Scilab Reference Manual |
---|
spaninter — subspace intersection
[X,dim]=spaninter(A,B [,tol])
A, B | : two real or complex matrices with equal number of rows |
X | : orthogonal or unitary square matrix |
dim | : integer, dimension of subspace range(A) inter range(B) |
computes the intersection of range(A) and range(B).
The first dim columns of X span this intersection i.e. X(:,1:dim) is an orthogonal basis for
range(A) inter range(B)
In the X basis A and B are respectively represented by:
X'*A and X'*B.
tol is a threshold (sqrt(%eps) is the default value).
A=rand(5,3)*rand(3,4); // A is 5 x 4, rank=3 B=[A(:,2),rand(5,1)]*rand(2,2); [X,dim]=spaninter(A,B); X1=X(:,1:dim); //The intersection svd(A),svd([X1,A]) // X1 in span(A) svd(B),svd([B,X1]) // X1 in span(B)
F. D.; ;
<< schur | spanplus >> |