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Why should | bother to learn this stuff 7

@ Interior point methods are competitive with simplex method for linear
programm

@ Interior point methods are state of the art for most conic (convex)
problems
o — useful for

» understanding what is used in numerical solvers
> specialization in optimization

V. Leclére Interior Points Methods May 21st, 2021 2/37



Contents

@ Recalls on convex differentiable optimization problems

V. Leclére Interior Points Methods



Convex differentiable optimization problem

We consider the following convex optimization problem

(P)  min f(x)
st. Ax=0>b
gi(x) <0 Vie [1,n]

where A is a ng X n matrix, and all functions f and g; are assumed
convex, real valued and twice differentiable.
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Introducing the Lagrangian | ©

(P)  min f(x)
st. Ax=5b
gi(x) <0 Vi€ [1,n]

is equivalent to

min - £(x) + Lo (Ax — b +ZHR (hi(x))

which we rewrite

min  f(x)4+ sup A\ (Ax —b)+ sup sjh
xER" \ER"E ,E;u,>0 it
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Introducing the Lagrangian | ©

(P)  min f(x)
st. Ax=5b
gi(x) <0 Vi e [1,n]

is equivalent to

min - £(x) + Lo (Ax — b +ZHR (hi(x))

which we rewrite

min  sup f(x) + A (Ax — b) +E pihi(x
X€ER" ) cRre LeR"
7/'l’€ +
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Introducing the Lagrangian <o

(Poo) min, sw F(x)+ A\ (Ax— b +ng,(x
ER"E,uER

- (x,A,u)

ny
(D) sup min  f(x)+ AT (Ax — b) + Z 1igi(x)
AeR7E R XER i—1
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Introducing the Lagrangian <o

(Poo) min s f(x) + AT (Ax = b +Zu,g,
ER"E,uER

._ﬁ(x,)\,u)

ny
(D) sup min  f(x)+ AT (Ax — b) + Z 1igi(x)
AeR7E R XER i—1

As for any function ¢ we always have
supinf ¢(x,y) < infsup ¢(x, y)
y X Xy
we have that (weak duality)

val(D) < val(P).
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Lower bounds from duality @

Define the dual function
d(\, ) == inf L(x; A\, 1)

Then we have val(D) = SUP ) cpre R d(\ ).
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Lower bounds from duality @

Define the dual function
d(\, ) == inf L(x; A\, 1)
Then we have val(D) = sup, _pne JER d(\, ).

Thus, we can compute a lower bound to val(D) < val(P) by choosing an

any admissible dual points A € R"E 11 € ]Rfr’ and solving the unconstrained
problem

ny
— T _ h:
d(\, pn) = Xlenf;" f(x)+ X (Ax—b)+ ; pihi(x)
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Constraint qualification

Recall that, for a convex differentiable optimization problem, the
constraints are qualified if Slater’s condition is satisfied :

dxp € R", Axo=b, Vie[l,n], gi(x)<0

i.e.there exists a strictly admissible feasable point
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Saddle point @

If (P) is a convex optimization
problem with qualified
constraints, then

e val(D) = val(P)

@ any optimal solution x* of
(P) is part of a saddle point
(x¥; A% f) of £

o (M, uf) is an optimal
solution of (D)
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Karush Kuhn Tucker conditions Q

If Slater’s condition is satisfied, then x* is an optimal solution to (P) if and
only if there exists optimal multipliers \* € R and ;f € R™ satisfying

(VE(xH) + AT 430 ,u?Vg,—(xﬁ) =0 first order condition
Axt = b primal admissibility
g(x*) <0
>0 dual admissibility

Uufg,-(xti) =0, Vie][l, n] complementarity
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Karush Kuhn Tucker conditions Q

If Slater’s condition is satisfied, then x* is an optimal solution to (P) if and
only if there exists optimal multipliers \* € R and ;f € R™ satisfying

(VE(xH) + AT 430 ,u?Vg,—(xﬁ) =0 first order condition
Axt = b primal admissibility
g(x*) <0
put >0 dual admissibility

Uu?g,-(xti) =0, Vie][l, n] complementarity

The three last conditions are sometimes compactly written

0>g(x*) Lu>0
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Intuition for Newton's method : unconstrained case Vi

Newton’s method is an iterative optimization method that minimizes a
quadratic approximation of the objective function at the current point x(K).
Consider the following unconstrained optimization problem:

R

At %) we have

1
FO) 4 d) = F() + VF() Td 4 2 d TP F()d + o d?)

And the direction d(X) minimizing the quadratic approximation is given by
solving for d

V(<) + 2 (<9)d = 0.
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Intuition for Newton's method : eq. constrained case O

Approximate the linearly constrained optimization problem

o
st. Ax=b

1
. (k) (k\NT R v (k)
min, f() + V() d+2d Ver(x\")d

st. A +d)=0b

Which is equivalent to solving (for given admissible X(k))

T 1+
min V(") d+2d Vaf(x\")d

st. Ad=0
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Finding Newton's direction

1
. f (K)\T T Zf (k)
min Vf(x )d+2dV (x'"))d
st. Ad=0
By KKT the optimal d(¥) is given by solving for (d, )\)

V() + V2 (UNd + ATA =0
Ad =0
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Finding Newton's direction

T 1 7
' f(x(k) Zd T2 f (K
dn;m" V() d + 2d (x'"))d

st. Ad=0

By KKT the optimal d(¥) is given by solving for (d, )\)

V() + V2 (UNd + ATA =0
Ad =0

Or in a matricial form

<V2f/(4x(k)) AOT> (;!) _ (—Vféx(k))
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Newton's algorithm: equality constrained case

Data: Initial admissible point xg
Result: quasi-optimal point

k = 0;

while |V£(x(%))| > ¢ do

Solve for d
<v2f£‘x(k)) A0T> (;/) _ (—Vf(()x(k))>

Line-search for a € [0,1] on f(x() + ad(¥))
X(k+1) = X(k) —+ ad(k)

L k=k+1
Algorithm 1: Newton's algorithm
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Video explanation

A short video introduction to the content of this and the next section.
https://www.youtube.com/watch?v=MsgpS15JRbI
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Constrained optimization problem

We now want to consider a convex differentiable optimization problem
with equality and inequality constraints.

(Px)  min f(x)

st. Ax=0b
gi(x) <0 Vi e L, n]

where all functions f and g; are assumed convex, finite valued and twice
differentiable.
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Constrained optimization problem

We now want to consider a convex differentiable optimization problem
with equality and inequality constraints.

(Px)  min f(x)

st. Ax=05>b
gi(x) <0 Vi e [1,n]
where all functions f and g; are assumed convex, finite valued and twice

differentiable.
Which we rewrite

x€eR”"

min = f(x)+ Y Ip-(gi(x))
i=1

st. Ax=05>b
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The negative log function

Illustration of barrier functions

@ The idea of barrier method s
is to replace the indicator —t=1
function Iz— by a smooth =2 6

function.

@ We choose the function
z— —1/tlog(—2z)

@ Note that they also take 7
value 400 on R* 4—15
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Calculus &

o We define .,
QX — Z In(—gi(x))
i=1

1
@ Thus we have ?qﬁ(x) P L g(x)<0, vie[n]}

o We have
Vo(x) =

V2(x) =
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Calculus &

o We define .,
¢:x—> In(—gi(x))
i=1

1
@ Thus we have ?qﬁ(x) — Iigi(x)<0, vieln]}

t—+00
o We have
ny 1
\% = ———Vg;
) ; gi(x) &)
V2e(x) =
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Calculus &

o We define .,
¢:x—> In(—gi(x))
i=1

1
@ Thus we have ?qﬁ(x) — Iigi(x)<0, vieln]}

t—+00
o We have
ny 1
Vo(x) = ———Vgi(x
()= X~V

200) = 3" [ Ve () Ve — — Vg (x
Vo) = 3. | oy VEITER) LA
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Penalized problem @

We consider

(Px)  min £(x)

st. Ax=0b

with optimal solution x. j ¢
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Penalized problem

We consider
. 1
(P)  min F(x)+-6(x)
st. Ax=0b

with optimal solution x,.
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Penalized problem @

We consider

M
st. Ax=0b

with optimal solution x,.

Letting ¢ goes to +0o get to
solution of (P) along the central o
path.
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Penalized problem @

We consider
M
st. Ax=5b

with optimal solution x,.

Letting ¢ goes to +0o get to
solution of (P) along the central
path.
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Characterizing central path | &

Xt is solution of

(P)  min F(x) + 6(x)
st. Ax=0b

if and only if, there exists \; € R"E, such that
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Characterizing central path | &

Xt is solution of
(P)  mintF(x) + 6(x)
st. Ax=0b

if and only if, there exists \; € R"E, such that

AXt =b
gi(xt) <0 Vi € [n]]
tVF(xe) + Vo(xe) + ATA =0
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Characterizing central path <o

AXt =b
g(Xt) < 0
tVF(xe) + Vo(x) + ATA =0

If A= 0 it means that Vf(x;) is
orthogonal to the level lines of ¢
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Duality %
Recall the original optimization problem
(Pec)  min - f(x)
st. Ax=0b

gi(x) <0 Vi€ [1,n]

with Lagrangian
LOG A1) = F(x) + AT (Ax — b +Zu,g,

and dual function
d(A\, p) = inﬂg L(x; A, p1).
x€ERN
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Duality %

Recall the original optimization problem

(P)  min f(x)

st. Ax=0b
gi(x) <0 Vi€ [1,n]

with Lagrangian
L(x; A, 1) = F(x) + AT(Ax = b +Zu,g,

and dual function
d(A\, p) = inﬂg L(x; A, p1).
x€ERN

For any admissible dual point (), 1) € R"™ x R, we have
d(\, 1) < val(Ps)
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Getting a lower bound

For given admissible dual point (), ;1) € R"™ x R, a point x#(\, 1)
minimizing L£(-, A, i), is characterized by first order conditions

ny
Vo, 1)+ ATA + Zungi(Xﬁ()\, /1)) =0
i—1

which gives
d(A, 1) = LN, )i A ) < val(Poo)
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Dual point on the central path %

Now recall that x;, solution of (P;), is characterized by

Ax; = b,g(x) <0
fo(Xt) + V(b(xt) + AT)\ =0

And we have seen that

nj

Vo) =Y ﬁvf;i(x)

-1 &
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Dual point on the central path %

Now recall that x;, solution of (P;), is characterized by

Ax; = b,g(x) <0
tVf(Xt) + V(b(xt) + AT)\ =0

And we have seen that

Vol =Y f(X)Vgi(x)
Thus,

ny

Vi) + A N+ E _
( t) / — _tgi(Xt)

=1 \ ,

(pe)i

Vg,-(x) =0

which means that x; = x*(\/1, pir).
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Bounding the error %

Let x; be a primal point on the central path satisfying
At €R™, tVF(xt) + Vo(xe) + AT A =0

We define a dual point (i) = y > 0. We have

—tgi (X
d(pe, Ae/1) = L(xe, e, Ae /1)

1.+ SO |
= f(Xt) + ?)\t (AXt — b) + ; mg,(xt)

= f(x¢) — % < val(Px)
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Bounding the error %

Let x; be a primal point on the central path satisfying
At €R™, tVF(xt) + Vo(xe) + AT A =0

We define a dual point (i) = y > 0. We have

—tgi (x

d(pe, Ae/1) = L(xe, e, Ae /1)

1.+ SO |
= f(Xt) + ?)\t (AXt — b) + ; mg,(xt)

= f(x¢) — % < val(Px)

And in particular x; is an n;/t-optimal solution of (Px).
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Interpretation through KKT condition @

A point x; is on the central path iff it is strictly admissible and there exists
A € R"¢ such that

ny 1
Vf(Xt) + AT>\ + Z T() Vg,'(x) =0
i1,
(1e)i

which can be rewritten

VF(x)+ATA+ 30 1 Vgi(x) =0
Ax = b,g,'(X) <0
p>0

—pigi(x) =1 Vi € [n)]
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Taking a step back @

@ We saw that we can extend Newton’'s method to solve linearly
constrained optimization problem.

@ We saw that we can approximate inequality constraints through the
use of logarithmic barrier —1/t . In(—gi(x)).

@ We proved that x; is an n;/t-optimal solution.

@ The trade-off with t is : larger t means x; closer to optimal solution
X0 but the approximate problem (P;) have worse conditionning.
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Barrier method Q

Data: increase p > 1, error
e > 0, initial t

Result: e-optimal point

solve (P;) and set x = x¢ ;

while n;/t > ¢ do
increase t: t = pt

centering step: solve (P;)
starting at x ;
update : x = x;
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Barrier method Q

Data: increase p > 1, error
e > 0, initial t

Result: e-optimal point

solve (P;) and set x = x¢ ;

while n;/t > ¢ do
increase t: t = pt

centering step: solve (P;)
starting at x ;
update : x = x;

Question : why solve (P;) to
optimality 7
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Solving (P;) with Newton's method

(P) min  t(x) + 6(x)
st. Ax=0b

is a linearly constrained optimization problem that can be solved by
Newton’s method.
More precisely we have xy1 = x(K) 4 d(k) with d(¥) a solution of

(tV2f(x(k)) :\rv%p(x(k)) AOT> (d(;)) _ <—tVf(x(k))O— v¢(x(k>)>
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Path following interior point method

Data: increase p > 1, error € > 0, initial ty
initial strictly feasible point xg

k=0

for k € N do

X4 X0, t< 1

for x € [K] do

solve for d ; // Newton

tV2F(x) + V2(x) AT\ (d\ _ [—tVf(x
A 0 AT
reduce o from 1 until f(x + ad) < f(x);
| X x4+ ad,
| t< pt;

// Outer step

// Inner step
step for (P;)

2)— v<zﬁ(><))

Algorithm 2: Path following algorithm
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May 21st, 2021

29 /37



Path following algorithm

—
= ceniral path
~dp— IPM

< central points

0.00 0.25 0.50
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Video explanation

A longer presentation to watch at a later time
https://www.youtube.com/watch?v=zmdmfr-QT1E
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A linear problem - inequality form

We consider the following LP

min ¢ x
xeRN
st. a, x<b Vi € [n]

Where a] = A[:, ] is the row of matrix A, such that the constraints can
be written Ax < b.

Thus, x; is the solution of
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A linear problem - inequality form

We consider the following LP

min ¢ x
xeRN
st. a, x<b Vi € [n]

Where a] = A[:, ] is the row of matrix A, such that the constraints can
be written Ax < b.

Thus, x; is the solution of

min  tc' x 4 ¢(x)

xeRn
where
P(x) ==
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A linear problem - inequality form

We consider the following LP

min ¢ x
xeRN
st. a, x<b Vi € [n]

Where a] = A[:, ] is the row of matrix A, such that the constraints can
be written Ax < b.

Thus, x; is the solution of

min  tc' x 4 ¢(x)

x€eR"
where
ny
o(x) = — E In(b; — a;' x)
i=1

May 21st, 2021  32/37



Calculus &

o(x)=— Z In(b; — a,TX)
Vo(x) =

VE2g(x) =
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Calculus &

o(x)=— Z In(b; — a,TX)
Vo)=Y

—1 b,' — a,. X

VE2g(x) =
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Calculus &

o(x)=— ZI In(b; — a,TX)

n

1
V) = 2 g
1
2 _ AT
Vi) =
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Calculus &

o(x)=— Z In(b; — a; x)
i=1

Vo)=Y

—1 b,’ — a,. X

1
2 R
Vop(x) = (b= aTx)? aja;

This can be written in matrix form, using the vector d € R™ defined by

L 1
d’ - b,-—aI.Tx

Vo(x) =
V2(x) =
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Calculus &

o(x)=— Z In(b; — a; x)
i=1

Vo)=Y

—1 b,’ — a,. X
V2¢(x) = ;a;aiT
(bi — &/ x)?
This can be written in matrix form, using the vector d € R™ defined by
di - b,-—%al.Tx
Vé(x)=A'd
V2h(x) =
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Calculus &

o(x)=— Z In(b; — a; x)
i=1

Vo)=Y

—1 b,’ — a,. X

1
2 R
Vop(x) = (b= aTx)? aja;

This can be written in matrix form, using the vector d € R™ defined by

L 1
d’ ~ bi—alx

i

Vé(x)=A'd
V2¢(x) = AT diag(d)?A
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Newton step %

Starting from x, the Newton direction for (P;) is
dirs(x) =
which, in algebraic form, yields
dire(x) =

with d; = 1/(b, — a,Tx).
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Newton step %

Starting from x, the Newton direction for (P;) is
dir(x) = — (V2¢(x)) " (tc + V(x))
which, in algebraic form, yields
dire(x) =

with d; = 1/(b, — a,Tx).
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Newton step %

Starting from x, the Newton direction for (P;) is
dire(x) = = (V?¢(x)) " (tc + Vo(x))
which, in algebraic form, yields
dire(x) = — [AT diag(d)?A] " (tc + AT d)

with d; = 1/(b, — a,Tx).
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Newton step %

Starting from x, the Newton direction for (P;) is
dire(x) = = (V?¢(x)) " (tc + Vo(x))
which, in algebraic form, yields
dire(x) = — [AT diag(d)?A] " (tc + AT d)
with d; = 1/(b; — a] x).

Theory tell us to use a step-size of 1 for Newton’s method.
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Newton step %

Starting from x, the Newton direction for (P;) is
dire(x) = = (V26(x)) " (tc + V(x))
which, in algebraic form, yields
dire(x) = — [AT diag(d)?A] " (tc + AT d)
with d; = 1/(b; — a] x).
Theory tell us to use a step-size of 1 for Newton’s method.

Practice teach us to use a smaller step-size (or linear-search).
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Interior Point Method for LP pseudo code

Data: Initial admissible point xp, initial penalization ty > 0;
parameter: p > 1, Nj, > 1, Noyr > 1;

Result: quasi-optimal point

x = x0, t = to;

for k =1..N,,+ do

for x = 1..N,'n do

Compute d, with d; = 1/(b; — a] x);

Solve for dir

AT diag(d)?Adir = —(tc + A’ d)

reduce o from 1 until? f(x + adir) < f(x);
| update x < x + adir ;
| update t + pt;

Algorithm 3: Interior Point Method for LP

Isimplest condition described here
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What you have to know

@ IPM are state of the art algorithms for LP and more generally conic
optimization problem

@ That logarithmic barrier are a useful inner penalization method
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What you really should know

@ That Newton's algorithm can be applied with equality constraints
@ What is the central path

@ That IPM work with inner and outer optimization loop
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