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Why should | bother to learn this stuff 7

@ Newton algorithm is, in theory, the best black box algorithm for
smooth strongly convex function. It is used in practice as well as a
stepping step for more advanced algorithm.

@ Quasi-Newton algorithms (in particular L-BFGS) are the actual by
default algorithm for most smooth black-box optimization library.
Used in large scale application (e.g. weather forecast) for decades.

o — useful for

» understanding the optimization software you might use as an engineer

» understanding more advanced methods (e.g. interior points methods)

> getting an idea of why the convergence might behave strangely in
practice
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Newton algorithm @

Let f be C? such that V2f(x) = 0 for all x (so in particular strictly
convex).

The Newton algorithm is a descent direction algorithm with :
o d) = —[V2f (x| -1V F(x(H)
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Newton algorithm @

Let f be C? such that V2f(x) = 0 for all x (so in particular strictly
convex).

The Newton algorithm is a descent direction algorithm with :
o dF) = —[V2f (x|t f(x(K)
Note that

VFxINTdR) = —vF(xEN)T V2 F(xIN] v F(xH)) < 0

(unless V£ (x(k)) = 0)
~+ d(¥) is a descent direction.
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Newton algorithm @

Let f be C? such that V2f(x) = 0 for all x (so in particular strictly
convex).
The Newton algorithm is a descent direction algorithm with :

o d) = —[V2f(x()] 1V F (x(H)
o t(k) =1
Note that

VIxE ) Td) = —vf(xNTIV2F(x N1 F(x0)) < 0

(unless V£ (x(K)) = 0)
~+ d(¥) is a descent direction.

We are now going to give multiple justifications to this direction choice.
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Second-order approximation minimization @

We have
F(x®) + d) = F(x®)) + VF(xR)Td + %dTsz(X(k’)d +o([|d]1%)

The Newton method choose the direction d (with step 1) that minimize
this second order approximation, which is given by

V(x5 + V2 (x(K)dk) = 0
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Second-order approximation minimization @

We have
F(x®) + d) = F(x®)) + VF(xR)Td + %dTsz(X(k’)d +o([|d]1%)

The Newton method choose the direction d (with step 1) that minimize
this second order approximation, which is given by

V(x5 + w2 (x(ygk) = o

~» The Newton method can be seen as a model-based method, where the
model at iteration k is simply the second orde approximation.
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Second-order approximation minimization @

We have
F(x® + d) = F(x®)) + VF(x9)Td + %dTsz(X(k’)d +o(/|d]1?)

The Newton method choose the direction d (with step 1) that minimize
this second order approximation, which is given by

V(x5 + w2 (x(ygk) = o

~» The Newton method can be seen as a model-based method, where the
model at iteration k is simply the second orde approximation.

~» A trust region method with confidence radius 400 is simply the
Newton method.
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Steepest descent with adaptative norm %

o The Newton direction d(¥) is the steepest descent direction for the
quadratic norm associated to V2f(x(¥):

d¥) = argmin { V(<) Td | dllgrem) <1}
d

@ Recall that the steepest gradient descent for a quadratic norm || - ||p
converges rapidly if the condition number of the Hessian, after change
of coordinate, is small.

o In particular a good choice near x* is P = Vf(x*).

~» fast around x!
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Solution of linearized optimality condition %

The optimality condition is given by
VFf(x*) =0
We can linearize it as
V(x® + d) ~ V(xR + V2F(xFNd = 0

And the Newton step d(¥) is the solution of this linearization.
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Affine invariance &

@ Recall that gradient and conjugate gradient method can be
accelarated through smart affine change of variables
(pre-conditionning).

@ It is not the same for the Newton method:

» Let A be an invertible matrix, and denote y = Ax + b, and
f:x— f(Ax + b).

» Vf(y) = AVf(x) and V3f(y) = AT V?f(x)A

» The Newton step for f is thus

d, = —(ATV?f(x)A)TAVS(x) = —AY(V?f(x))"IVF(x) = A" d,

» Consequently
xKHD) (k) = A(y (k1) (k)
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o (Damped) Newton algorithm convergence

V. Leclére Newton and Quasi-Newton algorithms



Damped Newton algorithm @

Data: Initial point x(0) Second order oracle, error € > 0.
while ||V (x(K)|| > ¢ do
Solve for d(k)
V2 (xUNd) = —vf(xK)
Compute t(K) by backtracking line-search, starting from t = 1;
(k1) — 5 (k) o (k) g (k)

Algorithm 1: Damped Newton algorithm

@ The Newton algorithm with fixed step size t = 1 is too numerically
unstable, and you should always use a backtracking line-search.

@ If the function is not strictly convex the Newton direction is not
necessarily a descent direction, and you should check for it (and
default to a gradient step).
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Convergence idea %

Assume that f is strongly convex, such that m/ < VZf(x) < MI, and that
the Hessian V2f is L-Lipschitz.

We can show that there exists 0 < 7 < m?/L and v > 0 such that
o If |[VF(x(,))|2 > n, then

P = F(x9) <

o If |[VF(x,))|2 < n, then (k) =1 and

L L 2
i (k+1) i (k)
S SIVAED)2 < (55 19F(0) )
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Newton is fast around the solution &
We have, if [|[VF(x(A)|l2 < 7, then t(k) =1 and

L L 2
= (k+1) = (k)
52 IVEOT )2 < (QmZIIVf(X )Ilz)
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Newton is fast around the solution &
We have, if [|[VF(x(A)|l2 < 7, then t(k) =1 and

L L 2
= (k+1) = (k)
52 IVEOT )2 < (QmQIIVf(X )Ilz)

Let k = ko + £, £ > 1, with kg such that |[Vf(x(%))|2 < 7. Then
IVF(xt)]2 <, and,

L L _ 2
S IVAO) < (55 IVF* D) 2)
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Newton is fast around the solution &
We have, if [|[VF(x(A)|l2 < 7, then t(k) =1 and

L L 2
= (k+1) = (k)
52 IVEOT )2 < (zmQIIVf(X )Ilz)

Let k = ko + £, £ > 1, with kg such that |[Vf(x(%))|2 < 7. Then
[VF(x¥))|2 < 7, and,
L L _ 2
S IVAO) < (55 IVF* D) 2)
Recursively,
14

L L 2 1
sz IVF M2 < (55 IVFE) )" <
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Newton is fast around the solution &
We have, if |[V£(x(9))||2 < 5, then t(X) =1 and

L L 2
= (k+1) = (k)
s IVFCD)o < (55 IV (D))

Let k = ko + £, £ > 1, with kg such that |[Vf(x(%))|2 < 7. Then
[VF(x))||2 < n, and,

L L _ 2
S IVAO) < (55 IVF* D) 2)

Recursively,

L 0) L ony1,)” < L
sz IVF M2 < (55 IVFE) )" <
And thus
2m® 1
=
~» in the quadratic convergence phase, Newton's algorithm get the result
in a few iterations (5 or 6).
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Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

o The damped phase, where t(k) can be less than 1. Each iteration
yield an absolute improvement of —y < 0.

o The quadratic phase, where each step t(¥) = 1.
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Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

e The damped phase, where t() can be less than 1. Each iteration
yield an absolute improvement of —y < 0.

o The quadratic phase, where each step t(¥) = 1.

Thus the total number of iteration to get an ¢ solution is bounded above
by

fF(x©) — vt
————— + log,(logy(c0/¢))
—_——
<6
where g = 2m3/L2,
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Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

e The damped phase, where t() can be less than 1. Each iteration
yield an absolute improvement of —y < 0.

o The quadratic phase, where each step t(¥) = 1.

Thus the total number of iteration to get an ¢ solution is bounded above
by

fF(x©) — vt

O =V togy(loga(c0/2)

—_———

<6

where g9 = 2m3/L2.

Note that, in 6 iterations in the quadratic convergent phase we get an
error € ~ 5.107 20,
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The main idea Q

Newton's step is the very efficient (near optimality) but have three
drawbacks:

@ having a second order oracle to compute the Hessian
e storing the Hessian (n? values)
e solving a (dense) linear system : V*f(x"))d = =V f(x(4))
The main idea of Quasi Newton method is to construct, from first order

informations, a sequence of matrix M(K) if possible sparse, that
approximate the (inverse of) the Hessian.
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Conditions on the approximate Hessian RS

We want to construct M(K) an approximation of V2f(x(K), leading to a
quadratic model of f at iteration k

F(x) == F(xK)) + <Vf(x(k)) S X — X(k)> + %(X — xUNT M) (x — x(K)y
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Conditions on the approximate Hessian RS

We want to construct M) an approximation of V2f(x(¥)), leading to a
quadratic model of f at iteration k

F(x) = F(xR) + <Vf(x(k)) X — X(k)> + %(X — xNT M) (x — x(K))

We ask that the gradient of the model (%) and the through function
matches in current and last iterates:

VR (x(K)) = VF(x(0))
V) (x(k=1)) = 7 (x(k-1))
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Conditions on the approximate Hessian RS

We want to construct M) an approximation of V2f(x(¥)), leading to a
quadratic model of f at iteration k

F(x) = F(xR) + <Vf(x(k)) X — X(k)> + %(X — xNT M) (x — x(K))

We ask that the gradient of the model (%) and the through function
matches in current and last iterates:

VR (x(K)) = VF(x(0))
V) (x(k=1)) = 7 (x(k-1))

This simply write as the Quasi-Newton equation

M) (x(F) — (k1)) = 7 £(x(K)) — vF(x(k—1)

5&’(71) 5{(;71)
& Exercise: prove it
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Conditions on the approximate Hessian <&

We are looking for a matrix M such that

e M>=0

e Mo, =0, (only possible if 5gTéx >0 & Exercise: prove it)
o M =M

@ M is constructed from first order informations only

If possible, M is sparse
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Conditions on the approximate Hessian <&

We are looking for a matrix M such that

e M>=0

e Mo, =0, (only possible if 5g5x >0 & Exercise: prove it)
o M =M

@ M is constructed from first order informations only

If possible, M is sparse

~> an infinite number of solutions as we have n(n+ 1)/2 variables and n
constraints.
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Conditions on the approximate Hessian <&

We are looking for a matrix M such that

e M>=0

e Mo, =0, (only possible if (géx >0 & Exercise: prove it)
o M =M

@ M is constructed from first order informations only

If possible, M is sparse

~> an infinite number of solutions as we have n(n+ 1)/2 variables and n
constraints.

~+ a large number of quasi-Newton algorithms developped and tested
between 1960-1980.
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Choosing the approximate Hessian M) &

At the end of iteration k we have determined
o x(k+1) and 5)((k) — y(kF1) _ (k)
° g(k+1) — Vf(x(k)) and 5;") — g(k+1) _ g(k)

and we are looking for M(*1) ~ V2f(x(k*+1) satisfying the previous
requirement.
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Choosing the approximate Hessian M) &

At the end of iteration k we have determined
o x(k+1) and 60 = x(k+1) _ 5 (k)
o glkt1) = vf(x(K) and 5;1() = glkt1) _ g(k)
and we are looking for M(*1) ~ V2f(x(k*+1) satisfying the previous

requirement.

The idea is to choose M(k*1) close to M), that is to solve (analytically)

Min d(M, M)
MeSt

st M =5

for some distance d.
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BFGS &

Broyden-Fletcher-Goldfarb-Shanno chose
d(A, B) ;== tr(AB) — Indet(AB)

A few remarks
o V: M= tr M —Indet(M) is convex on S7
o For M e ST, tr M —Indet(M) =37 ; Ai — In(\;)
o W is minimized in the identity matrix

e d(A, B) — nis the Kullback-Lieber divergence between N(0, A) and
N(0,B)
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BFGS update &

One of the pragmatic reason for this choice of distance is that the optimal
solution can be found analytically.

We have (to alleviate notation we drop the index k on 5% and (iék))

5g0g MG 5T MK)

(k+1) — pg(k)

V. Leclere Newton and Quasi-Newton algorithms April 16th, 2021 17 /23



BFGS update &

One of the pragmatic reason for this choice of distance is that the optimal
solution can be found analytically.

We have (to alleviate notation we drop the index k on 5% and 5(k))

5g0g MG 5T MK)

(k+1) — pg(k) _
L S M A VIGT S

Even better, denoting W = M-1

wik+1) — </ B Ox 5 )W(k)<l (5g5;|—> @

57 Ox dg 0x/ g 0x
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BFGS algorithm %

Data: Initial point x(%), First order oracle, error ¢ > 0.
W©) = I; while |VFf(x(¥))|| > ¢ do
g = vf(xt);
dk) = —wk) gk,
Compute t(¥) by backtracking line-search, starting from t = 1;
x(kt1) — (k) o (k) g (k).
6g = glktt) — glk) 5 = x(kt1) _ x(k),
5.0, 540, 58, .
Wik = (1 G )W (1= 55) + 5
k=k+1,

Algorithm 2: BFGS algorithm
o First order oracle only
@ No need to solve a linear system

o Still large memory requirement
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Limited-memory BFGS (L-BFGS) &

e For n>103 storing the matrices is a difficulty.

o Instead of storing and updating the matrix W) we store (dy, z)
pairs.

e We can then compute d(¥) = —W(K) g(k) directly from the last 5 to
20 pairs, using recursively the update rule and never computing W),
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Limited-memory BFGS (L-BFGS) &

e For n>103 storing the matrices is a difficulty.

o Instead of storing and updating the matrix W) we store (dy, z)
pairs.

e We can then compute d(¥) = —W(K) g(k) directly from the last 5 to
20 pairs, using recursively the update rule and never computing W(K).

~» an algorithm with rougly the same storage requirement as gradient
algorithm, and convergence almost equivalent to Newton method.
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Limited-memory BFGS (L-BFGS) &

e For n>103 storing the matrices is a difficulty.

o Instead of storing and updating the matrix W) we store (dy, z)
pairs.

e We can then compute d(¥) = —W(K) g(k) directly from the last 5 to
20 pairs, using recursively the update rule and never computing W(K).

~» an algorithm with rougly the same storage requirement as gradient
algorithm, and convergence almost equivalent to Newton method.

~~ this is the "go to" algorithm when you want high level precision for

strongly convex smooth problem. It is the default choice in a lot of
optimization libraries.
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What you have to know

@ At least one idea behind Newton's algorithm.
@ The Newton step.

@ That quasi-Newton methods are almost as good as Newton, without
requiring a second order oracle.
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What you really should know

@ Newton's algorithm default step is 1, but you should use backtracking
step anyway.

@ Newton's algorithm converges in two phases : a slow damped phase,
and a very fast quadratically convergent phase close to the optimum
(at most 6 iterations).

@ BFGS is the by default quasi-Newton method. It work by updating an
approximation of the inverse of the Hessian close to the precedent
approximation and satisfying some natural requirement.

o L-BFGS limit the memory requirement by never storing the matrix
but only the step and gradient updates.
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What you have to be able to do

@ Implement a damped Newton method.
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What you should be able to do

@ Implement a BFGS method (with the update formula in front of your
eyes)
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