Scilab Reference Manual |
---|
min_qcost_flow — minimum quadratic cost flow
[c,phi,flag] = min_qcost_flow(eps,g)
eps | : scalar, precision |
g | : graph list |
c | : value of cost |
phi | : row vector of the value of flow on the arcs |
flag | : feasible problem flag (0 or 1) |
min_qcost_flow computes the minimum quadratic cost flow in the network g. It returns the total cost of the flows on the arcs c and the row vector of the flows on the arcs phi. eps is the precision of the iterative algorithm. If the problem is not feasible (impossible to find a compatible flow for instance), flag is equal to 0, otherwise it is equal to 1.
The bounds of the flow are given by the elements edge_min_cap and edge_max_cap of the graph list. The value of the maximum capacity must be greater than or equal to the value of the minimum capacity. If the value of edge_min_cap or edge_max_cap is not given (empty row vector []), it is assumed to be equal to 0 on each edge.
The costs on the edges are given by the elements edge_q_orig and edge_q_weight of the graph list. The cost on arc u is given by:
(1/2)*edge_q_weight[u](phi[u]-edge_q_orig[u])^2
The costs must be non negative. If the value of edge_q_orig or edge_q_weight is not given (empty row vector []), it is assumed to be equal to 0 on each edge.
This function uses an algorithm due to M. Minoux.
ta=[1 1 2 2 2 3 4 4 5 6 6 6 7 7 7 8 9 10 12 12 13 13 13 14 15 14 9 11 10 1 8]; he=[2 6 3 4 5 1 3 5 1 7 10 11 5 8 9 5 8 11 10 11 9 11 15 13 14 4 6 9 1 12 14]; g=make_graph('foo',1,15,ta,he); g('node_x')=[194 191 106 194 296 305 305 418 422 432 552 550 549 416 548]; g('node_y')=[56 221 316 318 316 143 214 321 217 126 215 80 330 437 439]; show_graph(g); g1=g; ma=arc_number(g1); rand('uniform'); while %T then g1('edge_min_cap')=round(5*rand(1,ma)); g1('edge_max_cap')=round(20*rand(1,ma))+30*ones(1,ma); g1('edge_q_orig')=0*ones(1,ma); g1('edge_q_weight')=ones(1,ma); [c,phi,flag]=min_qcost_flow(0.001,g1); if flag==1 then break; end; end; x_message(['The cost is: '+string(c); 'Showing the flow on the arcs']); ii=find(phi<>0); edgecolor=phi; edgecolor(ii)=11*ones(ii); g1('edge_color')=edgecolor; edgefontsize=8*ones(1,ma); edgefontsize(ii)=18*ones(ii); g1('edge_font_size')=edgefontsize; g1('edge_label')=string(phi); show_graph(g1);
<< min_lcost_flow2 | min_weight_tree >> |