Data Driven Robust Optimization Exam

19/03/2018

The exam is made of two independant parts. If necessary, you can admit the results of previous questions.
All documents authorized, all electronical device forbidden.

Some usefull recalls.

1. An SOCP constraint take the form a”z + b + ||cTz + d| < 0.

2. If (gi)ieq1,q) are concave functions with NZ_,7i(dom(g;) # 0 we have

(iQZ(D (v) = sup {zd:(gi)*(vi) ’ zd:vi = v}
=1 i=1

* (vieq,a] ~ =1

(fj”y) H <z+y.

VaRI(X) =inf {t|P(X <t)>1-¢}

3. {wTw <zy,x >0,y > O} is equivalent to

4. The value at risk of level ¢ is defined by

5. for e € (0,0.5],

1—
Vi~ (1,%), Pa'v<a)>1-e <= plv<a—,/ 6 8VUTEv,
where @ ~ (p, X) means that E [4] = p and var(a) = X.

A simple example

1. Robust quadratic constraints

We are interested in the following quadratic constraint f(u,z) := —Z?Zl %xiuTQiu < 0, were all
matrices @; are positive definite, where v € R™* and x € R’}".

(a) (1 point) Let f;(u) = —1u"Q;u. Compute (f;).(v) := éﬁiﬁu vTu — fi(u)

Solution: f; is strictly concave. By differentiation Quf = —v thus (fi),(v) = —30TQw.

(b) (1 point) Show that

d i —1 4 d
folv,z) == infvTu — f(u,z) = sup — %Z W# Zvi = v}

(v))ieq,a i=1 i=1




Solution: We have, for any x; >

0, (i fi)« (v7) = i (fi)u(L).

2. Application

We are interested in the following problem

min
mGRi

s.t.

210" Q1 + T2’ Qo
P(z > 0) > 0.9
b

where @Q; € My(R) are positive definite matrices, and @ is a random variable that can take values in
{al, as, ag}. We have a sample of 100 realisations of u, given in the following table.

a1 as as
30 | 20 | 50

(a) (2 points) We set f(@,z) = —3 Z?zl 74T Q. Show that f,(v,x) > s is equivalent to

o1 +ag <2s

iy > (0)TQ v i =1,2

or

Solution: f,(v,2) = sup,i 42—,

" thus fx(v,2) > s is equivalent to

< 2s

@] + Qo S 2s
QT Z (,Ui)TQlflvi

v1+v2:v

(1 point) Show that, in this problem, f,(v,z) > s can be written as SOCP constraints.

Solution:

Ot1+0é2§25

—-1/2 4
<2Qi ”)ngi+ai i=1.2
o — Iy

vl+v2:v

(c) (4 points) Leveraging the x? test, explicit (giving numerical values to all possible parameters - see
table at the end) a SOCP problem whose solution is a feasible solution for Problem 1 with 80%
confidence (in the sampling). Precise the size of each variables, and the number of SOCP constraints

and linear constraints.



Solution:
min Tx

s.t. Az < b,z >0
a1 +ag < 2s

2Q; /%
Q; — Ty

v1+v2:v

’ S i+ 1= 1,2

t—s<0

3.21
6—1—10[77—1—)\1—00 + 2 — 2(0.30, +0.202+0.503)} <t

QUj ;

< — . =
(2] = er-m -1
0<w; <A+ i=12,3
alv—w; < j=1,2,3

(d) (1 point) How many sample are needed to ensure the same guarantee through a sampling approach
? What would actually happen ?

Solution: 2/(0.2 x 0.1) — 1 = 99 samples. With confidence at least (1 — 0.2)%9 all three
realizations would be taken, and the constraint would be realized almost-surely.

A new data-driven approach

We will now assume that 0 < & < 0.5.

. Estimated variance and covariance

We are interested in the following optimization problem

min 'z
rERI

st. P(f(a,x) <0)>1—¢

where f(u,z) is a function concave in u, and convex in x.

We define the following trust region
POy, Ta) = {P | [EF@)—fl < T, lver®(@) - S| < T2},

where var® is the variance operator, |||A]|| := SUp|4(|,<1 | Az||2 is the operator norm, and /i (resp. 3) is
an estimator of the expectation of @ (resp. of the covariance matrix of @). We assume that I'; and T'y

have be choosen such that P (]P’* € POS(Iy, Fg)) >1—aq.

(a) (2 points) We call R(y, %) the set of probabilities such that P € R(y, X) if and only if EF[a] = p
and var® (@) = ¥. Show that

1_
sup  VaRY(wTa) = pTv + \/ TEVUTEU.

PER(p,%)



Solution:
1_
pTo+ 1/76\/117“21) <a
€

VP € R(u, %), Pa'v<a)>1-¢

iff

iff
VP € R(p, %), VaR: (vT'1) <

b) (1 point) Show that sup wl Aw = wTw.
l1AllI<1

Solution: By Cauchy-Schwartz we have w? Aw < |lwl||||Aw| < |Jw|]?|||A]]] < ||w]|?>. And the
inequality is attained for A = 1.

(¢) (2 points) Show that

- R 1-¢ o
sup VaRE (') = pTv +Ty||v]j2 + 4/ . Aol (X +Tal)v

PePCS(Ty,I's)

Solution:

1_
sup VaR:(vTa) = sup pFv+ 4 Tg\/vTZv

PEPCS(T'1,I2) l|u—miull2<T'1,|[|£=2|||<T2

1—
= v+ Tyv)| + 4/ _—c sup  vT3w
© Vis-si<r,

Which, coupled with the previous question, yields the result.

(d) (2 points) Show that

N 1—e¢
ues = {a4y+ 0o | pueRitlylh <ty ol <yt

with CTC = S+ T51 implies a probabilistic guarantee of level 1 — e for f(,2) < 0 with confidence
1—-a.

Solution: We have

§*(vUes) = sup o (i +y + CTw)
lylla<T1,[[wll2<y/ 4=

. 1—¢
=v" g+ Tyl + \/ sup |[|Cwl|
€ Jwl<1

= sup VaRE (vT')
PEPCS(T',T's)

(e) (3 points) Give a data driven robust formulation, leveraging P that guarantee P*(f (1, z) < 0) >
1 — ¢ with confidence 1 — «. This formulation should be expressed as a set of linear and SOCP
constraints and a linear inequality over the partial concave conjugate of f.



Solution: Applying the generic DDRO method, with confidence region P¢°, we obtain

felv,z) > s
t—s<0

R 1—=¢
AT+ Tullolla + ) —=CTol < ¢

where CTC = 3 + T'y]

4. Estimated Variance and Covariance - extensions

(a) (3 points) Assume now that we know that @ € U almost-surely, where U := {u € R™ | Du < e} is
a non-empty polytope. Improve the data-driven SOCP formulation.

Solution: We have
55 (v) = max vTu
P< ) u:Du<e

= minmax v’ u + AT (e — Du)
A>0 w

=min \Te
A>0

st. DTX=v
Thus the following set of constraints imply a probabilistic guarantee.

felv,z) > s
t—s<0

. 1—¢
AT+ Tiflo = wll2 + \/TIICT(U —w)| <t

Me <ty
A>0

DT\ =w
i+t <t

(b) (1 point) For given v, solve max,cycs v1 u.

(¢) (4 points) Forgetting the support constraint, instead of an SOCP representation we would like to
use outer-linear approximation of the robust formulation. Give the pseudo-code of a constraint
generation method.

Solution: Let C be such that CTC =3 + T51.
1. Set vg = f1, k = 0.
2. Solve

st fi(v,z) > s
t—s<0
viu <t Ve=0...k




which define vy.

1—e _Cwv

e |Cv]

3. set ug41 = /1—1—1“1% +

4. If v ug1 <t STOP, else set k =k + 1, go to 2.

CHI-SQUARED PERCENTAGE POINTS
v 0.1% 0.5% 1.0% 2.5% 5.0% 10.0% 12.5% 20.0% 25.0% 33.3% 50.0%

1 0.000 0.000 0.000 0.001 0.004 0.016 0.025 0.064 0.102 0.186 0.455
2 0.002 0.010 0.020 0.051 0.103 0.211 0.267 0.446 0.575 0.811 1.386
3 0.024 0.072 0.115 0.216 0.352 0.584 0.692 1.005 1.213 1.568 2.366
4 0.091 0.207 0.297 0.484 0.711 1.064 1.219 1.649 1.923 2.378 3.357
50.210 0.412 0.554 0.831 1.145 1.610 1.808 2.343 2.675 3.216 4.351
6 0.381 0.676 0.872 1.237 1.635 2.204 2.441 3.070 3.455 4.074 5.348
7 0.598 0.989 1.239 1.690 2.167 2.833 3.106 3.822 4.255 4.945 6.346
8 0.857 1.344 1.646 2.180 2.733 3.490 3.797 4.594 5.071 5.826 7.344
9 1.152 1.735 2.088 2.700 3.325 4.168 4.507 5.380 5.899 6.716 8.343
10 1.479 2.156 2.558 3.247 3.940 4.865 5.234 6.179 6.737 7.612 9.342

CHI-SQUARED PERCENTAGE POINTS

60.0% 66.7% 75.0% 80.0% 87.5% 90.0% 95.0% 97.5% 99.0% 99.5% 99.9%

AN

0.708 0.936 1.323 1.642 2.354 2.706 3.841 5.024 6.635 7.879 10.828
1.833 2.197 2.773 3.219 4.159 4.605 5.991 7.378 9.210 10.597 13.816
2.946 3.405 4.108 4.642 5.739 6.251 7.815 9.348 11.345 12.838 16.266
4.045 4.579 5.385 5.989 7.214 7.779 9.488 11.143 13.277 14.860 18.467
5.132 5.730 6.626 7.289 8.625 9.236 11.070 12.833 15.086 16.750 20.515
6.211 6.867 7.841 8.558 9.992 10.645 12.592 14.449 16.812 18.548 22.458
7.283 7.992 9.037 9.803 11.326 12.017 14.067 16.013 18.475 20.278 24.322
8.351 9.107 10.219 11.030 12.636 13.362 15.507 17.535 20.090 21.955 26.125
9.414 10.215 11.389 12.242 13.926 14.684 16.919 19.023 21.666 23.589 27.877
10.473 11.317 12.549 13.442 15.198 15.987 18.307 20.483 23.209 25.188 29.588
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