fit_dat

fit_dat — Parameter identification based on measured data

Calling sequence

[p,err]=fit_dat(G,p0,Z [,W] [,pmin,pmax] [,DG])  

Parameters

G : Scilab function (e=G(p,z), e: nex1, p: npx1, z: nzx1)
p0 : initial guess (size npx1)
Z : matrix [z_1,z_2,...z_n] where z_i (nzx1) is the ith measurement
W : weighting matrix of size nexne (optional; default 1)
pmin : lower bound on p (optional; size npx1)
pmax : upper bound on p (optional; size npx1)
DG : partial of G wrt p (optional; S=DG(p,z), S: nexnp)

Description

fit_dat is used for fitting data to a model. For a given function G(p,z), this function finds the best vector of parameters p for approximating G(p,z_i)=0 for a set of measurement vectors z_i. Vector p is found by minimizing G(p,z_1)'WG(p,z_1)+G(p,z_2)'WG(p,z_2)+...+G(p,z_n)'WG(p,z_n)

Examples



deff('y=FF(x)','y=a*(x-b)+c*x.*x')
X=[];Y=[];
a=34;b=12;c=14;for x=0:.1:3, Y=[Y,FF(x)+100*(rand()-.5)];X=[X,x];end
Z=[Y;X];
deff('e=G(p,z)','a=p(1),b=p(2),c=p(3),y=z(1),x=z(2),e=y-FF(x)')
[p,err]=fit_dat(G,[3;5;10],Z)
xset('window',0)
xbasc();
plot2d(X',Y',-1) 
plot2d(X',FF(X)',5,'002')
a=p(1),b=p(2),c=p(3);plot2d(X',FF(X)',12,'002')

a=34;b=12;c=14;
deff('s=DG(p,z)','y=z(1),x=z(2),s=-[x-p(2),-p(1),x*x]')
[p,err]=fit_dat(G,[3;5;10],Z,DG)
xset('window',1)
xbasc();
plot2d(X',Y',-1) 
plot2d(X',FF(X)',5,'002')
a=p(1),b=p(2),c=p(3);plot2d(X',FF(X)',12,'002')
 
  

See also

optim, datafit