| Scilab Reference Manual | 
|---|
glever — inverse of matrix pencil
[Bfs,Bis,chis]=glever(E,A [,s])
| E, A | : two real square matrices of same dimensions | 
| s | : character string (default value 's') | 
| Bfs,Bis | : two polynomial matrices | 
| chis | : polynomial | 
Computation of
(s*E-A)^-1
by generalized Leverrier's algorithm for a matrix pencil.
(s*E-A)^-1 = (Bfs/chis) - Bis.
   
    chis = characteristic polynomial (up to a multiplicative constant).
Bfs = numerator polynomial matrix.
Bis = polynomial matrix ( - expansion of (s*E-A)^-1 at infinity).
Note the - sign before Bis.
This function uses cleanp to simplify Bfs,Bis and chis.
s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1]; [Bfs,Bis,chis]=glever(F) inv(F)-((Bfs/chis) - Bis)
F. D. (1988)
| << givens | gschur >> |