| Scilab Reference Manual |
|---|
lqg_ltr — LQG with loop transform recovery
[kf,kc]=lqg_ltr(sl,mu,ro)
| sl | : linear system in state-space form (syslin list) |
| mu,ro | : real positive numbers chosen ``small enough'' |
| kf,kc | : controller and observer Kalman gains. |
returns the Kalman gains for:
x = a*x + b*u + l*w1
(sl)
y = c*x + mu*I*w2
z = h*x
Cost function:
/+oo | J = E(| [z(t)'*z(t) + ro^2*u(t)'*u(t)]dt) lqg | / 0
The lqg/ltr approach looks for L,mu,H,ro such that: J(lqg) = J(freq) where
/+oo * * * J = | tr[S W W S ] + tr[T T]dw freq | /0
and
S = (I + G*K)^(-1)
T = G*K*(I+G*K)^(-1)
| << linf | macglov >> |