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Why should | bother to learn this stuff 7

@ Gradient algorithm is the easiest, most robust optimization algorithm.
It is not numerically efficient, but numerous more advanced algorithm
are built on it.

o Conjugate gradient algorithm(s) are efficient methods for
(quasi)-quadratic function. They are in particular used for
approximately solving large linear systems.

@ — useful for comprehension of

» more advanced continuous optimization algorithms
» machine learning training methods
» numerical methods for solving discretized PDE
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A word on solution

@ In this lecture, we are going to address unconstrained, finite
dimensional, non-linear, smooth, optimization problem.

@ In continuous non-linear (and non-quadratic) optimization, we cannot
expect to obtain an exact solution. We are thus looking for

approximate solution.

@ By solution, we generally means local minimum.!

@ The speed of convergence of an algorithm is thus determining an
upper bound on the number of iterations required to get an
g-solution, for € > 0.

!Sometimes just stationary points. Equivalent to global minimum in the convex
setting.
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Black-box optimization @
We consider the following unconstrained optimization problem

oo

@ The black-box model consists in considering that we only know the
function f through an oracle, that is a way of computing information
on f at a given point x.

@ Oracle gives local information on f. Oracles are generally a user
defined code.

» A zeroth order oracle only return the value f(x).
» A first order oracle return both f(x) and Vf(x).
» A second order oracle return f(x), V£(x) and V2f(x).
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Black-box optimization @
We consider the following unconstrained optimization problem

oo

@ The black-box model consists in considering that we only know the
function f through an oracle, that is a way of computing information
on f at a given point x.

@ Oracle gives local information on f. Oracles are generally a user
defined code.

» A zeroth order oracle only return the value f(x).
» A first order oracle return both f(x) and Vf(x).
» A second order oracle return f(x), V£(x) and V2f(x).

@ By opposition, structured optimization leverage more knowledge on
the objective function f. Classical model are
N
> F(x) = 2imy filx)i
> f(x) = fo(x) + Ag(x), where fy(x) is smooth and g is "simple”,
typically g(x) = [[x]|1;
> ..

V. Leclére Descent direction algorithms March 26th, 2021 4/29



Contents

@ Introduction [BV 9.1]

@ Descent methods

V. Leclére Descent direction algorithms



Descent methods
Consider the unconstrained optimization problem

f=min  f(x).
S 0
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Consider the unconstrained optimization problem
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A descent direction algorithm is an algorithm that constructs a sequence
of points (x¥)),en, that are recursively defined with:

(K1) — () 4(R) (k)
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Descent methods
Consider the unconstrained optimization problem
ﬁ _ .
vi = min f(x).
x€eR" ( )
A descent direction algorithm is an algorithm that constructs a sequence
of points (x¥)),en, that are recursively defined with:

(K1) — () 4(R) (k)

where
o 9 is the initial point,
e d¥) € R" is the descent direction,
o t(K) is the step length.

For most of the analysis we will assume f to be (strongly) convex, but the

algorithms presented are often used in a non-convex setting.
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Descent methods
Consider the unconstrained optimization problem

f=min  f(x).
S 0

A descent direction algorithm is an algorithm that constructs a sequence
of points (x¥)),en, that are recursively defined with:

(K1) — () 4(R) (k)

where
o 9 is the initial point,

e d¥) € R" is the descent direction,

o t(K) is the step length.
For most of the analysis we will assume f to be (strongly) convex, but the

algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that
[VF(xX))| is small enough.
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Descent direction algorithms @

For a differentiable objective function f, d(¥) will be a descent direction iff
VF(x¥)) - d¥) < 0, which can be seen from a first order development:

F(x) 4+t 0 gy = £(x) 4 t{VF(xX), dB) + o(t).
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Descent direction algorithms @

For a differentiable objective function f, d(¥) will be a descent direction iff
VF(x¥)) - d¥) < 0, which can be seen from a first order development:

() 4 t W gty = £ ) 4 t(VF(xH) , dB) 4 o(t

The most classical descent direction are

Q Jd) = —Vr(x (k)) (gradient)
Q@ dk = _Vf( ) + 5(k)d (k=1) (conjugate gradient)
Q dk = Vf( Y 4 (X(k) — x(k=1)y (heavy ball )
o d(k) [sz(x(k )]~ Vf(x ) (Newton)
9 d) = —wWvr(xk) (Quasi-Newton)

where W) ~ [V2f(x()] 71,

V. Leclére Descent direction algorithms March 26th, 2021 6/29



Step-size choice @

The step-size t(K) can be:

o fixed t(K) = (),
> too small and it will take forever
> too large and it won't converge

o optimal t() € arg min, > f(x) 4 7d(K)),
» computing it require solving an unidimensional problem
» might not be worth the computation

@ a backtracking step choice, for given 79 > 0, « €]0,0.5[, 5 €]0, 1],
Q="
Q if F(x) 4+ 7dM) > F(x)) + arVF(xK)TdW : ) =+ STOP
© 7+ BT, go back to 2.
» start with an "optimist” step 79
» automatically adapt to ensure convergence
» more complex procedure exists
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Strong convexity definition(s) Q©

Recall that f : R” — R is m-convex? iff

m
——t

f(tx+(1-t)y) < tf(x)+(1-t)f(y) (1—t)||y—x||2, Vx,y, Vte€]o,1]

2A strongly convex function is a m-convex function for some m > 0
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Strong convexity definition(s) Q©

Recall that f : R” — R is m-convex? iff

m
——t

f(tx+(1-t)y) < tf(x)+(1-t)f(y) > (1—t)||y—x||2, Vx,y, Vte€]o,1]

If f is differentiable, it is m-convex iff

F(y) 2 £+ (VF) oy =)+ Fly =% ¥y,

If f is twice differentiable, it is m-convex iff
ml < V2f(x) Vx

~~ this last characterization is the most usefull for our analysis.

2A strongly convex function is a m-convex function for some m > 0
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Bounding the Hessian

Consider a m-convex C? function (on its domain), and x(®) € dom f.
Denote S :=leve(,)(f) = {x e R" | f(x) < f(x0)}

As f is a strongly convex function S is bounded.

As V?2f is continuous, there exists M > 0 such that, |V2f(x)|| < M, for
all x € S.
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Bounding the Hessian

Consider a m-convex C? function (on its domain), and x(©) € dom f.
Denote S :=leve(,)(f) = {x e R" | f(x) < f(x0)}

As f is a strongly convex function S is bounded.

As V?2f is continuous, there exists M > 0 such that, |V2f(x)|| < M, for
all x € S.

Thus we have, for all x € S,

ml < V2f(x) < Ml
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Strongly convex suboptimality certificate %

Let f be a m-convex C2 function. We have
m
fly) = F() + (VF(x),y —x) + Elly—XHz, Yy, x

The under approximation is minimized, for a given x, for

yh=x— %Vf(x), yielding

1) 2 F() ~ o | VFC)P
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Strongly convex suboptimality certificate %

Let f be a m-convex C2 function. We have
m
fly) = F() + (VF(x),y —x) + Elly—XHz, Yy, x

The under approximation is minimized, for a given x, for

yh=x— %Vf(x), yielding

1) 2 F() ~ o | VFC)P

1
gy - 2 5
vh 4+ 2mHVf(X)H > f(x)
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Strongly convex suboptimality certificate %

Let f be a m-convex C? function. We have
m
fy) = F(x) +(VF(x),y —x) + Elly—XHz, Vy, x
The under approximation is minimized, for a given x, for
1
yh=x— ;Vf(x), yielding

fy) > () — 5 IVFCIP

At s VIR 2 ()
Thus we obtain the following sub-optimality certificate

IVFC) < V2me = f(x) < vF+e
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Condition numbers &

For any A € St positive definite matrix, we define its condition number
K(A) = Amax/Amin > 1 the ratio between its largest and smallest
eigenvalue.
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Condition numbers &

For any A € St positive definite matrix, we define its condition number
K(A) = Amax/Amin > 1 the ratio between its largest and smallest
eigenvalue.

Consider a bounded convex set C. Let Dy, be the diameter of the
smallest ball B,y containing C, and D;, be the diameter of the largest ball

Bi, contained in C.
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Condition numbers &

For any A € St positive definite matrix, we define its condition number
K(A) = Amax/Amin > 1 the ratio between its largest and smallest
eigenvalue.

Consider a bounded convex set C. Let Dy, be the diameter of the
smallest ball B,y containing C, and D;, be the diameter of the largest ball

Bi, contained in C.

Then the condition number of C is

cond(C) = (D°”t>2
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Condition number of sublevel set %
We have, for all x € S,
ml < V2f(x) < Ml

thus
w(V2F(x)) < M/m
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Condition number of sublevel set &

We have, for all x € S,

ml < V2f(x) < Ml

thus
w(V2F(x)) < M/m
Further,
m M
Vo = 62 < F(x) < = P
~ V.leckre  Descent direction algorithms
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Condition number of sublevel set &
We have, for all x € S,

ml < V2f(x) < Ml

thus
w(V2F(x)) < M/m
Further,

m M
Vot D= xR < F(x) < v o= P

For any v# < a < f(xg), we have

B(x*, /2(cc — v) /M) C 1%Vf C B(x*,\/2(a — vt)/m)

and thus
cond(C,) < M/m
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Gradient descent Q

@ The gradient descent algorithm is a first-order descent direction
algorithm with d(¥) = —Vf(x(9).
o That is, with an initial point xy, we have

D) = () _ Ry (R,

@ The three step-size choices (fixed, optimal and decreasing) leads to
variations of the algorithm.
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Gradient descent @
@ The gradient descent algorithm is a first-order descent direction
algorithm with d(¥) = —Vf(x(9).
o That is, with an initial point xy, we have

D) = () _ Ry (R,

@ The three step-size choices (fixed, optimal and decreasing) leads to
variations of the algorithm.

@ This algorithm is slow, but robust in the sense that he often ends up
converging.

@ Most implementation of advanced algorithms have fail-safe procedure
that default to a gradient step when something goes wrong for
numerical reasons.

@ It is the basis of the stochastic-gradient algorithm, which is used (in
advanced form) to train ML models.
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Steepest descent algorithm %

@ Using the linear approximation
F(xX) 4 ) = F(xX) + V(YN Th 4 o(||h]), it is quite natural to
look for the steepest descent direction, that is

d) € arg min {w(XW)Th | Hhugl}

h
@ Here || - || could be any norm on R".
» If |- || = || - ||2, the steepest descent is a gradient step, i.e. proportional
to —V£(x(K).
> If |- =1 - lp, x|l = [|P*?x]|2 for some P € ST, then the steepest

descent is —P~tVf(x(K). In other words, a steepest descent step is a
gradient step done on a problem after a change of variable X = P1/2x.

» If |- || = || - ||1, then the steepest descent can be chosen along a single
coordinate, leading to the coordinate descent algorithm.

& Exercise: Prove these results.
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Convergence results - convex case

Assume that f is such that 0 < V2f < MI.

Theorem

The gradient algorithm with fixed step size t() =t < % satisfies

0) _
Fth) — vt < 2T =X it I— oaym

~» this is a sublinear rate of convergence.
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Convergence results - strongly convex case %

Assume that f is such that m/ < V2f < M/, with m > 0. Define the
conditionning factor k = M /m.

Theorem

If x'¥) is obtained from the optimal step, we have
F(xU)) vt < K (F(xo) = vH), ec=1-1/x
If x'%) js obtained by receeding step size we have

FOUY = vE < M (F(x0) — VF), c=1—min{2ma,2Ba}/k

~> linear rate of convergence.
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Solving a linear system

The gradient conjugate algorithm stem from looking for numerical solution
to the linear equation

Ax =Db
o Never, ever, compute A~! to solve a linear system.
o Classical algebraic method do a methodological factorisation of A to

obtain the (exact) value of x.

o These methods are in O(n®) operations. They only yields a solution
at the end of the algorithm.

The solution would be exact if there was no rounding errors...
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Solving a linear system [l

Alternatively, we can look to solve

; - 1 T T
l\éf@, f(x) = X Ax — b’ x

which is a smooth, unconstrained, convex optimization problem, whose
optimal solution is given by Ax = b.
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Solving a linear system [l

Alternatively, we can look to solve

; - 1 T T
M]IRQ f(x) = X Ax — b’ x

which is a smooth, unconstrained, convex optimization problem, whose
optimal solution is given by Ax = b.

We will assume that A € ST, . If Ais non symetric, but invertible, we
could consider AT Ax = AT h.
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Conjugate directions %

We say that u, v € R” are A-conjugate if they are orthogonal for the scalar
product associated to A, i.e.

<u,v>A =u'Av=0
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Conjugate directions %

We say that u, v € R” are A-conjugate if they are orthogonal for the scalar
product associated to A, i.e.

<u,v>A =u'Av=0

Let (El,-),-e[k] be a linearly independent family of vector. We can construct
a family of conjugate directions (d;);c[« through the Gram-Schmidt
procedure (without normalisation), i.e., dy = dy, and

de = d — Zm,

where . B
(d,di),  dlAd;
(d;,di),  dlAd

ik =
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Conjugate direction method for quadratic function | &
Consider, for A€ ST

1
f(x) = EXTAX —b'x
A conjugate direction algorithm is a descent direction algorithm such that,
xk+D) = argmin f(x)
X€X1+E(k)
where
EC) = vect(d®, ..., d)
& Exercise: Denote g(k) = V£ (x(k)). Show that
0 g0 d;=0fori<k
Q gktD) = glk) 4 (k) Ag(k)
Q@ g d) 4 (g Ag) — 0 for | < k

© Either
> g(")Td(k) =0and tk) =0
T ()T 4k
> or g(k) d(k) <0 and t(k) = —m

V. Leclére Descent direction algorithms March 26th, 2021 20/29



Conjugate direction method for quadratic function <o

Data: Linearly independent direction d, ..., d( initial point x(1)
Matrix A and vector b
for k € [n] do
Tk i

dk) = gk — Zf:ll iji::—j:i:;:d(") : // A-orthogonalisation
t(k) _ Vf(x(k))Td(k) )

(dt ,d<k)>A '
x(k+1) = (k) (k) (k)

// optimal step

Algorithm 1: Conjugate direction algorithm

This algorithm is such that (for a quadratic function f)

x6) = argmin f(x)
xExy+EK)

where
EX = vect(dM, ... d¥))
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Conjugate gradient algorithm - quadratic function | &

If we choose d(¥) = —V(x(K)) we obtain the conjugate gradient
algorithm.
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Conjugate gradient algorithm - quadratic function | &

If we choose d(¥) = —V(x(K)) we obtain the conjugate gradient
algorithm.

In particular we obtain that E(K) = vect(g(), ..., (g(K)), and thus

T -
207 g0 — g
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Conjugate gradient algorithm - quadratic function | &

If we choose d(¥) = —V(x(K)) we obtain the conjugate gradient
algorithm.

In particular we obtain that E(K) = vect(g(), ..., (g(K)), and thus

o
gW gl =0
Note that

d(k) g() T ( i i
gD g — () Ad() thus <d(i) 7d(i)>A _ (d(')% (g.( +1) —g'())
(d@,d@) g (glit1) — gl)
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Conjugate gradient algorithm - quadratic function | &

If we choose d(¥) = —V(x(K)) we obtain the conjugate gradient
algorithm.

In particular we obtain that E(K) = vect(g(), ..., (g(K)), and thus
T
gk gD =0
Note that

(d®,dD), _ (d®)T (g1 — g0)
<d(i) ,d(i)>A d(i)T(g(;+1) — g()
Thus, through orthogonality we have

k-1 T, (i p
g0 = g0 3 —81) (g — g1)
= d0) (gD — g00)

gD _ gD = ) Ag)  thys

d()

KT (k k—1 k) (12
) 4 gt (g — glk—1)) gD = gl g™

Me I g(k=1)
d(kfl)T(g(k) — glk=1) | g(k—1)||2

=8
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Conjugate gradient algorithm - quadratic function <o

Data: Initial point x(), matrix A and vector b
g = Ax() — p ;
dD = —g() for k =2..n do
If |g)||3 is small : STOP;
k) — _ (k) o _18™13 (k-1 .
d\V) = —g\f) + Hg(Tl)TEd ;

fk) — _le .
dR T Ad) !
X(k+1) — X(k) _|_ t(k)d(k) ’

B g(k+1) = g(k) 4+t Adk)

// optimal step

Algorithm 2: Conjugate gradient algorithm - quadratic function
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Conjugate gradient properties %

We can show the following properties, for a quadratic function,
@ The algorithm find an optimal solution in at most n iterations

o If © = Amax/Amin, we have

m—1\k
I = e < 2V 1) e -

@ By comparison, gradient descent with optimal step yields

m—1\k
o) — st < 2( =7 ) Y =
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Non-linear conjugate gradient %

Data: Initial point x(1) first order oracle
for k € [n] do

gk) = VF(x) ;
If |g®)||2 is small : STOP;

dk) = —gk) 4 gk g(k=1)

t(K) obtained by receeding linear search ;
(k1) — (k) 4 (k) (k)

Algorithm 3: Conjugate gradient algorithm - non-linear function
Two natural choices for the choice of 3, equivalent for quadratic functions
k)2
o BK) = g’ )H2

B m (Fletcher-Reeves)
()T (k) _ (k—1)
o 5= (Polak-Ribiére)
g3
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What you have to know

@ What is a descent direction method.

@ That there is a step-size choice to make.

@ That there exists multiple descent direction.

@ Gradient method is the slowest method, and in most case you should
used more advanced method through adapted library.

o Conditionning of the problem is important for convergence speed.
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What you really should know

@ A problem can be pre-conditionned through change of variable to get
faster results.

@ Solving linear system can be done exactly through algebraic method,
or approximately (or exactly) through minimization method.

e Conjugate gradient method are efficient tools for (approximately)
solving a linear equation.

o Conjugate gradient works by exactly minimizing the quadratic
function on an affine subspace.
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What you have to be able to do

@ Implement a gradient method with receeding step-size.
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What you should be able to do

@ Implement a conjugate gradient method.

@ Use the strongly convex and/or Lipschitz gradient assumptions to
derive bounds.
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