Examples
// example #1 (elementary stat for U(0,1))
m = 50000 ; n = 10;
X = grand(m,1,"def");
val = linspace(0,1,n+1)';
[ind, occ] = dsearch(X, val);
xbasc() ; plot2d2(val, [occ/m;0]) // no normalisation : y must be near 1/n
// example #2 (elementary stat for B(N,p))
N = 8 ; p = 0.5; m = 50000;
X = grand(m,1,"bin",N,p); val = (0:N)';
[ind, occ] = dsearch(X, val, "d");
Pexp = occ/m; Pexa = binomial(p,N);
xbasc() ; hm = 1.1*max(max(Pexa),max(Pexp));
plot2d3([val val+0.1], [Pexa' Pexp],[1 2],"111", ...
"Pexact@Pexp", [-1 0 N+1 hm],[0 N+2 0 6])
xtitle( "binomial law B("+string(N)+","+string(p)+") :" ...
+" exact probability versus experimental ones")
// example #3 (piecewise Hermite polynomial)
x = [0 ; 0.2 ; 0.35 ; 0.5 ; 0.65 ; 0.8 ; 1];
y = [0 ; 0.1 ;-0.1 ; 0 ; 0.4 ;-0.1 ; 0];
d = [1 ; 0 ; 0 ; 1 ; 0 ; 0 ; -1];
X = linspace(0, 1, 200)';
ind = dsearch(X, x);
// define Hermite base functions
deff("y=Ll(t,k,x)","y=(t-x(k+1))./(x(k)-x(k+1))") // Lagrange left on Ik
deff("y=Lr(t,k,x)","y=(t-x(k))./(x(k+1)-x(k))") // Lagrange right on Ik
deff("y=Hl(t,k,x)","y=(1-2*(t-x(k))./(x(k)-x(k+1))).*Ll(t,k,x).^2")
deff("y=Hr(t,k,x)","y=(1-2*(t-x(k+1))./(x(k+1)-x(k))).*Lr(t,k,x).^2")
deff("y=Kl(t,k,x)","y=(t-x(k)).*Ll(t,k,x).^2")
deff("y=Kr(t,k,x)","y=(t-x(k+1)).*Lr(t,k,x).^2")
// plot the curve
Y = y(ind).*Hl(X,ind) + y(ind+1).*Hr(X,ind) + d(ind).*Kl(X,ind) + d(ind+1).*Kr(X,ind);
xbasc(); plot2d(X,Y,2) ; plot2d(x,y,-9,"000")
xtitle("an Hermite piecewise polynomial")
// NOTE : you can verify by adding these ones :
// YY = interp(X,x,y,d); plot2d(X,YY,3,"000")