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Why should | bother to learn this stuff 7

@ Most real problems have constraints that you have to deal with.

@ This course give a snapshot of the tools available to you.
o — useful for
> having an idea of what can be done when you have constraints
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Constrained optimization problem

@ In the previous courses we have developped algorithms for
unconstrained optimization problem.

@ We now want to sketch some methods to deal with the constrained

problem
Mi f
XE]IRQ' (X)
s.t. xe X

@ We are going to discuss multiple type of constraint set X:
» Xisaball: {x||x—>xl2<r}
» Xisabox: {x|x<x<x Vi€][n]}
» X is a polyhedron: {x | Ax < b}
» X is given through explicit constraints {x | g(x) =0, h(x) <0}
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@ Constructing an admissible trajectory
@ Admissible direction
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Admissible descent direction

o Recall that a descent direction d at point x(¥) € R is a vector such
that VF(x(K)Td < 0.

o An admissible descent direction at point x(k) € X is a descent
direction d such that, there exists € > 0, such that, forall t < ¢,
xK) 4 td e X.

@ In other words, an admissible descent direction, is a direction that
locally decrease the objective while staying in the constraint set.

@ An admissible descent direction algorithm is naturally defined by:

» A choice of admissible descent direction d(k)
» A choice of (sufficiently small) step t(¥)
XD — (k) 4 (K g(k) ¢ x

@ Warning : this does-not necessarilly converges. We can construct
example where the step size get increasingly small because of the
constraints.
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A counter example %

Consider
min f(x) = z—l(xf — x1x0 + x3)¥* = x3
xER3 3
s.t. x>0

We set x(©) = (0,273/2,0), and d(¥) such that d,(k) = —g,(k)]lxgk)>0, with

1

gl.(k) = V£(x(), and choose t(¥) as the optimal step.
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A counter example

Consider
min f(x) = Z—L(Xf — x1x0 + x3)¥* = x3
xER3 3
s.t. x>0

We set x(©) = (0,273/2,0), and d(¥) such that d,(k) = —g,-(k)]lx(k) with

gl.(k) = V£(x(), and choose t(¥) as the optimal step.

@ This is an admissible direction descent with optimal step.
o f is strictly convex.

o x(K) converges toward a non-optimal point.

;>0'

1
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Conditional gradient algorithm

We address an optimization problem
with convex objective function f and
compact polyhedral constraint set X,
i.e.
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Conditional gradient algorithm

It is a descent algorithm, where we
first look for an admissible descent
direction d(k), and then look for the
optimal step.
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Conditional gradient algorithm

It is a descent algorithm, where we
first look for an admissible descent
direction d(k), and then look for the
optimal step.

As f is convex, we know that for any
point x(k),

Fy) > F(x0) + VF(xH) - (y —x)
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Conditional gradient algorithm

It is a descent algorithm, where we
first look for an admissible descent
direction d(k), and then look for the
optimal step.

As f is convex, we know that for any
point x(k),

F(y) > F(xB) + VF(xH)- (y —x*))

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X.
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Conditional gradient algorithm

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X. More
precisely, at step k we solve

y e argmin  F(xR)4VF(xR).(y—xK
yeX
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Remarks on conditional gradient

vy eargmin (xR 4 V(xR . (y — x().
yeX

@ This problem is linear, hence easy to solve.
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Remarks on conditional gradient

vy eargmin (xR 4 V(xR . (y — x().
yeX

@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a lower
bound to the true problem.
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Remarks on conditional gradient

y e argmin (xR 4 VF(xK) . (y — x),
yeX

@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a lower
bound to the true problem.

o As y( e X, dk) = y(K) — x(K) is 3 feasable direction, in the sense that for
all t € 0,1], x9) + td®) € X.

V. Leclére Constrained optimization April 16th, 2021 7/27



Remarks on conditional gradient

y e argmin (xR 4 VF(xK) . (y — x),
yeX

@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a lower
bound to the true problem.

o As y( e X, dk) = y(K) — x(K) is 3 feasable direction, in the sense that for
all t € 0,1], x9) + td®) € X.

o If y() is obtained through the simplex method it is an extreme point of X,
which means that, for t > 1, x(9) + td() ¢ X.
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Remarks on conditional gradient

y e argmin (xR 4 VF(xK) . (y — x),
yeX

@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a lower
bound to the true problem.

o As y( e X, dk) = y(K) — x(K) is 3 feasable direction, in the sense that for
all t € 0,1], x9) + td®) € X.

@ If y(¥ is obtained through the simplex method it is an extreme point of X,
which means that, for t > 1, x(K 4 ¢d(¥) ¢ X.

@ If (X = x(¥) then we have found an optimal solution.
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Remarks on conditional gradient

y e argmin (xR 4 VF(xK) . (y — x),
yeX
@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a lower
bound to the true problem.

o As y( e X, dk) = y(K) — x(K) is 3 feasable direction, in the sense that for
all t € 0,1], x9) + td®) € X.

@ If y(¥ is obtained through the simplex method it is an extreme point of X,
which means that, for t > 1, x(K 4 ¢d(¥) ¢ X.

@ If (X = x(¥) then we have found an optimal solution.

@ We also have y(%) € arg min, ¢ x VF(x(*)) -y, the lower-bound being
obtained easily.
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@ Constructing an admissible trajectory

@ Projected direction
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Projection on a convex set @

Let X C R” be a non-empty closed convex set. We call Px : R” — R” the
projection on X the fonction such that

Px(x) = arg min ||x’ — X||§
x'eX
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Projection on a convex set @

Let X C R” be a non-empty closed convex set. We call Px : R” — R” the
projection on X the fonction such that

Px(x) = arg min ||x’ — x||%
x'eX

We have
o X = Px(x)iff (x —X) € Nx(x) (i.e. (x—%,x' —X) <0, Vx €X)
o (Px(y) — Px(x),y —x) >0 (Px is non-decreasing)
o [[Px(y) — Px(x)|l2 < |ly — x|| (Px is a contraction)

& Exercise: Prove these results
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Projected gradient | ©

Consider
W
st. xe X

where f is differentiable and X convex.
The projected gradient algorithm generate the following sequence

x(KHD) = py (k) 40 0]
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Projected gradient <o

Theorem

Assume that X # () is a closed convex set. x* € X is a critical point if and
only if for one (or all) t > 0,

x* = Py [X’i - tVf(xﬂ)].
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Projected gradient <o

Theorem

Assume that X # () is a closed convex set. x* € X is a critical point if and
only if for one (or all) t > 0,

x* = Px [xti — tVf(xﬁ)].

If f is lower bounded on X, and with L-Lipschitz gradient, and X closed
convex (non empty) set. Then the projected gradient algorithm with step

staying in [a, b] C]0,2/L|, then ||xk+1 — x«|| = 0, and any adherence point
of {xk}ken is a critical point.

Corollary : if f convex differentiable with L-Lipschitz gradient, X compact
convex non empty, the projected gradient algorithm with step 1/L is
converging toward the optimal solution.

T,



When to use ? Q

@ Projected gradient is usefull only if the projection is simple, as
projecting over a convex set consists in solving a constrained
optimization problem.

@ Projection is simple for balls and boxes.

e Finding an admissible direction is doable if the constraint set is
polyhedral, or more generally conic-representable.
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© From constraints to cost
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© From constraints to cost
@ Penalization
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ldea of penalization @

We consider the constrained optimization problem

Mi f

(P) Min  f(x)
s.t. xeX

and the following penalized version

(P) Min  £(x)+tp(x)

where t > 0, and p : R” — RU {+o00} is a penalization function.
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ldea of penalization @

We consider the constrained optimization problem

(P) Min  f(x)
s.t. xeX

and the following penalized version

(P Min )+ tp(x)
where t > 0, and p : R” — RU {+o00} is a penalization function.
Thus, a (constrained) problem is replaced by a sequence of

(unconstrained) problems.
& Exercise: What is happening if p =1x ?
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Some monotonicity results %

(P) Min  £(x)+tp(x)
The idea is that, with higher t, the penalization has more impact on the
problem.

More precisely, let 0 < t; < to, and x¢, be an optimal solution of (P;,).
We have:

° p(xtl) 2 P(th)
° f(th) S f(xtz)

& Exercise: prove these results.
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Outer penalization

A first idea for choosing a penalization function p consists in choosing a
function p such that:

e p(x)=0forx € X
e p(x) >0forx X

intuitively the idea is that p is the fine to pay for not respecting the
constraint. Heuristically, it should be increasing with the distance to X.
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Outer penalization - theoretical results %

Assume that
@ pisls.conR”
ep>0
e p(x)=0iff xe X

Further assume that f is |.s.c and there exists ty > 0 such that
x +— f(x) + top(x) is coercive (i.e. — oo if ||x|| — 00).
Then,

Q@ for t > ty, (P:) admit at least one optimal solution
@ (Xt)t—+o0 is bounded

@ any adherence point of (xt)t—+o0 is an optimal solution of P.
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Outer penalization - quadratic case
Assume that

X={xeR" | g(x)=0, h(x)<0}
then the quadratic penalization consists in choosing

p x> g + I(hG))*II?
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Outer penalization - quadratic case
Assume that
X={xeR" | g(x)=0, h(x)<0}
then the quadratic penalization consists in choosing
p x> [lgCl? + 1I(h()) T2

This choice is interesting as (for affinely lower-bounded f):

o x — f(x) + 1p(x) is differentiable if f is differentiable
o x, > xtift—=0
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Outer penalization - quadratic case
Assume that
X={xeR" | g(x)=0, h(x)<0}
then the quadratic penalization consists in choosing
p x> [lgCl? + 1I(h()) T2

This choice is interesting as (for affinely lower-bounded f):

o x — f(x) + 1p(x) is differentiable if f is differentiable
o x, > xtift—=0

However, generally speaking, if the constraints are impactful (e.g. have
non-zero optimal multipliers), then

Xt¢X

V. Leclére Constrained optimization April 16th, 2021 16 /27



Outer penalization - L! case

Assume that
X={xeR" | g(x)=0, h(x)<0}
another natural penalization consists in choosing

pix = (gl +1I(h(x)) Tl
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Outer penalization - L! case

Assume that
X={xeR" | g(x)=0, h(x)<0}
another natural penalization consists in choosing

pix = (gl +1I(h(x)) Tl

The interest of this approach is that, if the problem is convex and the
constraints are qualified at optimality, then, for t small enough, an optimal
solution to the penalized problem (P;) is an optimal solution to the
original problem (P). Thus we speak of exact penalization.
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Outer penalization - L! case

Assume that
X={xeR" | g(x)=0, h(x)<0}
another natural penalization consists in choosing

pix = (gl +1I(h(x)) Tl

The interest of this approach is that, if the problem is convex and the
constraints are qualified at optimality, then, for t small enough, an optimal
solution to the penalized problem (P;) is an optimal solution to the
original problem (P). Thus we speak of exact penalization.

Unfortunately this come to the price of non-differentiability.

V. Leclére Constrained optimization April 16th, 2021 17/27



Inner penalization

Another approach consists in choosing a penalization function that takes
value +o00 outside of X.
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Inner penalization

Another approach consists in choosing a penalization function that takes
value +o00 outside of X.

The idea here is to add a potential that repulse the optimal solution from
the boundary.

This is typically done in a way to keep f + tp smooth, and if possible
convex.
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Inner penalization

Another approach consists in choosing a penalization function that takes
value +o00 outside of X.

The idea here is to add a potential that repulse the optimal solution from
the boundary.

This is typically done in a way to keep f + tp smooth, and if possible
convex.

More on that in the next course.
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© From constraints to cost

@ Dualization

V. Leclére Constrained optimization



Duality, here we go again

Recall that to a primal problem

P

s.t.

we associate the dual problem

(D) Max Min
A,pn>0 X

f(x)
g(x)=0
h(x) <0

F(x) + ATg(x) + 17 h(x)

J/
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Duality, here we go again @

Recall that to a primal problem

(P) Min  f(x) o
st. g(x)=0 (2)
h(x) <0 ()

we associate the dual problem

(D) Ma;g MXin F(x) 4+ A g(x) + 1" h(x)

J/

(A1)

& Exercise: Under which sufficient conditions are these problem equivalent
?
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Duality seen as exact penalization @

If (P) is convex differentiable and the constraints are qualified, then for
any optimal multiplier A, 7z the unconstrained problem

Min  F(x)+XTg()+ 7 h(x)

have the same optimal solution as the original problem (P).
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Projected gradient in the dual
Consider the dual problem

D) M d(A
(0) Max  o(\p)

Recall that, under technical conditions,
#
VoA 1) = (g(x (A,Z)))

where x#()\, 1) is an optimal solution of the inner minimization problem for
given A, /.
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Projected gradient in the dual
Consider the dual problem

D) M (N, 1
(0) Max  o(\p)

Recall that, under technical conditions,
#
VoA 1) = (g(x (A,Z)))

where x#()\, 1) is an optimal solution of the inner minimization problem for
given A, /.

We suggest to solve this problem through projected gradient with fixed
step p:

AEFL = 200 4 pg(xF (A, (K)y)
) = [l 4 ph(xF (A, T
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Uzawa algorithm

Data: Initial primal point x(, Initial dual points A\(%), (%), unconstrained
optimization method, dual step p > 0.

while [[g(x*))]l2 + [|(h(x19))*||2 > ¢ do

Solve for x(k+1)

Min F(x) + AT g(x) 4+ 19 Th(x)
Update the multipliers

)\(k+1) — )\(k) +Pg(X(k+1))
/J,(k+1) — [/L(k) +ph(x(k+1))]+

Algorithm 1: Uzawa algorithm
Convergence requires strong convexity and constraints qualifications.
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Exercise : decomposition by prices

We consider the following energy problem:
@ you are an energy producer with N production unit

@ you have to satisfy a given demand planning for the next 24h (i.e. the
total output at time t should be equal to d;)

@ the time step is the hour, and each unit have a production cost for
each planning given as a convex quadratic function of the planning

@ Model this problem as an optimization problem. In which class does it
belongs ? How many variables ?

@ Apply Uzawa's algorithm to this problem. Why could this be an
interesting idea ?

© Give an economic interpretation to this method.

@ What would happen if each unit had production constraints ?
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What you have to know

@ There is three main ways of dealing with constraints:

» choosing an admissible direction
» projection of the next iterate
» penalizing the constraints
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What you really should know

@ admissible direction methods are mainly usefull for polyhedral
constraint set

@ projection is usefull only if the admissible set is simple (ball or bound
constraints)

@ penalization can be inner or outer, differentiable or not.
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What you have to be able to do

@ Implement a penalization approach.

V. Leclére Constrained optimization



What you should be able to do

o Implement Uzawa's algorithm.
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