Scilab Reference Manual |
---|
salesman — solves the travelling salesman problem
cir = salesman(g,[nstac])
salesman solves the travelling salesman problem. g is a directed graph; nstac is an optional integer which is a given bound for the allowed memory size for solving this problem. Its value is 100*n*n by default where n is the number of nodes.
ta=[2 1 3 2 2 4 4 5 6 7 8 8 9 10 10 10 10 11 12 13 13 14 15 16 16 17 17]; he=[1 10 2 5 7 3 2 4 5 8 6 9 7 7 11 13 15 12 13 9 14 11 16 1 17 14 15]; g=make_graph('foo',0,17,ta,he); g('node_x')=[283 163 63 57 164 164 273 271 339 384 504 513 439 623 631 757 642]; g('node_y')=[59 133 223 318 227 319 221 324 432 141 209 319 428 443 187 151 301]; g('node_diam')=[1:(g('node_number'))]+20; show_graph(g); g1=make_graph('foo1',1,17,[ta he],[he ta]); m=arc_number(g1); g1('edge_length')=5+round(30*rand(1,m)); cir = salesman(g1); ii=find(cir > edge_number(g)); if(ii <> []) then cir(ii)=cir(ii)-edge_number(g);end; show_arcs(cir);
<< qassign | save_graph >> |