glever

glever — inverse of matrix pencil

Calling sequence

[Bfs,Bis,chis]=glever(E,A [,s])  

Parameters

E, A : two real square matrices of same dimensions
s : character string (default value 's')
Bfs,Bis : two polynomial matrices
chis : polynomial

Description

Computation of

(s*E-A)^-1

by generalized Leverrier's algorithm for a matrix pencil.



(s*E-A)^-1 = (Bfs/chis) - Bis.
   
    

chis = characteristic polynomial (up to a multiplicative constant).

Bfs = numerator polynomial matrix.

Bis = polynomial matrix ( - expansion of (s*E-A)^-1 at infinity).

Note the - sign before Bis.

Caution

This function uses cleanp to simplify Bfs,Bis and chis.

Examples



s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1];
[Bfs,Bis,chis]=glever(F)
inv(F)-((Bfs/chis) - Bis)
 
  

See also

rowshuff, det, invr, coffg, pencan, penlaur

Author

F. D. (1988)