Scilab Reference Manual |
---|
glever — inverse of matrix pencil
[Bfs,Bis,chis]=glever(E,A [,s])
E, A | : two real square matrices of same dimensions |
s | : character string (default value 's') |
Bfs,Bis | : two polynomial matrices |
chis | : polynomial |
Computation of
(s*E-A)^-1
by generalized Leverrier's algorithm for a matrix pencil.
(s*E-A)^-1 = (Bfs/chis) - Bis.
chis = characteristic polynomial (up to a multiplicative constant).
Bfs = numerator polynomial matrix.
Bis = polynomial matrix ( - expansion of (s*E-A)^-1 at infinity).
Note the - sign before Bis.
This function uses cleanp to simplify Bfs,Bis and chis.
s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1]; [Bfs,Bis,chis]=glever(F) inv(F)-((Bfs/chis) - Bis)
F. D. (1988)
<< givens | gschur >> |