Scilab Reference Manual |
---|
graph_union — union of two graphs
g2 = graph_union(g,g1)
graph_union creates a new graph g2. The node set of g2 is the union (in the usual sense) of the node sets of g and g1. g2 has an edge for each edge of g and an edge for each edge of g1. The edges of g and g1 having the same endpoints are kept and in this case g2 has multiple edges.
ta=[1 1 2 2 2 3 4 5 5 7 8 8 9 10 10 10 10 10 11 12 13 13 13 14 15 16 16 17 17]; he=[2 10 3 5 7 4 2 4 6 8 6 9 7 7 11 13 13 15 12 13 9 10 14 11 16 1 17 14 15]; g=make_graph('foo',1,17,ta,he); g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642]; g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301]; g('edge_color')=modulo([1:(edge_number(g))],15)+1; g('node_diam')=[1:(g('node_number'))]+20; g('node_name')=['A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' 'P' 'Q']; w=show_graph(g); v=[7 8 9 10 11 12 13]; show_nodes(v); g1=subgraph(v,'nodes',g); show_graph(g1,'new'); v=[1 2 5 6 7 8 9 10]; netwindow(w); show_nodes(v); g2=subgraph(v,'nodes',g); show_graph(g2,'new'); g=graph_union(g1,g2); show_graph(g,'new');
<< graph_sum | hamilton >> |