambda}u} & \mathsf{A}^{\mathsf{HDG}}_{\mathcal{\lambda}\mathcal{\lambda}} \end{bmatrix} \begin{bmatrix} \mathsf{U}_{\mathcal{T}} \\ \mathsf{U}_{\mathcal{F}} \end{bmatrix} = \begin{bmatrix} \mathsf{F}_{\mathcal{T}} \\ \mathsf{0} \end{bmatrix} \end{cases}$$

- HHO is an HDG method!
 - this bridge uncovers HHO numerical flux trace

$$\widehat{\mathbf{q}}_{\partial T}(\widehat{u}_T) = -\mathbf{G}_T(\widehat{u}_T) \cdot \mathbf{n}_T + h_T^{-1}(S_{\partial T}^{\star} \circ S_{\partial T})(\delta_{\widehat{u}_T})$$

- one HHO novelty: use of reconstruction in stabilization (equal-order case)
- Main HHO benefit: simpler analysis based on *L*²-projections (avoids special HDG projection!)
- ncVEM devised in [Ayuso, Manzini, Lipnikov 16]
- Virtual space

$$\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_T := \{ v \in H^1(T) \mid \Delta v \in \mathbb{P}^l(T), \ \mathbf{n} \cdot \nabla v |_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T}) \}$$

- ncVEM devised in [Ayuso, Manzini, Lipnikov 16]
- Virtual space

 $\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_T := \{ v \in H^1(T) \mid \Delta v \in \mathbb{P}^l(T), \ \mathbf{n} \cdot \nabla v |_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T}) \}$

- HHO dof space \hat{U}_T with l := k 1 isomorphic to virtual space \mathcal{V}_T
 - virtual reconstruction operator $\mathcal{R}_T : \hat{U}_T \to \mathcal{V}_T$
 - $\hat{\mathcal{J}}_T : \mathcal{V}_T \to \hat{U}_T$: restriction of reduction operator to virtual space
 - then, $\hat{\mathcal{J}}_T \circ \mathcal{R}_T = I_{\hat{\mathcal{U}}_T}$ and $\mathcal{R}_T \circ \hat{\mathcal{J}}_T = I_{\mathcal{V}_T}$

- ncVEM devised in [Ayuso, Manzini, Lipnikov 16]
- Virtual space

 $\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_T := \{ v \in H^1(T) \mid \Delta v \in \mathbb{P}^l(T), \ \mathbf{n} \cdot \nabla v |_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T}) \}$

- HHO dof space \hat{U}_T with l := k 1 isomorphic to virtual space \mathcal{V}_T
 - virtual reconstruction operator $\mathcal{R}_T : \hat{U}_T \to \mathcal{V}_T$
 - $\hat{\mathcal{J}}_T : \mathcal{V}_T \to \hat{U}_T$: restriction of reduction operator to virtual space
 - then, $\hat{\mathcal{J}}_T \circ \mathcal{R}_T = I_{\hat{U}_T}$ and $\mathcal{R}_T \circ \hat{\mathcal{J}}_T = I_{\mathcal{V}_T}$
- HHO grad. rec. is called computable gradient projection in ncVEM
- Stabilization controls energy-norm of noncomputable remainder
 - purely algebraic stab. from ncVEM could be explored in HHO

- ncVEM devised in [Ayuso, Manzini, Lipnikov 16]
- Virtual space

 $\mathbb{P}^{k+1}(T) \subsetneq \mathcal{V}_T := \{ v \in H^1(T) \mid \Delta v \in \mathbb{P}^l(T), \ \mathbf{n} \cdot \nabla v |_{\partial T} \in \mathbb{P}^k(\mathcal{F}_{\partial T}) \}$

- HHO dof space \hat{U}_T with l := k 1 isomorphic to virtual space \mathcal{V}_T
 - virtual reconstruction operator $\mathcal{R}_T : \hat{U}_T \to \mathcal{V}_T$
 - $\hat{\mathcal{J}}_T : \mathcal{V}_T \to \hat{U}_T$: restriction of reduction operator to virtual space
 - then, $\hat{\mathcal{J}}_T \circ \mathcal{R}_T = I_{\hat{\mathcal{U}}_T}$ and $\mathcal{R}_T \circ \hat{\mathcal{J}}_T = I_{\mathcal{V}_T}$
- HHO grad. rec. is called computable gradient projection in ncVEM
- Stabilization controls energy-norm of noncomputable remainder
 - purely algebraic stab. from ncVEM could be explored in HHO
- Further link to Multiscale Hybrid Mixed (MHM methods) [Chaumont, AE, Lemaire, Valentin 22]

Wave propagation problems

- Second-order formulation in time: Newmark schemes
- First-order formulation in time: Runge-Kutta (RK) schemes
- [Burman, Duran, AE 22 (CAMC, CMAME)], [Burman, Duran, AE, Steins 21 (JSC)], [Steins, AE, Jamond, Drui 23 (M2AN)]

- Domain $\Omega \subset \mathbb{R}^d$, time interval $J := (0, T_f), T_f > 0$
- Acoustic wave equation with wave speed $c := \sqrt{\kappa/\rho}$

$$(\partial_{tt}p(t),w)_{\frac{1}{\kappa};\Omega} + (\nabla p(t),\nabla w)_{\frac{1}{\rho};\Omega} = (f(t),w)_{\Omega}, \quad \forall w \in H^1_0(\Omega) \ \forall t \in J$$

- Domain $\Omega \subset \mathbb{R}^d$, time interval $J := (0, T_f), T_f > 0$
- Acoustic wave equation with wave speed $c := \sqrt{\kappa/\rho}$

$$(\partial_{tt}p(t), w)_{\frac{1}{\kappa};\Omega} + (\nabla p(t), \nabla w)_{\frac{1}{\rho};\Omega} = (f(t), w)_{\Omega}, \quad \forall w \in H_0^1(\Omega) \, \forall t \in J$$

• Energy balance: $\mathfrak{E}(t) = \mathfrak{E}(0) + \int_0^t (f(s), \partial_t p(s))_{\Omega} ds$ with

$$\mathfrak{E}(t) := \frac{1}{2} \|\partial_t p(t)\|_{\frac{1}{\kappa};\Omega}^2 + \frac{1}{2} \|\nabla p(t)\|_{\frac{1}{\rho};\Omega}^2$$

- Domain $\Omega \subset \mathbb{R}^d$, time interval $J := (0, T_f), T_f > 0$
- Acoustic wave equation with wave speed $c := \sqrt{\kappa/\rho}$

$$(\partial_{tt}p(t),w)_{\frac{1}{\kappa};\Omega} + (\nabla p(t),\nabla w)_{\frac{1}{\rho};\Omega} = (f(t),w)_{\Omega}, \quad \forall w \in H^1_0(\Omega) \; \forall t \in J$$

• Energy balance: $\mathfrak{E}(t) = \mathfrak{E}(0) + \int_0^t (f(s), \partial_t p(s))_{\Omega} ds$ with

$$\mathfrak{E}(t) := \frac{1}{2} \|\partial_t p(t)\|_{\frac{1}{\kappa};\Omega}^2 + \frac{1}{2} \|\nabla p(t)\|_{\frac{1}{\rho};\Omega}^2$$

• Everything can be extended to elastodynamics

Recap on HHO tools

• Local cell dofs in $\mathbb{P}^{l}(T)$, $l \in \{k, k+1\}$, and local face dofs in $\mathbb{P}^{k}(\mathcal{F}_{\partial T})$

$$\hat{u}_T = (u_T, u_{\partial T}) \in \hat{U}_T := \mathbb{P}^l(T) \times \mathbb{P}^k(\mathcal{F}_{\partial T})$$

- Local gradient reconstruction $\mathbf{G}_T(\hat{u}_T) \in \mathbb{P}^k(T; \mathbb{R}^d)$ (or in $\nabla \mathbb{P}^{k+1}(T)$)
- Local stabilization acting on $\delta_{\hat{u}_T} := u_T |_{\partial T} u_{\partial T}$

$$S_{\partial T}(\delta_{\hat{u}_T}) := \begin{cases} \Pi_{\partial T}^k (\delta_{\hat{u}_T} - \left((I - \Pi_T^k) R_T(0, \delta_{\hat{u}_T}) \right) |_{\partial T}) & \text{if } l = k \\ \Pi_{\partial T}^k (\delta_{\hat{u}_T}) & \text{if } l = k+1 \end{cases}$$

• Local bilinear form (with $\tau_{\partial T} := (\rho_{|T}h_T)^{-1}$)

$$a_T(\hat{u}_T, \hat{w}_T) := (\mathbf{G}_T(\hat{u}_T), \mathbf{G}_T(\hat{w}_T))_{\frac{1}{\rho}; T} + \tau_{\partial T}(S_{\partial T}(\delta_{\hat{u}_T}), S_{\partial T}(\delta_{\hat{w}_T}))_{\partial T}$$

• Global bilinear form a_h on HHO space \hat{U}_{h0} (with Dirichlet BCs)

HHO space semi-discretization

• Space semi-discrete form: Find $\hat{p}_h \in C^2(\overline{J}; \hat{U}_{h0})$ s.t.

$$(\partial_{tt} p_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{\kappa};\Omega} + a_h(\hat{p}_h(t), \hat{w}_h) = (f(t), w_{\mathcal{T}})_{\Omega}, \quad \forall \hat{w}_h \in \hat{U}_{h0} \, \forall t \in J$$

HHO space semi-discretization

• Space semi-discrete form: Find $\hat{p}_h \in C^2(\bar{J}; \hat{U}_{h0})$ s.t.

$$(\partial_{tt} p_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{\kappa};\Omega} + a_h(\hat{p}_h(t), \hat{w}_h) = (f(t), w_{\mathcal{T}})_{\Omega}, \quad \forall \hat{w}_h \in \hat{U}_{h0} \, \forall t \in J$$

• Energy balance: $\mathfrak{E}_h(t) = \mathfrak{E}_h(0) + \int_0^t (f(s), \partial_t p_{\mathcal{T}}(s))_{\Omega} ds$ with

$$\mathfrak{E}_{h}(t) := \frac{1}{2} \|\partial_{t} p_{\mathcal{T}}(t)\|_{\frac{1}{k};\Omega}^{2} + \frac{1}{2} \|\mathbf{G}_{\mathcal{T}}(\hat{p}_{h}(t))\|_{\frac{1}{\rho};\Omega}^{2} + \frac{1}{2} s_{h}(\hat{p}_{h}(t), \hat{p}_{h}(t))$$

Stabilization is taken into account in the energy definition

• HDG methods for wave equation in second-order form [Cockburn, Fu, Hungria, Ji, Sanchez, Sayas 18]

• Bases for $\mathbb{P}^{l}(\mathcal{T})$ and $\mathbb{P}^{k}(\mathcal{F}) \Longrightarrow$ vectors $(\mathsf{P}_{\mathcal{T}}(t), \mathsf{P}_{\mathcal{F}}(t)) \in \mathbb{R}^{N_{\mathcal{T}}} \times \mathbb{R}^{N_{\mathcal{F}}}$

$$\begin{bmatrix} \mathsf{M}_{\mathcal{T}\mathcal{T}}\partial_{tt}\mathsf{P}_{\mathcal{T}}(t)\\ 0 \end{bmatrix} + \begin{bmatrix} \mathsf{A}_{\mathcal{T}\mathcal{T}} & \mathsf{A}_{\mathcal{T}\mathcal{F}}\\ \mathsf{A}_{\mathcal{F}\mathcal{T}} & \mathsf{A}_{\mathcal{F}\mathcal{F}} \end{bmatrix} \begin{bmatrix} \mathsf{P}_{\mathcal{T}}(t)\\ \mathsf{P}_{\mathcal{F}}(t) \end{bmatrix} = \begin{bmatrix} \mathsf{F}_{\mathcal{T}}(t)\\ 0 \end{bmatrix}$$

- $\bullet\,$ Mass matrix $M_{\mathcal{TT}}$ and stiffness submatrix $A_{\mathcal{TT}}$ are block-diagonal
- Stiffness submatrix A_{FF} is only sparse: face dofs from the same cell are coupled together owing to reconstruction

- [Burman, Duran, AE, Steins 21 (JSC)] proves (for smooth solutions)
 - $\|\partial_t p \partial_t p_{\mathcal{T}}\|_{L^{\infty}(J;L^2(\frac{1}{k};\Omega))} + \|\nabla p \mathbf{G}_{\mathcal{T}}(\hat{p}_h)\|_{L^2(J;L^2(\frac{1}{p};\Omega))} \lesssim h^{k+1}$ $\|\Pi^l_{\mathcal{T}}(p) p_{\mathcal{T}}\|_{L^{\infty}(J;L^2(\frac{1}{\alpha};\Omega))} \lesssim h^{k+2}$ (under full elliptic regularity)
- Some comments on proofs
 - adapt ideas from FEM analysis [Dupont 73; Wheeler 73; Baker 76]
 - simpler than HDG (which needs special initialization)
 - applies to DG using discr. gradients (revisit [Grote, Schneebeli, Schötzau 06])

Newmark schemes

- Newmark scheme with parameters $(\beta, \gamma) = (\frac{1}{4}, \frac{1}{2})$
 - implicit, second-order, unconditionally stable
 - $p, \partial_t p, \partial_{tt} p$ are approximated by hybrid pairs $\hat{p}_h^n, \hat{v}_h^n, \hat{a}_h^n \in \hat{U}_{h0}, \forall n \ge 0$

Newmark schemes

- Newmark scheme with parameters $(\beta, \gamma) = (\frac{1}{4}, \frac{1}{2})$
 - implicit, second-order, unconditionally stable
 - $p, \partial_t p, \partial_{tt} p$ are approximated by hybrid pairs $\hat{p}_h^n, \hat{v}_h^n, \hat{a}_h^n \in \hat{U}_{h0}, \forall n \ge 0$
- Discrete energy is exactly conserved

Newmark schemes

- Newmark scheme with parameters $(\beta, \gamma) = (\frac{1}{4}, \frac{1}{2})$
 - implicit, second-order, unconditionally stable
 - $p, \partial_t p, \partial_{tt} p$ are approximated by hybrid pairs $\hat{p}_h^n, \hat{v}_h^n, \hat{a}_h^n \in \hat{U}_{h0}, \forall n \ge 0$
- Discrete energy is exactly conserved
- Improvements on leapfrog scheme [Steins, AE, Jamond, Drui 23 (M2AN)]
 - $\bullet\,$ plain leapfrog not efficient: needs inverting stiffness submatrix $A_{\mathcal{FF}}$
 - one can use an iterative method exploiting bock-diagonal structure of face-face penalty submatrix
 - convergence guaranteed if stabilization scaled with large enough weight
 - sharp estimate depending on trace inequality constant (*h*-independent)
 - mild impact on CFL condition despite increased stiffness (up to factor of 2)
 - computational performances
 - close-to-optimal value of weight easy to set
 - generally outperforms plain leapfrog, especially for nonlinear problems
 - mixed-order HHO setting more efficient than equal-order

First-order formulation in time

• Introduce velocity $v := \partial_t p$ and dual variable $\sigma := \frac{1}{\rho} \nabla p$

• Weak form: $\forall (\tau, w) \in L^2(\Omega; \mathbb{R}^d) \times H^1_0(\Omega), \forall t \in J$,

$$\begin{cases} (\partial_t \boldsymbol{\sigma}(t), \boldsymbol{\tau})_{\rho;\Omega} - (\nabla \boldsymbol{v}(t), \boldsymbol{\tau})_{\Omega} = 0 & \leftrightarrow & \rho \partial_t \boldsymbol{\sigma} - \nabla \boldsymbol{v} = 0 \\ (\partial_t \boldsymbol{v}(t), \boldsymbol{w})_{\frac{1}{\kappa};\Omega} + (\boldsymbol{\sigma}(t), \nabla \boldsymbol{w})_{\Omega} = (f(t), \boldsymbol{w})_{\Omega} & \leftrightarrow & \frac{1}{\kappa} \partial_t \boldsymbol{v} - \operatorname{div} \boldsymbol{\sigma} = f \end{cases}$$

• Energy balance: $\mathfrak{E}(t) = \mathfrak{E}(0) + \int_0^t (f(s), v(s))_{\Omega} ds$ with

$$\mathfrak{E}(t) := \frac{1}{2} \| \boldsymbol{v}(t) \|_{\frac{1}{\kappa};\Omega}^2 + \frac{1}{2} \| \boldsymbol{\sigma}(t) \|_{\rho;\Omega}^2$$

HHO space semi-discretization

- $\hat{v}_h \in C^1(\overline{J}; \hat{U}_{h0})$ and $\sigma_{\mathcal{T}} \in C^1(\overline{J}; \mathbf{S}_{\mathcal{T}})$ with $\mathbf{S}_{\mathcal{T}} := \mathbb{P}^k(\mathcal{T}; \mathbb{R}^d)$
- Space semi-discrete form:

$$\begin{aligned} & \left((\partial_t \boldsymbol{\sigma}_{\mathcal{T}}(t), \boldsymbol{\tau}_{\mathcal{T}})_{\rho;\Omega} - (\mathbf{G}_{\mathcal{T}}(\hat{v}_h(t)), \boldsymbol{\tau}_{\mathcal{T}})_{\Omega} = 0 \\ & (\partial_t v_{\mathcal{T}}(t), w_{\mathcal{T}})_{\frac{1}{\kappa};\Omega} + (\boldsymbol{\sigma}_{\mathcal{T}}(t), \mathbf{G}_{\mathcal{T}}(\hat{w}_h))_{\Omega} + \tilde{s}_h(\hat{v}_h(t), \hat{w}_h) = (f(t), w_{\mathcal{T}})_{\Omega} \end{aligned} \right) \end{aligned}$$

• Stabilization $\tilde{s}_h(\cdot, \cdot)$ with weight $\tilde{\tau}_{\partial T} = O(h_T^{-\alpha})$, one takes $\alpha \in \{0, 1\}$

HHO space semi-discretization

- $\hat{v}_h \in C^1(\overline{J}; \hat{U}_{h0})$ and $\sigma_{\mathcal{T}} \in C^1(\overline{J}; \mathbf{S}_{\mathcal{T}})$ with $\mathbf{S}_{\mathcal{T}} := \mathbb{P}^k(\mathcal{T}; \mathbb{R}^d)$
- Space semi-discrete form:

$$\begin{aligned} \left\{ (\partial_t \boldsymbol{\sigma}_{\mathcal{T}}(t), \boldsymbol{\tau}_{\mathcal{T}})_{\rho;\Omega} - (\mathbf{G}_{\mathcal{T}}(\hat{v}_h(t)), \boldsymbol{\tau}_{\mathcal{T}})_{\Omega} &= 0 \\ (\partial_t \boldsymbol{v}_{\mathcal{T}}(t), \boldsymbol{w}_{\mathcal{T}})_{\frac{1}{\kappa};\Omega} + (\boldsymbol{\sigma}_{\mathcal{T}}(t), \mathbf{G}_{\mathcal{T}}(\hat{w}_h))_{\Omega} + \tilde{s}_h(\hat{v}_h(t), \hat{w}_h) &= (f(t), \boldsymbol{w}_{\mathcal{T}})_{\Omega} \end{aligned} \right.$$

- Stabilization $\tilde{s}_h(\cdot, \cdot)$ with weight $\tilde{\tau}_{\partial T} = O(h_T^{-\alpha})$, one takes $\alpha \in \{0, 1\}$
- Energy balance: $\mathfrak{E}_h(t) := \frac{1}{2} \| v_{\mathcal{T}}(t) \|_{\frac{1}{2};\Omega}^2 + \frac{1}{2} \| \boldsymbol{\sigma}_{\mathcal{T}}(t) \|_{\rho;\Omega}^2$

$$\mathfrak{E}_h(t) + \int_0^t \tilde{s}_h(\hat{v}_h(s), \hat{v}_h(s)) ds = \mathfrak{E}_h(0) + \int_0^t (f(s), \mathbf{v}_{\mathcal{T}}(s))_\Omega ds$$

Stabilization acts as a dissipative mechanism

• HDG methods for wave equation in first-order form [Nguyen, Peraire, Cockburn 11; Stranglmeier, Nguyen, Peraire, Cockburn 16]

Algebraic realization

• Component vectors $Z_{\mathcal{T}}(t) \in \mathbb{R}^{M_{\mathcal{T}}}$ and $(V_{\mathcal{T}}(t), V_{\mathcal{F}}(t)) \in \mathbb{R}^{N_{\mathcal{T}} \times N_{\mathcal{F}}}$

$$\begin{bmatrix} \mathsf{M}^{\boldsymbol{\sigma}}_{\mathcal{T}\mathcal{T}}\partial_{t}\mathsf{Z}_{\mathcal{T}}(t)\\ \mathsf{M}_{\mathcal{T}\mathcal{T}}\partial_{t}\mathsf{V}_{\mathcal{T}}(t)\\ 0 \end{bmatrix} + \begin{bmatrix} 0 & -\mathsf{G}_{\mathcal{T}} & -\mathsf{G}_{\mathcal{F}}\\ \mathsf{G}^{\dagger}_{\mathcal{T}} & \mathsf{S}_{\mathcal{T}\mathcal{T}} & \mathsf{S}_{\mathcal{T}\mathcal{F}}\\ \mathsf{G}^{\dagger}_{\mathcal{F}} & \mathsf{S}_{\mathcal{T}\mathcal{T}} & \mathsf{S}_{\mathcal{T}\mathcal{F}}\\ \mathsf{G}^{\dagger}_{\mathcal{F}} & \mathsf{S}_{\mathcal{F}\mathcal{T}} & \mathsf{S}_{\mathcal{F}\mathcal{F}} \end{bmatrix} \begin{bmatrix} \mathsf{Z}_{\mathcal{T}}(t)\\ \mathsf{V}_{\mathcal{T}}(t)\\ \mathsf{V}_{\mathcal{T}}(t)\\ \mathsf{V}_{\mathcal{F}}(t) \end{bmatrix} = \begin{bmatrix} 0\\ \mathsf{F}_{\mathcal{T}}(t)\\ 0 \end{bmatrix}$$

- Mass matrices M^{σ}_{TT} and M_{TT} are block-diagonal
- Key point: stab. submatrix $S_{\mathcal{FF}}$ block-diagonal only if l = k + 1
 - for *l* = *k*, high-order HHO correction in stabilization destroys this property (couples all faces of the same cell)
 - mixed-order HHO setting recommended for explicit schemes!

- Natural choice for first-order formulation in time
 - single diagonally implicit RK: SDIRK(*s*, *s* + 1) (*s* stages, order (*s* + 1))
 - explicit RK: ERK(s) (s stages, order s)
- ERK schemes subject to CFL stability condition $\frac{c\Delta t}{h} \leq \beta(s)\mu(k)$
 - $\beta(s)$ slightly increases with $s \in \{2, 3, 4\}$
 - $\mu(k)$ essentially behaves as $(k + 1)^{-1}$ w.r.t. polynomial degree

1D heterogeneous media

- 1D test case, $\Omega_1 = (0, 0.5), \Omega_2 = (0.5, 1), c_1/c_2 = 10$
 - initial Gaussian profile in Ω_1
 - analytical solution available (series)
- Benefits of increasing polynomial degree
 - Newmark scheme, equal-order, $k \in \{1, 2, 3\}, h = 0.1 \times 2^{-8}, \Delta t = 0.1 \times 2^{-9}$
 - HHO-Newmark solution at $t = \frac{1}{2}$ (after reflection/transmission at $x = \frac{1}{2}$)

2D heterogeneous media

• 2D test case, Ricker (Mexican hat) wavelet

•
$$\Omega_1 = (0,1) \times (0,\frac{1}{2}), \Omega_2 = (0,1) \times (\frac{1}{2},1), c_1/c_2 = 5$$

•
$$p_0 = 0, v_0 = -\frac{4}{10}\sqrt{\frac{10}{3}}\left(1600 r^2 - 1\right)\pi^{-\frac{1}{4}}\exp\left(-800r^2\right),$$

 $r^2 = (x - x_c)^2 + (y - y_c)^2, (x_c, y_c) = (\frac{1}{2}, \frac{1}{4}) \in \Omega_1$

• semi-analytical solution (infinite media): gar6more2d software (INRIA)

• HHO-SDIRK(3,4) velocity profiles

- mixed-order, k = 5, polygonal meshes
- $\Delta t = 0.025 \times 2^{-6}$ (four times larger than Newmark for similar accuracy)

Wave propagation across interface

- Subdomains $\Omega_1, \Omega_2 \subset \Omega$, interface Γ , jump $\llbracket a \rrbracket_{\Gamma} = a_{|\Omega_1} a_{|\Omega_2}$
- Acoustic wave propagation across interface

$$\begin{cases} \frac{1}{\kappa} \partial_{tt} p - \operatorname{div} \left(\frac{1}{\rho} \nabla p \right) = f & \text{in } J \times (\Omega_1 \cup \Omega_2) \\ \llbracket p \rrbracket_{\Gamma} = 0, \ \llbracket \frac{1}{\rho} \nabla p \rrbracket_{\Gamma} \cdot \mathbf{n}_{\Gamma} = 0 & \text{on } J \times \Gamma \end{cases}$$

- Use main ideas from elliptic interface problems
 - mixed-order setting l = k + 1
 - distinct gradient reconstructions \mathbf{G}_{T_i} in $\mathbb{P}^k(T_i; \mathbb{R}^d), i \in \{1, 2\}$
 - O(1) penalty parameter
 - LS stabilization on $(\partial T)^i$, $i \in \{1, 2\} \Longrightarrow s_{T_i}(\cdot, \cdot)$
- Unfitted HHO-Newmark, ERK and SDIRK available

Fitted-unfitted comparison

• 2D heterogeneous test case with flat interface

•
$$\Omega_1 := (-\frac{3}{2}, \frac{3}{2}) \times (-\frac{3}{2}, 0), \Omega_2 := (-\frac{3}{2}, \frac{3}{2}) \times (0, \frac{3}{2})$$

- Ricker wavelet centered at $(0, \frac{2}{3}) \in \Omega_2$, sensor $S_1 = (\frac{3}{4}, -\frac{1}{3}) \in \Omega_1$
- fitted and unfitted HHO behave similarly, both benefit from increasing k

Fitted-unfitted comparison

• 2D heterogeneous test case with flat interface

•
$$\Omega_1 := (-\frac{3}{2}, \frac{3}{2}) \times (-\frac{3}{2}, 0), \Omega_2 := (-\frac{3}{2}, \frac{3}{2}) \times (0, \frac{3}{2})$$

- Ricker wavelet centered at $(0, \frac{2}{3}) \in \Omega_2$, sensor $S_1 = (\frac{3}{4}, -\frac{1}{3}) \in \Omega_1$
- fitted and unfitted HHO behave similarly, both benefit from increasing k
- HHO-Newmark, σ_x signals
 - comparison of semi-analytical and HHO (fitted or unfitted) solutions
 - k = 1 (top) and k = 3 (bottom)
 - $c_2/c_1 = \sqrt{3}$ (low contrast, left) or $c_2/c_1 = 8\sqrt{3}$ (high contrast, right)

CFL condition for ERK (1/2)

- Homogeneous test case, flat interface
- CFL condition for ERK(s): $\frac{c\Delta t}{h} \leq \beta(s)\mu(k)$
 - $\beta(s)$ mildly depends on the number of stages
 - $\mu(k)$ behaves as $(k + 1)^{-1}$ and is quantified by solving a generalized eigenvalue problem with the mass and stiffness matrices
- Additional jump penalties in unfitted HHO only mildly impact $\mu(k)$

k	0	1	2	3
Fitted-HHO	0.118	0.0522	0.0338	0.0229
Unfitted-HHO	0.0765	0.0373	0.0232	0.0159
Ratio	1.5	1.4	1.5	1.4

CFL condition for ERK (2/2)

- Homogeneous test case, circular interface
 - study of impact of agglomeration parameter θ_{agg} on $\mu(k)$
 - "ill cut" cells flagged if relative area of any subcell falls below θ_{agg}

• Agglomerated cells for $\theta_{agg} = 0.3$ on a sequence of refined quad meshes

CFL condition for ERK (2/2)

0.010 0.005 0.001 5.×10⁻⁴ 1.×10⁻⁴ 5.×10⁻⁵

- Homogeneous test case, circular interface
 - study of impact of agglomeration parameter θ_{agg} on $\mu(k)$
 - "ill cut" cells flagged if relative area of any subcell falls below θ_{agg}
- Agglomerated cells for $\theta_{agg} = 0.3$ on a sequence of refined quad meshes

- Behavior of $h\mu(k)$ and impact of θ_{agg} on $\mu(k)$
 - tolerating ill cut cells deteriorates the CFL condition

	k	0	1	2	3
	$\theta_{\text{agg}} = 0.5$	0.042	0.022	0.014	0.0099
	$\theta_{\text{agg}} = 0.3$	0.030	0.015	0.0094	0.0065
	Ratio	1.4	1.5	1.5	1.5
	$\theta_{agg} = 0.1$	0.017	0.0087	0.0055	0.0039
103	Ratio	2.5	2.6	2.6	2.5
0.01 0.02 0.05 0.10					

Flower-like interface

• Agglomerated cells for a flower-like interface (quad mesh, $h = 2^{-5}$), HHO-SDIRK(3,4) signal for σ_x at two sensors, $k \in \{1, 2, 3\}, c_2/c_1 = \sqrt{3}$

• Pressure isovalues, SDIRK(3,4), k = 3, $h = 0.1 \times 2^{-8}$, $\Delta t = 2^{-6}$

t = 0.25

vh 0 0.1 2.7e-01 t = 0.5

Flower-like interface

• Agglomerated cells for a flower-like interface (quad mesh, $h = 2^{-5}$), HHO-SDIRK(3,4) signal for σ_x at two sensors, $k \in \{1, 2, 3\}, c_2/c_1 = \sqrt{3}$

• Pressure isovalues, SDIRK(3,4), k = 3, $h = 0.1 \times 2^{-8}$, $\Delta t = 2^{-6}$

t = 0.25

t = 0.5

t = 1

!! Thank you for your attention !!

Competition: Newmark vs. RK

- All schemes deliver same max. rel. error on a sensor at $(\frac{1}{2}, \frac{2}{3})$
- Disclaimer: preliminary results! (off-the-shelf solvers)
- If no direct solvers allowed, ERK(4) wins despite CFL restriction
- With direct solvers, SDIRK(3,4) wins
- RK schemes more efficient than Newmark scheme
- for SDIRK(3,4), $\tilde{\tau}_{\partial T} = O(h_T^{-\alpha})$, $\alpha = 1$ more accurate/expensive than $\alpha = 0$

scheme	(l,k)	α	solver	t/step	steps	time	err
ERK(4)	(6,5)	0	n/a	0.410	5,120	2,099	2.23
Newmark	(7,6)	1	iter	56.74	2,560	58,265	2.15
SDIRK(3,4)	(6,5)	1	iter	31.24	640	5,639	2.21
SDIRK(3,4)	(6,5)	0	iter	22.52	640	2,200	4.45
Newmark	(7,6)	1	direct	0.515	2,560	1,318	2.15
SDIRK(3,4)	(6,5)	1	direct	1.579	640	1,010	2.21

Local dofs

- Mesh still composed of polygonal cells (with planar faces)
- Decomposition of cut cells: $\overline{T} = \overline{T_1} \cup \overline{T_2}, T^{\Gamma} = T \cap \Gamma$
- Decomposition of cut faces: $\partial(T_i) = (\partial T)^i \cup T^{\Gamma}, i \in \{1, 2\}$
- Local dofs (no dofs on T^{Γ} !)

 $\hat{u}_T = (u_{T_1}, u_{T_2}, u_{(\partial T)^1}, u_{(\partial T)^2}) \in \mathbb{P}^{k+1}(T_1) \times \mathbb{P}^{k+1}(T_2) \times \mathbb{P}^k(\mathcal{F}_{(\partial T)^1}) \times \mathbb{P}^k(\mathcal{F}_{(\partial T)^2})$

Gradient reconstruction in cut cells

• Gradient reconstruction $\mathbf{G}_{T_i}(\hat{u}_T) \in \mathbb{P}^k(T_i; \mathbb{R}^d)$ in each subcell

• (Option 1) Independent reconstruction in each subcell

$$(\mathbf{G}_{T_i}(\hat{u}_T), \mathbf{q})_{T_i} = -(\boldsymbol{u}_{T_i}, \operatorname{div} \mathbf{q})_{T_i} + (\boldsymbol{u}_{(\partial T)^i}, \mathbf{q} \cdot \mathbf{n}_T)_{(\partial T)^i} + (\boldsymbol{u}_{T_i}, \mathbf{q} \cdot \mathbf{n}_{T_i})_{T^{\Gamma}}$$

• (Option 2) Reconstruction mixing data from both subcells

 $(\mathbf{G}_{T_i}(\hat{u}_T), \mathbf{q})_{T_i} = -(\mathbf{u}_{T_i}, \operatorname{div} \mathbf{q})_{T_i} + (\mathbf{u}_{(\partial T)^i}, \mathbf{q} \cdot \mathbf{n}_T)_{(\partial T)^i} + (\mathbf{u}_{T_{3-i}}, \mathbf{q} \cdot \mathbf{n}_{T_i})_{T^{\Gamma}}$

- Both options avoid Nitsche's consistency terms
 - O(1) penalty parameter

Local bilinear form in cut cells

Local bilinear form

$$a_T(\hat{u}_T, \hat{w}_T) := \sum_{i \in \{1, 2\}} \left\{ \kappa_i(\mathbf{G}_{T_i}(\hat{u}_T), \mathbf{G}_{T_i}(\hat{w}_T))_{T_i} + s_{T_i}(\hat{u}_T, \hat{w}_T) \right\} + s_T^{\Gamma}(u_T, w_T)$$

• LS stabilization inside each subdomain

$$s_{T_i}(\hat{u}_T, \hat{w}_T) := \kappa_i h_{T_i}^{-1}(\Pi^k_{(\partial T)^i}(\delta_{\hat{u}_{T_i}}), \delta_{\hat{w}_{T_i}})_{(\partial T)^i}$$

• Interface bilinear form

$$s_T^{\Gamma}(u_T, w_T) := \eta \kappa_1 h_T^{-1}(\llbracket u_T \rrbracket_{\Gamma}, \llbracket w_T \rrbracket_{\Gamma})_{T^{\Gamma}} \text{ with } \eta = O(1)$$

- The use of two gradient reconstructions allows for robustness w.r.t. contrast (κ₁ ≪ κ₂)
 - use option 1 in Ω_1 and option 2 in Ω_2
 - a_T is symmetric, but Ω_1/Ω_2 do not play symmetric roles

Error analysis

- Multiplicative and discrete trace inequalities [Burman, AE 18]
 - for any cut cell *T*, there is a ball *T*[†] of size *O*(*h_T*) containing *T* and a finite number of its neighbors, and s.t. all *T* ∩ Γ is visible from a point in *T*[†]
 - small ball with diameter $O(h_T)$ present on both sides of interface
 - achievable using local cell agglomeration if mesh fine enough

Error estimate

Assuming that
$$u|_{\Omega_i} \in H^{1+t}(\Omega_i)$$
 with $t \in (\frac{1}{2}, k+1]$,

$$\sum_{T} \sum_{i \in \{1,2\}} \kappa_i \|\nabla(u - u_{T_i})\|_{T_i}^2 \le Ch^{2t} \sum_{i \in \{1,2\}} \kappa_i |u|_{H^{t+1}(\Omega_i)}^2$$

Convergence order $O(h^{k+1})$ if $u|_{\Omega_i} \in H^{k+2}(\Omega_i)$