| Scilab Reference Manual |
|---|
findBD — initial state and system matrices B and D of a discrete-time system
[(x0) (,B (,D)) (,V) (,rcnd)] = findBD(jobx0,comuse (,job),A (,B),C (,D),Y
(,U,tol,printw,ldwork))
| jobx0 | : integer option to specify whether or not the initial state should be computed:
| ||||||
| comuse | : integer option to specify whether the system matrices B and D should be computed or used:
| ||||||
| job | : integer option to determine which of the system matrices B and D should be computed or used:
job must not be specified if jobx0 = 2 and comuse = 2, or if comuse = 3. | ||||||
| A | : state matrix of the given system | ||||||
| B | : optionnal, input matrix of the given system | ||||||
| C | : output matrix of the given system | ||||||
| D | : optionnal, direct feedthrough of the given system | ||||||
| Y | : the t-by-l output-data sequence matrix. Column j of Y contains the t values of the j-th output component for consecutive time increments. | ||||||
| U | : the t-by-m input-data sequence matrix (input when jobx0 = 1 and comuse = 2, or comuse = 1). Column j of U contains the t values of the j-th input component for consecutive time increments. | ||||||
| tol | : optionnal, tolerance used for estimating the rank of matrices. If tol > 0, then the given value of tol is used as a lower bound for the reciprocal condition number; an m-by-n matrix whose estimated condition number is less than 1/tol is considered to be of full rank. Default: m*n*epsilon_machine where epsilon_machine is the relative machine precision. | ||||||
| printw | :optionnal, switch for printing the warning messages.
Default: printw = 0. | ||||||
| ldwork | : (optional) the workspace size. Default : computed by the formula LDWORK = MAX( minimum workspace size needed, 2*CSIZE/3, CSIZE - ( m + l )*t - 2*n*( n + m + l ) - l*m ) where CSIZE is the cache size in double precision words. | ||||||
| x0 | : initial state vector | ||||||
| Br | : system input matrix | ||||||
| Dr | : system direct feedthrough matrix | ||||||
| V | : the n-by-n orthogonal matrix which reduces A to a real Schur form (output when jobx0 = 1 or comuse = 1). | ||||||
| rcnd | : (optional) the reciprocal condition numbers of the matrices involved in rank decisions. |
findBD function for estimating the initial state and the system matrices B and D of a discrete-time system, using SLICOT routine IB01CD.
[x0,Br,V,rcnd] = findBD(1,1,1,A,C,Y,U)
[x0,Br,Dr,V,rcnd] = findBD(1,1,2,A,C,Y,U)
[Br,V,rcnd] = findBD(2,1,1,A,C,Y,U)
[B,Dr,V,rcnd] = findBD(2,1,2,A,C,Y,U)
[x0,V,rcnd] = findBD(1,2,1,A,B,C,Y,U)
[x0,V,rcnd] = findBD(1,2,2,A,B,C,D,Y,U)
[x0,rcnd] = findBD(2,2) // (Set x0 = 0, rcnd = 1)
[x0,V,rcnd] = findBD(1,3,A,C,Y)
Note: the example lines above may contain at the end the parameters tol, printw, ldwork.
FINDBD estimates the initial state and/or the system matrices Br and Dr of a discrete-time system, given the system matrices A, C, and possibly B, D, and the input and output trajectories of the system.
The model structure is :
x(k+1) = Ax(k) + Bu(k), k >= 1,
y(k) = Cx(k) + Du(k),
where x(k) is the n-dimensional state vector (at time k),
u(k) is the m-dimensional input vector,
y(k) is the l-dimensional output vector,
and A, B, C, and D are real matrices of appropriate dimensions.
| 1. | The n-by-m system input matrix B is an input parameter when jobx0 = 1 and comuse = 2, and it is an output parameter when comuse = 1. |
| 2. | The l-by-m system matrix D is an input parameter when jobx0 = 1, comuse = 2 and job = 2, and it is an output parameter when comuse = 1 and job = 2. |
| 3. | The n-vector of estimated initial state x(0) is an output parameter when jobx0 = 1, but also when jobx0 = 2 and comuse <= 2, in which case it is set to 0. |
| 4. | If ldwork is specified, but it is less than the minimum workspace size needed, that minimum value is used instead. |
//generate data from a given linear system
A = [ 0.5, 0.1,-0.1, 0.2;
0.1, 0, -0.1,-0.1;
-0.4,-0.6,-0.7,-0.1;
0.8, 0, -0.6,-0.6];
B = [0.8;0.1;1;-1];
C = [1 2 -1 0];
SYS=syslin(0.1,A,B,C);
nsmp=100;
U=prbs_a(nsmp,nsmp/5);
Y=(flts(U,SYS)+0.3*rand(1,nsmp,'normal'));
// Compute R
S=15;L=1;
[R,N,SVAL] = findR(S,Y',U');
N=3;
METH=3;TOL=-1;
[A,C] = findAC(S,N,L,R,METH,TOL);
[X0,B,D] = findBD(1,1,2,A,C,Y',U')
SYS1=syslin(1,A,B,C,D,X0);
Y1=flts(U,SYS1);
xbasc();plot2d((1:nsmp)',[Y',Y1'])
V. Sima, Katholieke Univ. Leuven, Belgium, May 2000. (Revisions: V. Sima, July 2000)
| << findBDK | findR >> |