Scilab Reference Manual |
---|
penlaur — Laurent coefficients of matrix pencil
[Si,Pi,Di,order]=penlaur(Fs) [Si,Pi,Di,order]=penlaur(E,A)
Fs | : a regular pencil s*E-A |
E, A | : two real square matrices |
Si,Pi,Di | : three real square matrices |
order | : integer |
penlaur computes the first Laurent coefficients of (s*E-A)^-1 at infinity.
(s*E-A)^-1 = ... + Si/s - Pi - s*Di + ... at s = infinity.
order = order of the singularity (order=index-1).
The matrix pencil Fs=s*E-A should be invertible.
For a index-zero pencil, Pi, Di,... are zero and Si=inv(E).
For a index-one pencil (order=0),Di =0.
For higher-index pencils, the terms -s^2 Di(2), -s^3 Di(3),... are given by:
Di(2)=Di*A*Di, Di(3)=Di*A*Di*A*Di (up to Di(order)).
Experimental version: troubles when bad conditioning of so*E-A
F=randpencil([],[1,2],[1,2,3],[]); F=rand(6,6)*F*rand(6,6);[E,A]=pen2ea(F); [Si,Pi,Di]=penlaur(F); [Bfs,Bis,chis]=glever(F); norm(coeff(Bis,1)-Di,1)
F. Delebecque INRIA(1988,1990) ;
<< pencan | pinv >> |