
Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Operation Research and Transport
Braess’s Paradox

V. Leclère (ENPC)

April 8th, 2020

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 1 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

What will this course be about ?

Understanding how people choose their way through a
transportation network.

having an idea on how to compute efficiently :

the shortest path on a network
the equilibrium on a network

A practical work to compute this equilibrium on a computer

Snapshots of other problems

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 2 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Contents

1 Urban Transportation Network Analysis

2 Showcasing an example of Braess Paradox

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 2 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Transportation Planning Process

1 Organization and definition

2 Base year inventory
3 Model analysis

1 trip generation
2 trip distribution
3 modal split
4 traffic assignement

4 Travel forecast

5 Network evaluation

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 3 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Urban Transportation Network Analysis

Input of the analysis:

transportation infrastructure and services (street,
intersections...)

transportation system and control policies

demand for travel.

Two stage analysis:

First stage: determining the congestion, i.e. calculating the
flow through each component of the network.

Second stage : computing measure of interests according to
the flow.

travel time and costs,
revenue and profit of ancilliary services,
welfare measures (accessibility, equity),
flow by-products (pollution, change in land-value)...

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 4 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Why do we need a system approach ?

Some decision could be taken according to local measure. For
example traffic light can be timed according to data on
current usual traffic at the intersection.

However most decision will impact the travel time / confort.
Hence, some people will adapt their usual transit route.

Consequently, the congestion on the network will change,
changing time / confort of other part of the system and
inducing other people to adapt their path...

After some time these ripple effect will lessen, and the system
will reach a new equilibrium.

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 5 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Equilibrium in Markets

For a given product, in a perfectly competitive market we
have:

a production function giving the number of product companies
are ready to make for a given price;
a demand function giving the number of product consumer are
ready to buy for a given price.

In some cases, especially in transportation, the price is not the
only determinant factor. Regularity, fiability, ease of use,
comfort are other determinant factor.

In the remaining of the course we will be speaking of cost of
each path, the cost factoring in all of this factors.

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 6 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Nash Equilibrium : Prisonner’s Dilemna

Two guys got caught while dealing chocolate. As he is missing
hard evidence the judge offer them a deal.

If both deny their implication they will get 2 month each.

If one speak, and the other deny, the first will get 1 month
while the other will get 5 months.

If both speak they get 4 month each.

Question : what is the equilibrium ?

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 7 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Nash Equilibrium

In game theory we consider multiple agents a ∈ A, each
having a set of possible action ua ∈ Ua.

Each agent earn a reward ra(u) depending on his action, as
well as the other actions.

A (pure) Nash equilibrium is a set of actions
{
ua
}
a∈A, such

that no player can increase his reward by changing is action if
the other keep these actions :

∀a ∈ A, ∀u′a ∈ Ua, ra(u′a, u−a) ≤ ra(ua, u−a).

A recommandation can be followed only if it is a Nash
Equilibrium.

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 8 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Game Theory : a few classes

Number of player

2 (most results)
n > 2 (hard, even with 3)
an infinity.

Objective

zero-sum game (e.g. chess)
cooperative : everybody share the same objective (e.g.
pandemia)
generic (e.g. Prisonner dilemna)

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 9 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Game theory : a few definitions

Definition

A Nash equilibrium is a set of action such that no player can
unilaterally improve its pay-off by changing his action.

Definition

A Pareto efficient solution is a set of action such that no other set
of actions can strictly improve at least one player pay-off without
decreasing at least another.

Definition

A social optimum is a set of action minimizing the pay-off average.

Exercises :

what about Prisonner’s Dilemma ?

what about Zero Sum games ?

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 10 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Exercise: A beautiful mind

A beautiful mind : https://youtu.be/a9k4UJrCdKg

Is the solution proposed by Nash a Nash equilibrium ?

Is the solution proposed by Nash a Pareto Optimum ?

Is the solution proposed by “Smith” a Nash equilibrium ?

Is the solution proposed by “Smith” a Pareto Optimum ?

Any other suggestion ?

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 11 / 19

https://youtu.be/a9k4UJrCdKg

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Contents

1 Urban Transportation Network Analysis

2 Showcasing an example of Braess Paradox

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 11 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Game theory in road network

People choose their means of transport (e.g. car versus public
transport), their time of departure, their itinerary.

Each user choose in its own interest (mainly the shortest time
/ lowest cost).

The time depends on the congestion, which means on the
choice of other users.

Hence, we are in a game framework : users interact with
conflicting interest.

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 12 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

A very simple framework

Consider a large group of
who person want to go
from the same origin o to
the destination d , at the
same time, with the same
car.

We look at a very simple
graph with two roads,
each composed of two
edges.

The time on each edges
of the road is given as a
function of the number of
person taking the given
edge.

o

a

b

d

x

1

1

x

Total time : 1.5

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 13 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

A very simple framework

Consider a large group of
who person want to go
from the same origin o to
the destination d , at the
same time, with the same
car.

We look at a very simple
graph with two roads,
each composed of two
edges.

The time on each edges
of the road is given as a
function of the number of
person taking the given
edge.

o

a

b

d

x

.5

1

.5

1

.5

x

.5

Total time : 1.5

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 13 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

A very simple framework

Consider a large group of
who person want to go
from the same origin o to
the destination d , at the
same time, with the same
car.

We look at a very simple
graph with two roads,
each composed of two
edges.

The time on each edges
of the road is given as a
function of the number of
person taking the given
edge.

o

a

b

d

x

.5

1

.5

1

.5

x

.5

Total time : 1.5

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 13 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Adding a road

Now someone decide to
construct a new, very
efficient road with cost 0.

What is the new
equilibrium ?

Notice that the time for
every user as increased !
This is the price of
anarchy.

o

a

b

d

x

1

1

x

0

Total time : 2

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 14 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Adding a road

Now someone decide to
construct a new, very
efficient road with cost 0.

What is the new
equilibrium ?

Notice that the time for
every user as increased !
This is the price of
anarchy.

o

a

b

d

x

1

1

0

1

0

x

1

0 1

Total time : 2

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 14 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Adding a road

Now someone decide to
construct a new, very
efficient road with cost 0.

What is the new
equilibrium ?

Notice that the time for
every user as increased !
This is the price of
anarchy.

o

a

b

d

x

1

1

0

1

0

x

1

0 1

Total time : 2

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 14 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Another explanation

https://www.youtube.com/watch?v=ZiauQXIKs3U (7’)
And a physical demonstration :
https://www.youtube.com/watch?v=nMrYlspifuo

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 15 / 19

https://www.youtube.com/watch?v=ZiauQXIKs3U
https://www.youtube.com/watch?v=nMrYlspifuo

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Definitions snapshot

On this example we can compare :

User Equilibrium (UE), with global cost 2

System Optimum (SO), with global cost 1.5

price of anarchy : 4/3.

Definition

A Wardrop (User) Equilibrium, is a repartition of flow such that no
single user can improve its cost (travel time) by unilaterally
changing routes.

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 16 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Real case examples

42d Street of New York. (New York Times, 25/12/1990).
Stuttgart 1969 (a newly built road was closed again), Seoul
2003 (6 lanes highway was turned into a park).
New York 2009 (closed some places with success)
In 2008, researcher found road in Boston and NYC that
should be closed to diminish traffic.
Steinberg and Zangwill showed that Braess paradox is more or
less as likely to occur as not.
Rapoport’s experiment (2009):

A group of 18 students is presented with the problem of
repetively (40 times) choosing its road on the graph, earning
money for the experiment : fastest meaning more money.
Then the graph is modified (either by adding the 0 cost road,
or retiring it).
Conclusion : after a few iteration the observed repartition is
close to the theoretical one with some oscillations.
Then tested on a bigger network.

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 17 / 19

https://www.nytimes.com/1990/12/25/health/what-if-they-closed-42d-street-and-nobody-noticed.html
https://www.theguardian.com/environment/2006/nov/01/society.travelsenvironmentalimpact
https://www.theguardian.com/environment/2006/nov/01/society.travelsenvironmentalimpact
https://www.parisschoolofeconomics.eu/IMG/pdf/Choices_of_routes.pdf

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Exercise

Two nodes : a and b

Two edges : (from a to b): 1 and 2

Total number of trips : 1000

Costs : c1(x1) = 5 + 2x1, c2(x2) = 10 + x2.

Question : what is the repartition of the trips along the two
edges ?

Same question with c1(x1) = 15(1 + 0.15(x1
1000)4),

c2(x2) = 20(1 + 0.15(x2
3000)4) ?

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 18 / 19

Urban Transportation Network Analysis Showcasing an example of Braess Paradox

Another Nash Equilibrium: Split or Steal

The prisonner’s Dilemna has been used as the final part of TV
game show called ”split or steal”.
The rules :

The two remaining contestants have a certain amount of
money M.

They each have to choose ”split” or ”steal”

If both ”split” they each get half: M/2.

If one ”steal” while the other ”split”, the stealing one get M
and the other 0.

If they both ”steal” they get nothing.

Here is an example :
https://www.youtube.com/watch?v=yM38mRHY150&list=

PLq4_sHebc4IWI2VQnqaKXf0YXEj88jcK0&index=5

Here is a very nice example of why reality is more complex than
math : https://www.youtube.com/watch?v=S0qjK3TWZE8

V. Leclère Operation Research and Transport Braess’s Paradox April 8th, 2020 19 / 19

https://www.youtube.com/watch?v=yM38mRHY150&list=PLq4_sHebc4IWI2VQnqaKXf0YXEj88jcK0&index=5
https://www.youtube.com/watch?v=yM38mRHY150&list=PLq4_sHebc4IWI2VQnqaKXf0YXEj88jcK0&index=5
https://www.youtube.com/watch?v=S0qjK3TWZE8

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Operation Research and Transport
Shortest Path Algorithm

V. Leclère (ENPC)

April 22th, 2020

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 1 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

In the previous episode

We have seen :

A few definitions about game theory (Nash equilibrium,
Pareto efficient point, Social optimum)

Examples of Braess paradox

Applications of the course in the industry

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 2 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Contents

1 Graphs

2 Shortest path problem
Label algorithm
Dijkstra’s Algorithm

3 Topological Ordering

4 Dynamic Programming

5 A? algorithm

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 2 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

What is a Graph ?

A graph is one of the
elementary modelisation
tools of Operation
Research.

A directed graph (V ,E) is
defined by

A finite set of n
vertices V
A finite set of m edges
each linked to an origin
and a destination.

A graph is said to be
undirected if we do not
distinguish between the
origin and the destination.

a

b c

d

e

a

b c

d

e

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 3 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

A few definitions

Consider a directed graph (V ,E).

If (u, v) ∈ E , u is a predecessor of v , and v is a successor of u.

A path is a sequence of edges
{
ek
}
k∈J1,nK, such that the

destination of one edge is the origin of the next. The origin of
the first edge is the origin of the path, and the destination of
the last edge is the destination of the path.

A (directed) graph is connected if for all u, v ∈ V , there is a
u-v-path.

A cycle is a path where the destination vertex is the origin.

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 4 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

A weighted graph

A weighted (directed) graph is a (directed) graph (V ,E) with
a weight function ` : E → R.
The weight of a s − t−path p is sum of the weights of the
edges contained in the path :

`(p) :=
∑
e∈p

`(e).

The shortest path from o to d is the path of minimal weight
with origin o and destination d .

An absorbing cycle is a cycle of strictly negative weight.

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 5 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Contents

1 Graphs

2 Shortest path problem
Label algorithm
Dijkstra’s Algorithm

3 Topological Ordering

4 Dynamic Programming

5 A? algorithm

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 5 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

An optimality condition

The methods we are going to present are based on a label function over
the vertices. This function should be understood as an estimate cost of
the shortest path cost between the origin and the current vertex.

Theorem

Suppose that there exists a function λ : V 7→ R ∪ {+∞}, such that

∀(i , j) ∈ E , λj ≤ λi + `(i , j).

Then, if p is an s-t-path, we have `(p) ≤ λ(t)− λ(s)a

In particular, if p is such that

∀(i , j) ∈ p, λj = λi + `(i , j),

then p is a shortest path.

awith the convention ∞−∞ =∞.

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 6 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

A generic algorithm

We keep a list of candidates vertices U ⊂ V , and a label function
λ : V 7→ R ∪ {+∞}.
U := {o} ;
λ(o) := 0 ;
∀v 6= o, λ(v) = +∞ ;

while U 6= ∅ do
choose u ∈ U ;
for v successor of u do

if λ(v) > λ(u) + `(u, v) then
λ(v) := λ(u) + `(u, v);
U := U ∪ {v};

U := U \ {u} ;

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 7 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Algorithm properties

If λ(u) <∞ then λ(u) is the cost of a o-u-path.

If u /∈ U then

either λ(i) =∞ (never visited)
or

for all successor v of u, λ(v) ≤ λ(u) + `(u, v).

If the algorithm end λ(u) is the smallest cost to go from o to
u.

Algorithm end iff there is no path starting at o and containing
an absorbing circuit.

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 8 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Dijkstra’s algorithm

Assume that all cost are non-negative.

U := {o} ;
λ(o) := 0 ;
∀v 6= o, λ(v) = +∞ ;

while U 6= ∅ do
choose u ∈ arg minu′∈U λ(u′) ;
for v successor of u do

if λ(v) > λ(u) + `(u, v) then
λ(v) := λ(u) + `(u, v);
U := U ∪ {v};

U := U \ {u} ;

Algorithm 1: Dijkstra algorithm

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 9 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

A video explanation

https://www.youtube.com/watch?v=zXfDYaahsNA

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 10 / 29

https://www.youtube.com/watch?v=zXfDYaahsNA

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

s

t

a

b

c
d

e

f

2

1

3

2

1

5
3

6

7

3

1

2

3

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 11 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a b c d e f t

(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞

0 (3) ∞ ∞ (3) ∞ (5) ∞
0 3 (5) ∞ (3) ∞ (5) ∞
0 3 (4) ∞ 3 ∞ (5) ∞
0 3 4 (5) 3 ∞ (5) ∞
0 3 4 5 3 (8) (5) ∞
0 3 4 5 3 (7) 5 (12)
0 3 4 5 3 7 5 (9)
0 3 4 5 3 7 5 9

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 12 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a b c d e f t

(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 (3) ∞ ∞ (3) ∞ (5) ∞

0 3 (5) ∞ (3) ∞ (5) ∞
0 3 (4) ∞ 3 ∞ (5) ∞
0 3 4 (5) 3 ∞ (5) ∞
0 3 4 5 3 (8) (5) ∞
0 3 4 5 3 (7) 5 (12)
0 3 4 5 3 7 5 (9)
0 3 4 5 3 7 5 9

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 12 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a b c d e f t

(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 (3) ∞ ∞ (3) ∞ (5) ∞
0 3 (5) ∞ (3) ∞ (5) ∞

0 3 (4) ∞ 3 ∞ (5) ∞
0 3 4 (5) 3 ∞ (5) ∞
0 3 4 5 3 (8) (5) ∞
0 3 4 5 3 (7) 5 (12)
0 3 4 5 3 7 5 (9)
0 3 4 5 3 7 5 9

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 12 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a b c d e f t

(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 (3) ∞ ∞ (3) ∞ (5) ∞
0 3 (5) ∞ (3) ∞ (5) ∞
0 3 (4) ∞ 3 ∞ (5) ∞

0 3 4 (5) 3 ∞ (5) ∞
0 3 4 5 3 (8) (5) ∞
0 3 4 5 3 (7) 5 (12)
0 3 4 5 3 7 5 (9)
0 3 4 5 3 7 5 9

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 12 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a b c d e f t

(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 (3) ∞ ∞ (3) ∞ (5) ∞
0 3 (5) ∞ (3) ∞ (5) ∞
0 3 (4) ∞ 3 ∞ (5) ∞
0 3 4 (5) 3 ∞ (5) ∞

0 3 4 5 3 (8) (5) ∞
0 3 4 5 3 (7) 5 (12)
0 3 4 5 3 7 5 (9)
0 3 4 5 3 7 5 9

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 12 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a b c d e f t

(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 (3) ∞ ∞ (3) ∞ (5) ∞
0 3 (5) ∞ (3) ∞ (5) ∞
0 3 (4) ∞ 3 ∞ (5) ∞
0 3 4 (5) 3 ∞ (5) ∞
0 3 4 5 3 (8) (5) ∞

0 3 4 5 3 (7) 5 (12)
0 3 4 5 3 7 5 (9)
0 3 4 5 3 7 5 9

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 12 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a b c d e f t

(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 (3) ∞ ∞ (3) ∞ (5) ∞
0 3 (5) ∞ (3) ∞ (5) ∞
0 3 (4) ∞ 3 ∞ (5) ∞
0 3 4 (5) 3 ∞ (5) ∞
0 3 4 5 3 (8) (5) ∞
0 3 4 5 3 (7) 5 (12)

0 3 4 5 3 7 5 (9)
0 3 4 5 3 7 5 9

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 12 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a b c d e f t

(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 (3) ∞ ∞ (3) ∞ (5) ∞
0 3 (5) ∞ (3) ∞ (5) ∞
0 3 (4) ∞ 3 ∞ (5) ∞
0 3 4 (5) 3 ∞ (5) ∞
0 3 4 5 3 (8) (5) ∞
0 3 4 5 3 (7) 5 (12)
0 3 4 5 3 7 5 (9)

0 3 4 5 3 7 5 9

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 12 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a b c d e f t

(0) ∞ ∞ ∞ ∞ ∞ ∞ ∞
0 (3) ∞ ∞ (3) ∞ (5) ∞
0 3 (5) ∞ (3) ∞ (5) ∞
0 3 (4) ∞ 3 ∞ (5) ∞
0 3 4 (5) 3 ∞ (5) ∞
0 3 4 5 3 (8) (5) ∞
0 3 4 5 3 (7) 5 (12)
0 3 4 5 3 7 5 (9)
0 3 4 5 3 7 5 9

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 12 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Shortest path complexity with positive cost

Theorem

Let G = (V ,E) be a directed graph, o ∈ V and a cost function
` : E → R+.
When applying Dijkstra’s algorithm, each node is visited at most
once. Once a node v has been visited it’s label is constant accross
iterations and equal to the cost of shortest o-v-path.
In particular, a shortest path from o to any vertex v can be found
in O(n2), where n = |V |.

Note that with specific implementation (e.g. in binary tree of
nodes) we can obtain a complexity in O(n + m log(log(m))).

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 13 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Contents

1 Graphs

2 Shortest path problem
Label algorithm
Dijkstra’s Algorithm

3 Topological Ordering

4 Dynamic Programming

5 A? algorithm

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 13 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Recall on DFS

Deep First Search is an algorithm to visit every nodes on a graph.
It consists in going as deep as possible (taking any children of a
given node), and backtracking when you reach a leaf.
https://www.youtube.com/watch?v=fI6X6IBkzcw

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 14 / 29

https://www.youtube.com/watch?v=fI6X6IBkzcw

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Acircuitic graph

2

10
3

4
2

3
6

5

3

s

t

a

b c

d

−2

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 15 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Topological Ordering

Definition

A topological ordering of a graph is an ordering (injective function
from V to N) of the vertices such that the starting endpoint of
every edge occurs earlier in the ordering than the ending endpoint
of the edge.

Applications :

courses prerequisite

compilation order

manufacturing

...

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 16 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Topological order is equivalent to acircuitic.

Theorem

A directed graph is acyclic if and only if there exist a topological
ordering. A topological ordering can be found in O(|V |+ |E |).

Proof :

If G has a topological ordering then it is acyclic. (by
contradiction).

If G is a DAG, then it has a root node (with no incoming
edges). (by contradiction).

If G is a DAG then G has a topological ordering (by
induction).

Done in O(|V |+ |E |) (maintain count(v) : number of
incoming edges, S : set of remaining nodes with no incoming
edges).

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 17 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

video explanation

https://www.youtube.com/watch?v=gyddxytyAiE (They use
DFS to count the in-degree, it is simply a fancy way of looping on
arcs)

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 18 / 29

https://www.youtube.com/watch?v=gyddxytyAiE

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Contents

1 Graphs

2 Shortest path problem
Label algorithm
Dijkstra’s Algorithm

3 Topological Ordering

4 Dynamic Programming

5 A? algorithm

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 18 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Bellman’s idea

A part of an optimal path is still optimal.

λ(v) := minimum cost of o-v -path, with λ(v) :=∞ if such a
path doesn’t exist.

Bellman’s equation

λ(v) = min
(u,v)∈E

(λ(u) + `(u, v))

There exist a predecessor u of v such that the shortest path
between o and v is given by the shortest path between o
and u adding the edge (u, v).

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 19 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Bellman’s idea

A part of an optimal path is still optimal.

λ(v) := minimum cost of o-v -path, with λ(v) :=∞ if such a
path doesn’t exist.

Bellman’s equation

λ(v) = min
(u,v)∈E

(λ(u) + `(u, v))

There exist a predecessor u of v such that the shortest path
between o and v is given by the shortest path between o
and u adding the edge (u, v).

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 19 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Bellman’s idea

A part of an optimal path is still optimal.

λ(v) := minimum cost of o-v -path, with λ(v) :=∞ if such a
path doesn’t exist.

Bellman’s equation

λ(v) = min
(u,v)∈E

(λ(u) + `(u, v))

There exist a predecessor u of v such that the shortest path
between o and v is given by the shortest path between o
and u adding the edge (u, v).

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 19 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Dynamic Programming algorithm

Assume that the graph is connected and without cycle.

Data: Graph, cost function
λ(s) := 0 ;
∀v 6= s, λ(v) = +∞ ;

while ∃v ∈ V , λ(v) =∞ do
choose a vertex v such that all predecessors u have a finite

label ;
λ(v) := min{λ(u) + `(u, v) | (u, v) ∈ E};

Algorithm 2: Bellman Forward algorithm

The while loop can be replaced by a for loop over the nodes in a
topological order.

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 20 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Algorithm

Theorem

Let D = (V ,E) be a directed graph without cycle, and w : E → R
a cost function. The shortest path from o to any vertex v ∈ V can
be computed in O(n + m).

Note that we do not require the costs to be positive for the
Bellman algorithm. In particular we can also compute the longest
path.

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 21 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Video explanation

https://www.youtube.com/watch?v=TXkDpqjDMHA (up to 6:30)

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 22 / 29

https://www.youtube.com/watch?v=TXkDpqjDMHA

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Acircuitic graph

2

10
3

4
2

3
6

5

3

s

t

a

b c

d

−2

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 23 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a c b d t

0 ∞ ∞ ∞ ∞ ∞

0 0 + 3 ∞ ∞ ∞ ∞
0 3 min{0 + 2, 10 + 3} ∞ ∞ ∞
0 3 2 min{0 + 4, 3− 2, 2 + 2} ∞ ∞
0 3 2 1 0 + 3 ∞
0 3 2 1 3 4

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 24 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a c b d t

0 ∞ ∞ ∞ ∞ ∞
0 0 + 3 ∞ ∞ ∞ ∞

0 3 min{0 + 2, 10 + 3} ∞ ∞ ∞
0 3 2 min{0 + 4, 3− 2, 2 + 2} ∞ ∞
0 3 2 1 0 + 3 ∞
0 3 2 1 3 4

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 24 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a c b d t

0 ∞ ∞ ∞ ∞ ∞
0 0 + 3 ∞ ∞ ∞ ∞
0 3 min{0 + 2, 10 + 3} ∞ ∞ ∞

0 3 2 min{0 + 4, 3− 2, 2 + 2} ∞ ∞
0 3 2 1 0 + 3 ∞
0 3 2 1 3 4

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 24 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a c b d t

0 ∞ ∞ ∞ ∞ ∞
0 0 + 3 ∞ ∞ ∞ ∞
0 3 min{0 + 2, 10 + 3} ∞ ∞ ∞
0 3 2 min{0 + 4, 3− 2, 2 + 2} ∞ ∞

0 3 2 1 0 + 3 ∞
0 3 2 1 3 4

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 24 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a c b d t

0 ∞ ∞ ∞ ∞ ∞
0 0 + 3 ∞ ∞ ∞ ∞
0 3 min{0 + 2, 10 + 3} ∞ ∞ ∞
0 3 2 min{0 + 4, 3− 2, 2 + 2} ∞ ∞
0 3 2 1 0 + 3 ∞

0 3 2 1 3 4

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 24 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Application example

s a c b d t

0 ∞ ∞ ∞ ∞ ∞
0 0 + 3 ∞ ∞ ∞ ∞
0 3 min{0 + 2, 10 + 3} ∞ ∞ ∞
0 3 2 min{0 + 4, 3− 2, 2 + 2} ∞ ∞
0 3 2 1 0 + 3 ∞
0 3 2 1 3 4

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 24 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Contents

1 Graphs

2 Shortest path problem
Label algorithm
Dijkstra’s Algorithm

3 Topological Ordering

4 Dynamic Programming

5 A? algorithm

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 24 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Algorithm Principle

To reach destination d from origin o in a weighted directed
graph we keep a label function λ(n).
The label function is defined as a sum λ = g + h, where

g(n) is the best cost of a o-n-path
h(n) is an (user-given) heuristic of the cost of a n-d-path

U := {s} ; λ(s) := h(s) ; ∀v 6= s, λ(v) = g(v) = +∞ ;
while U 6= ∅ do

choose u ∈ arg minu′∈U λ(u′) ;
for v successor of u do

if g(v) > g(u) + `(u, v) then
g(v) := g(u) + `(u, v);
λ(v) := g(v) + h(v);
U := U ∪ {v};

U := U \ {u} ;

Algorithm 3: A? algorithm
V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 25 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Heuristic definitions

Definition (admissible heuristic)

A heuristic is admissible if it underestimate the actual cost to get
to the destination, i.e. if for all vertex v ∈ V , h(v) is lower or
equal to the cost of a shortest path from v to d .

Example : in the case of a graph in R2 with a cost proportional to
the euclidean distance, an admissible heuristic is the euclidean
distance between v and t (the ”direct flight” distance).

Definition (consistent heuristic)

The heuristic h is consistent if it is admissible and for every
(u, v) ∈ E , h(u) ≤ `(u, v) + h(v).

A consistent heuristic satisfies a ”triangle inequality”.

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 26 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Consistent heuristic

h ≡ 0 is consistent. In this case A? reduced to Dijkstra.

If h is consistent, A? can be implemented more efficiently.

Roughly speaking, no node needs to be processed more than
once, and A? is equivalent to running Dijkstra’s algorithm
with the reduced cost ˜̀(u, v) = `(u, v) + h(v)− h(u).

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 27 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Choice of heuristic

If h ≡ 0, we have Dijkstra algorithm.

If h is admissible, A? yields the shortest path.

If h is consistent we have Dijkstra’s algorithm with the
reduced cost ˜̀(u, v) = `(u, v) + h(v)− h(u).

If h is exact we explore only the best path.

If h is not admissible the algorithm might not yield the
shortest path, but can be fast to find a good path.

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 28 / 29

Graphs Shortest path problem Topological Ordering Dynamic Programming A? algorithm

Video explanation

Detailed explanation of A* :
https://www.youtube.com/watch?v=eSOJ3ARN5FM

Some comparison of the algorithm :
https://www.youtube.com/watch?v=GC-nBgi9r0U

A quick run of A* :
https://www.youtube.com/watch?v=19h1g22hby8

V. Leclère Operation Research and Transport Shortest Path Algorithm April 22th, 2020 29 / 29

https://www.youtube.com/watch?v=eSOJ3ARN5FM
https://www.youtube.com/watch?v=GC-nBgi9r0U
https://www.youtube.com/watch?v=19h1g22hby8

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Wardrop Equilibrium

V. Leclère (ENPC)

May 5th, 2021

V. Leclère Wardrop Equilibrium May 5th, 2021 1 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Contents

1 Recalls on optimization and convexity
Recalls on convexity
Optimization Recalls

2 Modelling a traffic assignement problem
System optimum
Wardrop equilibrium

3 Price of anarchy

V. Leclère Wardrop Equilibrium May 5th, 2021 1 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Convex set

A set C ⊂ Rn is convex iff

∀x , y ∈ C , ∀t ∈ [0, 1], tx + (1− t)y ∈ C .

Intersection of convex sets is convex.

A closed convex set C is equal to the intersection of all
half-spaces containing it.

V. Leclère Wardrop Equilibrium May 5th, 2021 2 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Convex function

The epigraph of a function f : Rn → R ∪ {+∞} is

epi(f) :=
{

(x , t) ∈ Rn × R | t ≥ f (x)
}
.

The domain of a function f is

dom(f) :=
{
x ∈ Rn | f (x) < +∞

}
The function f is said to be convex iff its epigraph is convex,
in other words iff

∀t ∈ [0, 1], f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y).

The function f is said to be strictly convex iff

∀t ∈ (0, 1), f (tx + (1− t)y) < tf (x) + (1− t)f (y).

V. Leclère Wardrop Equilibrium May 5th, 2021 3 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Convexity and differentiable

We assume sufficient regularity for the written object to exist.

If f : R→ R.

f is convex iff f ′ non-decreasing.
If f ′ > 0 then f is strictly convex.
f is convex iff f ′′ ≥ 0.
If f ′′ > 0 then f is strictly convex.

If f : Rn → R
f is convex iff ∇f non-decreasing (i.e.
(∇f (y)−∇f (x)) · (y − x) ≥ 0).
f is convex iff ∇2f (x) � 0 for all x .
If ∇2f (x) � 0 for all x then f is strictly convex.

V. Leclère Wardrop Equilibrium May 5th, 2021 4 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Video explanation

https://www.youtube.com/watch?v=qF0aDJfEa4Y

V. Leclère Wardrop Equilibrium May 5th, 2021 5 / 29

https://www.youtube.com/watch?v=qF0aDJfEa4Y

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Convex differentiable optimization problem

Consider the following optimization problem.

min
x∈Rn

f (x) (P)

s.t. gi (x) = 0 ∀i ∈ [nE]

hj(x) ≤ 0 ∀j ∈ [nI]

with

X :=
{
x ∈ Rn | ∀i ∈ [nE], gi (x) = 0, ∀j ∈ [nI], hj(x) ≤ 0

}
.

(P) is a convex optimization problem if f and X are convex.

(P) is a convex differentiable optimization problem if f , and
hj (for j ∈ [nI]) are convex differentiable and gi (for i ∈ [nE])
are affine

V. Leclère Wardrop Equilibrium May 5th, 2021 6 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Convex differentiable optimization problem

Consider the following optimization problem.

min
x∈Rn

f (x) (P)

s.t. gi (x) = 0 ∀i ∈ [nE]

hj(x) ≤ 0 ∀j ∈ [nI]

with

X :=
{
x ∈ Rn | ∀i ∈ [nE], gi (x) = 0, ∀j ∈ [nI], hj(x) ≤ 0

}
.

(P) is a convex optimization problem if f and X are convex.

(P) is a convex differentiable optimization problem if f , and
hj (for j ∈ [nI]) are convex differentiable and gi (for i ∈ [nE])
are affine

V. Leclère Wardrop Equilibrium May 5th, 2021 6 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

KKT conditions

Theorem (KKT)

Let x] be an optimal solution to a differentiable optimization problem
(P). If the constraints are qualified at x] then there exists optimal
multipliers λ] ∈ RnE and µ] ∈ RnI satisfying



∇f (x]) +
n∑

i=1

λ]i∇gi (x
]) +

nI∑
j=1

µ]
i∇hj(x

]) = 0 first order condition

g(x]) = 0 primal admissibility

h(x]) ≤ 0

µ ≥ 0 dual admissibility

µigi (x
]) = 0, ∀i ∈ J1, nI K complementarity

The three last conditions are sometimes compactly written

0 ≤ g(x]) ⊥ µ ≥ 0.
V. Leclère Wardrop Equilibrium May 5th, 2021 7 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Video explanation

Intro to constrained optimization
https://www.youtube.com/watch?v=vwUV2IDLP8Q

Explaining tangeancy of multipliers
https://www.youtube.com/watch?v=yuqB-d5MjZA

Marginal interpretation of multipliers
https://www.youtube.com/watch?v=m-G3K2GPmEQ

V. Leclère Wardrop Equilibrium May 5th, 2021 8 / 29

https://www.youtube.com/watch?v=vwUV2IDLP8Q
https://www.youtube.com/watch?v=yuqB-d5MjZA
https://www.youtube.com/watch?v=m-G3K2GPmEQ

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Slater condition

A convex optimization problem (P) satisfies the Slater condition if
there exists a strictly admissible x0 ∈ Rn that is

∀i ∈ [nE], gi (x0) = 0, ∀j ∈ [nI], hj(x0) < 0.

If the Slater condition is satisfied, then the constraints are qualified
at any x ∈ X .

V. Leclère Wardrop Equilibrium May 5th, 2021 9 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Another optimality condition (convex case)

Theorem

If (P) is a convex differentiable optimization problem, then x] ∈ X
is an optimal solution iff

∀y ∈ X , ∇f (x) · (y − x) ≥ 0.

V. Leclère Wardrop Equilibrium May 5th, 2021 10 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Contents

1 Recalls on optimization and convexity
Recalls on convexity
Optimization Recalls

2 Modelling a traffic assignement problem
System optimum
Wardrop equilibrium

3 Price of anarchy

V. Leclère Wardrop Equilibrium May 5th, 2021 10 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

The set-up

G = (V ,E) is a directed graph

xe for e ∈ E represent the flux (number of people per hour)
taking edge e

`e : R→ R+ the cost incurred by a given user to take edge e

We consider K origin-destination vertex pair
{
ok , dk

}
k∈J1,KK,

such that there exists at least one path from ok to dk .

rk is the rate of people going from ok to dk

Pk the set of all simple (i.e. without cycle) path form ok to dk

We denote fp the flux of people taking path p ∈ Pk

V. Leclère Wardrop Equilibrium May 5th, 2021 11 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

The set-up

G = (V ,E) is a directed graph

xe for e ∈ E represent the flux (number of people per hour)
taking edge e

`e : R→ R+ the cost incurred by a given user to take edge e

We consider K origin-destination vertex pair
{
ok , dk

}
k∈J1,KK,

such that there exists at least one path from ok to dk .

rk is the rate of people going from ok to dk

Pk the set of all simple (i.e. without cycle) path form ok to dk

We denote fp the flux of people taking path p ∈ Pk

V. Leclère Wardrop Equilibrium May 5th, 2021 11 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Some physical relations

People going from ok to dk have to choose a path

rk =
∑
p∈Pk

fp.

People going through an edge are on a simple path taking this edge

xe =
∑
p3e

fp.

The flux are non-negative

∀p ∈ P, fp ≥ 0, and ,∀e ∈ E , xe ≥ 0

V. Leclère Wardrop Equilibrium May 5th, 2021 12 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Some physical relations

People going from ok to dk have to choose a path

rk =
∑
p∈Pk

fp.

People going through an edge are on a simple path taking this edge

xe =
∑
p3e

fp.

The flux are non-negative

∀p ∈ P, fp ≥ 0, and ,∀e ∈ E , xe ≥ 0

V. Leclère Wardrop Equilibrium May 5th, 2021 12 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Some physical relations

People going from ok to dk have to choose a path

rk =
∑
p∈Pk

fp.

People going through an edge are on a simple path taking this edge

xe =
∑
p3e

fp.

The flux are non-negative

∀p ∈ P, fp ≥ 0, and ,∀e ∈ E , xe ≥ 0

V. Leclère Wardrop Equilibrium May 5th, 2021 12 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)e∈E

Given x , the cost of taking edge e for one person is `e(xe).

The cost for the system for edge e is thus xe`e(xe).

Thus minimizing the system costs consists in solving

min
x ,f

∑
e∈E

xe`e(xe) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P

V. Leclère Wardrop Equilibrium May 5th, 2021 13 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)e∈E

Given x , the cost of taking edge e for one person is `e(xe).

The cost for the system for edge e is thus xe`e(xe).

Thus minimizing the system costs consists in solving

min
x ,f

∑
e∈E

xe`e(xe) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P

V. Leclère Wardrop Equilibrium May 5th, 2021 13 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)e∈E

Given x , the cost of taking edge e for one person is `e(xe).

The cost for the system for edge e is thus xe`e(xe).

Thus minimizing the system costs consists in solving

min
x ,f

∑
e∈E

xe`e(xe) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P

V. Leclère Wardrop Equilibrium May 5th, 2021 13 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f) :=
∑
p3e

fp, and x = (xe)e∈E .

Define the loss along a path `p(f) =
∑
e∈p

`e
(∑
p′3e

fp′︸ ︷︷ ︸
xe(f)

)

The total cost is thus

C (f) =
∑
p∈P

fp`p(f) =
∑
e∈E

xe`e(xe(f)) = C (x(f)).

V. Leclère Wardrop Equilibrium May 5th, 2021 14 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f) :=
∑
p3e

fp, and x = (xe)e∈E .

Define the loss along a path `p(f) =
∑
e∈p

`e
(∑
p′3e

fp′︸ ︷︷ ︸
xe(f)

)

The total cost is thus

C (f) =
∑
p∈P

fp`p(f) =
∑
e∈E

xe`e(xe(f)) = C (x(f)).

V. Leclère Wardrop Equilibrium May 5th, 2021 14 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f) :=
∑
p3e

fp, and x = (xe)e∈E .

Define the loss along a path `p(f) =
∑
e∈p

`e
(∑
p′3e

fp′︸ ︷︷ ︸
xe(f)

)

The total cost is thus

C (f) =
∑
p∈P

fp`p(f) =
∑
e∈E

xe`e(xe(f)) = C (x(f)).

V. Leclère Wardrop Equilibrium May 5th, 2021 14 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f) :=
∑
p3e

fp, and x = (xe)e∈E .

Define the loss along a path `p(f) =
∑
e∈p

`e
(∑
p′3e

fp′︸ ︷︷ ︸
xe(f)

)

The total cost is thus

C (f) =
∑
p∈P

fp`p(f) =
∑
e∈E

xe`e(xe(f)) = C (x(f)).

V. Leclère Wardrop Equilibrium May 5th, 2021 14 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Path intensity problem

min
f

∑
p∈P

fp`p(f) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

fp ≥ 0 p ∈ P

V. Leclère Wardrop Equilibrium May 5th, 2021 15 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. ”Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”
A mathematical definition reads as follows.

Definition

A user flow f is a User Equilibrium if

∀k ∈ J1,KK, ∀(p, p′) ∈ P2
k , fp > 0 =⇒ `p(f) ≤ `p′(f).

V. Leclère Wardrop Equilibrium May 5th, 2021 16 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. ”Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”
A mathematical definition reads as follows.

Definition

A user flow f is a User Equilibrium if

∀k ∈ J1,KK, ∀(p, p′) ∈ P2
k , fp > 0 =⇒ `p(f) ≤ `p′(f).

V. Leclère Wardrop Equilibrium May 5th, 2021 16 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

A new cost function

We are going to show that a user-equilibrium f is defined as a
vector satisfying the KKT conditions of a certain optimization
problem.
Let define a new edge-loss function by

Le(xe) :=

∫ xe

0
`e(u)du.

The Wardrop potential is defined (for edge intensity) as

W (f) = W (x(f)) =
∑
e∈E

Le(xe(f)).

V. Leclère Wardrop Equilibrium May 5th, 2021 17 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

A new cost function

We are going to show that a user-equilibrium f is defined as a
vector satisfying the KKT conditions of a certain optimization
problem.
Let define a new edge-loss function by

Le(xe) :=

∫ xe

0
`e(u)du.

The Wardrop potential is defined (for edge intensity) as

W (f) = W (x(f)) =
∑
e∈E

Le(xe(f)).

V. Leclère Wardrop Equilibrium May 5th, 2021 17 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

User optimum problem

Theorem

A flow f is a user equilibrium if and only if it satisfies the first
order KKT conditions of the following optimization problem

min
x ,f

W (x)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P

V. Leclère Wardrop Equilibrium May 5th, 2021 18 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof I

In path intensity formulation

min
f

∑
e∈E

Le
(∑

p3e

fp
)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

fp ≥ 0 p ∈ P

with Lagrangian

L(f , λ, µ) := W (f) +
K∑

k=1

λk

(
rk −

∑
p∈Pk

fp
)

+
∑
p∈P

µpfp.

V. Leclère Wardrop Equilibrium May 5th, 2021 19 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof I

In path intensity formulation

min
f

∑
e∈E

Le
(∑

p3e

fp
)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

fp ≥ 0 p ∈ P

with Lagrangian

L(f , λ, µ) := W (f) +
K∑

k=1

λk

(
rk −

∑
p∈Pk

fp
)

+
∑
p∈P

µpfp.

V. Leclère Wardrop Equilibrium May 5th, 2021 19 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof II

Now note that we have

∂W

∂fp
(f) =

∂

∂fp

(∑
e∈E

Le(
∑
p′3e

fp′)

)
=
∑
e∈p

∂

∂xe
Le(xe(f))

=
∑
e∈p

`e(xe(f)) = `p(f),

Recall that Le(xe) :=

∫ xe

0

`e(u)du.

V. Leclère Wardrop Equilibrium May 5th, 2021 20 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof III

The constraints of (UE) are qualified. Consequently its first-order KKT
conditions reads

∂L(f , λ, µ)

∂fp
= `p(f)− λk + µp = 0 ∀p ∈ Pk ,∀k ∈ J1,KK

∂L(f , λ, µ)

∂λk
= rk −

∑
p∈Pk

fp = 0 ∀k ∈ J1,KK

µp = 0 or fp = 0 ∀p ∈ P
µp ≤ 0, fp ≥ 0 ∀p ∈ P

f satisfies the KKT conditions iff for all origin-destination pair
k ∈ J1,KK, and all path p ∈ Pk we have{

`p(f) = λk if fp > 0

`p(f) ≥ λk if fp = 0

In other words, if the path p ∈ Pk is used, then its cost is λk , and all

other path p′ ∈ Pi have a greater or equal cost, which is the definition of

a User Equilibrium.V. Leclère Wardrop Equilibrium May 5th, 2021 21 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof III

The constraints of (UE) are qualified. Consequently its first-order KKT
conditions reads

∂L(f , λ, µ)

∂fp
= `p(f)− λk + µp = 0 ∀p ∈ Pk ,∀k ∈ J1,KK

∂L(f , λ, µ)

∂λk
= rk −

∑
p∈Pk

fp = 0 ∀k ∈ J1,KK

µp = 0 or fp = 0 ∀p ∈ P
µp ≤ 0, fp ≥ 0 ∀p ∈ P

f satisfies the KKT conditions iff for all origin-destination pair
k ∈ J1,KK, and all path p ∈ Pk we have{

`p(f) = λk if fp > 0

`p(f) ≥ λk if fp = 0

In other words, if the path p ∈ Pk is used, then its cost is λk , and all

other path p′ ∈ Pi have a greater or equal cost, which is the definition of

a User Equilibrium.V. Leclère Wardrop Equilibrium May 5th, 2021 21 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof III

The constraints of (UE) are qualified. Consequently its first-order KKT
conditions reads

∂L(f , λ, µ)

∂fp
= `p(f)− λk + µp = 0 ∀p ∈ Pk ,∀k ∈ J1,KK

∂L(f , λ, µ)

∂λk
= rk −

∑
p∈Pk

fp = 0 ∀k ∈ J1,KK

µp = 0 or fp = 0 ∀p ∈ P
µp ≤ 0, fp ≥ 0 ∀p ∈ P

f satisfies the KKT conditions iff for all origin-destination pair
k ∈ J1,KK, and all path p ∈ Pk we have{

`p(f) = λk if fp > 0

`p(f) ≥ λk if fp = 0

In other words, if the path p ∈ Pk is used, then its cost is λk , and all

other path p′ ∈ Pi have a greater or equal cost, which is the definition of

a User Equilibrium.V. Leclère Wardrop Equilibrium May 5th, 2021 21 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Convex case : equivalence

If the loss functions (in edge-intensity) are non-decreasing then the
Wardrop potential W is convex.

Theorem

Assume that the loss function `e are non-decreasing for all e ∈ E.
Then there exists at least one user equilibrium, and a flow f is a
user equilibrium if and only if it solves (UE)

Proof : the cost is convex as composition of convex and affine
functions, thus KKT is a necessary and sufficient condition for
optimality.

V. Leclère Wardrop Equilibrium May 5th, 2021 22 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Convex case : equivalence

If the loss functions (in edge-intensity) are non-decreasing then the
Wardrop potential W is convex.

Theorem

Assume that the loss function `e are non-decreasing for all e ∈ E.
Then there exists at least one user equilibrium, and a flow f is a
user equilibrium if and only if it solves (UE)

Proof : the cost is convex as composition of convex and affine
functions, thus KKT is a necessary and sufficient condition for
optimality.

V. Leclère Wardrop Equilibrium May 5th, 2021 22 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Convex case : characterization

define the system cost of a flow f for a given flow f ′, as

C f (f) :=
∑
e∈E

xe(f)`e
(
xe(f ′)

)
.

Theorem

Assume that the cost functions `e are continuous and
non-decreasing. Then, f UE is a user equilibrium iff

∀f ∈ F ad , C f UE (f UE) ≤ C f UE (f),

where F ad is the set of admissible flows.

V. Leclère Wardrop Equilibrium May 5th, 2021 23 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Convex case : characterization

define the system cost of a flow f for a given flow f ′, as

C f (f) :=
∑
e∈E

xe(f)`e
(
xe(f ′)

)
.

Theorem

Assume that the cost functions `e are continuous and
non-decreasing. Then, f UE is a user equilibrium iff

∀f ∈ F ad , C f UE (f UE) ≤ C f UE (f),

where F ad is the set of admissible flows.

V. Leclère Wardrop Equilibrium May 5th, 2021 23 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

By convexity (f UE) is an optimal solution to (UE) iff

∇W (f UE) · (f − f UE) ≥ 0, ∀f ∈ F ad

which is equivalent to∑
p∈P

∂W

∂fp
(f UE)︸ ︷︷ ︸

`p(f UE)

fp ≥
∑
p∈P

∂W

∂fp
(f UE)︸ ︷︷ ︸

`p(f UE)

f UEp , ∀f ∈ F ad

which can be written

C f UE (f UE) ≤ C f UE (f), ∀f ∈ F ad .

V. Leclère Wardrop Equilibrium May 5th, 2021 24 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

By convexity (f UE) is an optimal solution to (UE) iff

∇W (f UE) · (f − f UE) ≥ 0, ∀f ∈ F ad

which is equivalent to∑
p∈P

∂W

∂fp
(f UE)︸ ︷︷ ︸

`p(f UE)

fp ≥
∑
p∈P

∂W

∂fp
(f UE)︸ ︷︷ ︸

`p(f UE)

f UEp , ∀f ∈ F ad

which can be written

C f UE (f UE) ≤ C f UE (f), ∀f ∈ F ad .

V. Leclère Wardrop Equilibrium May 5th, 2021 24 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

By convexity (f UE) is an optimal solution to (UE) iff

∇W (f UE) · (f − f UE) ≥ 0, ∀f ∈ F ad

which is equivalent to∑
p∈P

∂W

∂fp
(f UE)︸ ︷︷ ︸

`p(f UE)

fp ≥
∑
p∈P

∂W

∂fp
(f UE)︸ ︷︷ ︸

`p(f UE)

f UEp , ∀f ∈ F ad

which can be written

C f UE (f UE) ≤ C f UE (f), ∀f ∈ F ad .

V. Leclère Wardrop Equilibrium May 5th, 2021 24 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Contents

1 Recalls on optimization and convexity
Recalls on convexity
Optimization Recalls

2 Modelling a traffic assignement problem
System optimum
Wardrop equilibrium

3 Price of anarchy

V. Leclère Wardrop Equilibrium May 5th, 2021 24 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Definition

Definition

Consider increasing loss functions `e . Let f UE be a user
equilibrium, and f SO be a system optimum. Then the price of
anarchy of our network is given by

PoA :=
C (f UE)

C (f SO)
≥ 1.

Theorem

Let `e be the affine function xe 7→ bexe + ce , with be , ce ≥ 0. Then
the price of anarchy is lower than 4/3, and the bound is tight.

V. Leclère Wardrop Equilibrium May 5th, 2021 25 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

Let f be a feasible flow, and f UE be the user equilibrium. For ease of
notation we fix xUE = x(f UE), and x = x(f).
By Theorem we have

C (f UE) ≤ C f UE (f)

=
∑
e∈E

(
bex

UE
e + ce

)
xe

≤
∑
e∈E

[(
bexe + ce

)
xe +

1

4
be
(
xUEe

)2
]

as (xe − xUEe /2)2 ≥ 0

≤ C (f) +
1

4

∑
e∈E

(
bex

UE
e + ce

)
xUEe as cex

UE
e ≥ 0

= C (f) +
1

4
C f UE (f UE)

Hence we have 3/4C (f UE) ≤ C (f).
Minimizing over admissible flow f ends the proof.

V. Leclère Wardrop Equilibrium May 5th, 2021 26 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

Let f be a feasible flow, and f UE be the user equilibrium. For ease of
notation we fix xUE = x(f UE), and x = x(f).
By Theorem we have

C (f UE) ≤ C f UE (f)

=
∑
e∈E

(
bex

UE
e + ce

)
xe

≤
∑
e∈E

[(
bexe + ce

)
xe +

1

4
be
(
xUEe

)2
]

as (xe − xUEe /2)2 ≥ 0

≤ C (f) +
1

4

∑
e∈E

(
bex

UE
e + ce

)
xUEe as cex

UE
e ≥ 0

= C (f) +
1

4
C f UE (f UE)

Hence we have 3/4C (f UE) ≤ C (f).
Minimizing over admissible flow f ends the proof.

V. Leclère Wardrop Equilibrium May 5th, 2021 26 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

Let f be a feasible flow, and f UE be the user equilibrium. For ease of
notation we fix xUE = x(f UE), and x = x(f).
By Theorem we have

C (f UE) ≤ C f UE (f)

=
∑
e∈E

(
bex

UE
e + ce

)
xe

≤
∑
e∈E

[(
bexe + ce

)
xe +

1

4
be
(
xUEe

)2
]

as (xe − xUEe /2)2 ≥ 0

≤ C (f) +
1

4

∑
e∈E

(
bex

UE
e + ce

)
xUEe as cex

UE
e ≥ 0

= C (f) +
1

4
C f UE (f UE)

Hence we have 3/4C (f UE) ≤ C (f).
Minimizing over admissible flow f ends the proof.

V. Leclère Wardrop Equilibrium May 5th, 2021 26 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

Let f be a feasible flow, and f UE be the user equilibrium. For ease of
notation we fix xUE = x(f UE), and x = x(f).
By Theorem we have

C (f UE) ≤ C f UE (f)

=
∑
e∈E

(
bex

UE
e + ce

)
xe

≤
∑
e∈E

[(
bexe + ce

)
xe +

1

4
be
(
xUEe

)2
]

as (xe − xUEe /2)2 ≥ 0

≤ C (f) +
1

4

∑
e∈E

(
bex

UE
e + ce

)
xUEe as cex

UE
e ≥ 0

= C (f) +
1

4
C f UE (f UE)

Hence we have 3/4C (f UE) ≤ C (f).
Minimizing over admissible flow f ends the proof.

V. Leclère Wardrop Equilibrium May 5th, 2021 26 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

Let f be a feasible flow, and f UE be the user equilibrium. For ease of
notation we fix xUE = x(f UE), and x = x(f).
By Theorem we have

C (f UE) ≤ C f UE (f)

=
∑
e∈E

(
bex

UE
e + ce

)
xe

≤
∑
e∈E

[(
bexe + ce

)
xe +

1

4
be
(
xUEe

)2
]

as (xe − xUEe /2)2 ≥ 0

≤ C (f) +
1

4

∑
e∈E

(
bex

UE
e + ce

)
xUEe as cex

UE
e ≥ 0

= C (f) +
1

4
C f UE (f UE)

Hence we have 3/4C (f UE) ≤ C (f).
Minimizing over admissible flow f ends the proof.

V. Leclère Wardrop Equilibrium May 5th, 2021 26 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

Let f be a feasible flow, and f UE be the user equilibrium. For ease of
notation we fix xUE = x(f UE), and x = x(f).
By Theorem we have

C (f UE) ≤ C f UE (f)

=
∑
e∈E

(
bex

UE
e + ce

)
xe

≤
∑
e∈E

[(
bexe + ce

)
xe +

1

4
be
(
xUEe

)2
]

as (xe − xUEe /2)2 ≥ 0

≤ C (f) +
1

4

∑
e∈E

(
bex

UE
e + ce

)
xUEe as cex

UE
e ≥ 0

= C (f) +
1

4
C f UE (f UE)

Hence we have 3/4C (f UE) ≤ C (f).
Minimizing over admissible flow f ends the proof.

V. Leclère Wardrop Equilibrium May 5th, 2021 26 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Proof

Let f be a feasible flow, and f UE be the user equilibrium. For ease of
notation we fix xUE = x(f UE), and x = x(f).
By Theorem we have

C (f UE) ≤ C f UE (f)

=
∑
e∈E

(
bex

UE
e + ce

)
xe

≤
∑
e∈E

[(
bexe + ce

)
xe +

1

4
be
(
xUEe

)2
]

as (xe − xUEe /2)2 ≥ 0

≤ C (f) +
1

4

∑
e∈E

(
bex

UE
e + ce

)
xUEe as cex

UE
e ≥ 0

= C (f) +
1

4
C f UE (f UE)

Hence we have 3/4C (f UE) ≤ C (f).
Minimizing over admissible flow f ends the proof.

V. Leclère Wardrop Equilibrium May 5th, 2021 26 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Pigou’s Example

do

xN

1

Figure: Pigou example

On a graph with two nodes: one origin, one destination, a total
flow of 1, a fixed cost of 1 on one edge, and a cost of xN on the
other, where N ∈ N and x is the intensity of the flow using this
edge (see Figure 1).

1 Compute the system optimum for a given N.

2 Compute the user equilibrium for a given N.

3 Compute the price of anarchy on this network when N →∞.

V. Leclère Wardrop Equilibrium May 5th, 2021 27 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Exercise for next week (3.2)

Consider a (finite) directed, strongly connected, graph G = (V ,E). We
consider K origin-destination vertex pair

{
ok , dk

}
k∈J1,KK, such that there

exists at least one path from ok to dk .
We want to find bounds on the price of anarchy, assuming that, for each
arc e, `e : R+ → R+ is non-decreasing, and that we have

x`e(x) ≤ γLe(x), ∀x ∈ R+

1 Recall which optimization problems solves the social optimum xSO

and the user equilibrium xUE .

2 Let x be a feasable vector of arc-intensity. Show that
W (x) ≤ C (x) ≤ γW (x).

3 Show that the price of anarchy C (xUE)/C (xSO) is lower than γ.

4 If the cost per arc `e are polynomial of order at most p with
non-negative coefficient, find a bound on the price of anarchy. Is
this bound sharp ?

V. Leclère Wardrop Equilibrium May 5th, 2021 28 / 29

Recalls on optimization and convexity Modelling a traffic assignement problem Price of anarchy

Further video content

This is a research seminar by one of the expert in the domain. The
first half is very interesting to get a better intuition of the
concepts. The second half is more dedicated to the proof of the
result presented in the talk.
https://www.youtube.com/watch?v=e3O_tMsN2t8

V. Leclère Wardrop Equilibrium May 5th, 2021 29 / 29

https://www.youtube.com/watch?v=e3O_tMsN2t8

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Numerical Methods

V. Leclère (ENPC)

May 6th, 2020

V. Leclère Numerical Methods May 6th, 2020 1 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Contents

1 Where we got
System optimum
Wardrop equilibrium

2 Optimization methods
Miscellaneous
Unidimensional optimization

3 Conditional gradient algorithm

4 Algorithm for computing User Equilibrium
Heuristics algorithms
Frank-Wolfe for UE

V. Leclère Numerical Methods May 6th, 2020 1 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

The set-up

G = (V ,E) is a directed graph

xe for e ∈ E represent the flux (number of people per hour)
taking edge e

`e : R→ R+ the cost incurred by a given user to take edge e

We consider K origin-destination vertex pair
{
ok , dk

}
k∈J1,KK,

such that there exists at least one path from ok to dk .

rk is the rate of people going from ok to dk

Pk the set of all simple (i.e. without cycle) path form ok to dk

We denote fp the flux of people taking path p ∈ Pk

V. Leclère Numerical Methods May 6th, 2020 2 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Some physical relations

People going from ok to dk have to choose a path

rk =
∑
p∈Pk

fp.

People going through an edge are on a simple path taking this edge

xe =
∑
p3e

fp.

The flux are non-negative

∀p ∈ P, fp ≥ 0, and ,∀e ∈ E , xe ≥ 0

V. Leclère Numerical Methods May 6th, 2020 3 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Some physical relations

People going from ok to dk have to choose a path

rk =
∑
p∈Pk

fp.

People going through an edge are on a simple path taking this edge

xe =
∑
p3e

fp.

The flux are non-negative

∀p ∈ P, fp ≥ 0, and ,∀e ∈ E , xe ≥ 0

V. Leclère Numerical Methods May 6th, 2020 3 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Some physical relations

People going from ok to dk have to choose a path

rk =
∑
p∈Pk

fp.

People going through an edge are on a simple path taking this edge

xe =
∑
p3e

fp.

The flux are non-negative

∀p ∈ P, fp ≥ 0, and ,∀e ∈ E , xe ≥ 0

V. Leclère Numerical Methods May 6th, 2020 3 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)e∈E

Given x , the cost of taking edge e for one person is `e(xe).

The cost for the system for edge e is thus xe`e(xe).

Thus minimizing the system costs consists in solving

min
x ,f

∑
e∈E

xe`e(xe) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P

V. Leclère Numerical Methods May 6th, 2020 4 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)e∈E

Given x , the cost of taking edge e for one person is `e(xe).

The cost for the system for edge e is thus xe`e(xe).

Thus minimizing the system costs consists in solving

min
x ,f

∑
e∈E

xe`e(xe) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P

V. Leclère Numerical Methods May 6th, 2020 4 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)e∈E

Given x , the cost of taking edge e for one person is `e(xe).

The cost for the system for edge e is thus xe`e(xe).

Thus minimizing the system costs consists in solving

min
x ,f

∑
e∈E

xe`e(xe) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P

V. Leclère Numerical Methods May 6th, 2020 4 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f) :=
∑
p3e

fp, and x = (xe)e∈E .

Define the loss along a path `p(f) =
∑
e∈p

`e
(∑
p′3e

fp′︸ ︷︷ ︸
xe(f)

)

The total cost is thus

C (f) =
∑
p∈P

fp`p(f) =
∑
e∈E

xe`e(xe(f)) = C (x(f)).

V. Leclère Numerical Methods May 6th, 2020 5 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f) :=
∑
p3e

fp, and x = (xe)e∈E .

Define the loss along a path `p(f) =
∑
e∈p

`e
(∑
p′3e

fp′︸ ︷︷ ︸
xe(f)

)

The total cost is thus

C (f) =
∑
p∈P

fp`p(f) =
∑
e∈E

xe`e(xe(f)) = C (x(f)).

V. Leclère Numerical Methods May 6th, 2020 5 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f) :=
∑
p3e

fp, and x = (xe)e∈E .

Define the loss along a path `p(f) =
∑
e∈p

`e
(∑
p′3e

fp′︸ ︷︷ ︸
xe(f)

)

The total cost is thus

C (f) =
∑
p∈P

fp`p(f) =
∑
e∈E

xe`e(xe(f)) = C (x(f)).

V. Leclère Numerical Methods May 6th, 2020 5 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f) :=
∑
p3e

fp, and x = (xe)e∈E .

Define the loss along a path `p(f) =
∑
e∈p

`e
(∑
p′3e

fp′︸ ︷︷ ︸
xe(f)

)

The total cost is thus

C (f) =
∑
p∈P

fp`p(f) =
∑
e∈E

xe`e(xe(f)) = C (x(f)).

V. Leclère Numerical Methods May 6th, 2020 5 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Path intensity problem

min
f

∑
p∈P

fp`p(f) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

fp ≥ 0 p ∈ P

V. Leclère Numerical Methods May 6th, 2020 6 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Contents

1 Where we got
System optimum
Wardrop equilibrium

2 Optimization methods
Miscellaneous
Unidimensional optimization

3 Conditional gradient algorithm

4 Algorithm for computing User Equilibrium
Heuristics algorithms
Frank-Wolfe for UE

V. Leclère Numerical Methods May 6th, 2020 6 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. ”Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”
A mathematical definition reads as follows.

Definition

A user flow f is a User Equilibrium if

∀k ∈ J1,KK, ∀(p, p′) ∈ P2
k , fp > 0 =⇒ `p(f) ≤ `p′(f).

V. Leclère Numerical Methods May 6th, 2020 7 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. ”Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”
A mathematical definition reads as follows.

Definition

A user flow f is a User Equilibrium if

∀k ∈ J1,KK, ∀(p, p′) ∈ P2
k , fp > 0 =⇒ `p(f) ≤ `p′(f).

V. Leclère Numerical Methods May 6th, 2020 7 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

A new cost function

We are going to show that a user-equilibrium f is defined as a
vector satisfying the KKT conditions of a certain optimization
problem.
Let define a new edge-loss function by

Le(xe) :=

∫ xe

0
`e(u)du.

The Wardrop potential is defined (for edge intensity) as

W (f) = W (x(f)) =
∑
e∈E

Le(xe(f)).

V. Leclère Numerical Methods May 6th, 2020 8 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

A new cost function

We are going to show that a user-equilibrium f is defined as a
vector satisfying the KKT conditions of a certain optimization
problem.
Let define a new edge-loss function by

Le(xe) :=

∫ xe

0
`e(u)du.

The Wardrop potential is defined (for edge intensity) as

W (f) = W (x(f)) =
∑
e∈E

Le(xe(f)).

V. Leclère Numerical Methods May 6th, 2020 8 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

User optimum problem

Theorem

A flow f is a user equilibrium if and only if it satisfies the first
order KKT conditions of the following optimization problem

min
x ,f

W (x)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P

V. Leclère Numerical Methods May 6th, 2020 9 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Convex case : equivalence

If the loss functions (in edge-intensity) are non-decreasing then the
Wardrop potential W is convex.

Theorem

Assume that the loss function `e are non-decreasing for all e ∈ E.
Then there exists at least one user equilibrium, and a flow f is a
user equilibrium if and only if it solves (UE)

V. Leclère Numerical Methods May 6th, 2020 10 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Contents

1 Where we got
System optimum
Wardrop equilibrium

2 Optimization methods
Miscellaneous
Unidimensional optimization

3 Conditional gradient algorithm

4 Algorithm for computing User Equilibrium
Heuristics algorithms
Frank-Wolfe for UE

V. Leclère Numerical Methods May 6th, 2020 10 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Descent methods

Consider the unconstrained optimization problem

min
x∈Rn

f (x). (2)

A descent direction algorithm is an algorithm that constructs a
sequence of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d (k) (3)

where

x (0) is the initial point,

d (k) ∈ Rn is the descent direction,

t(k) is the step length.

V. Leclère Numerical Methods May 6th, 2020 11 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Descent methods

Consider the unconstrained optimization problem

min
x∈Rn

f (x). (2)

A descent direction algorithm is an algorithm that constructs a
sequence of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d (k) (3)

where

x (0) is the initial point,

d (k) ∈ Rn is the descent direction,

t(k) is the step length.

V. Leclère Numerical Methods May 6th, 2020 11 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Descent methods

Consider the unconstrained optimization problem

min
x∈Rn

f (x). (2)

A descent direction algorithm is an algorithm that constructs a
sequence of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d (k) (3)

where

x (0) is the initial point,

d (k) ∈ Rn is the descent direction,

t(k) is the step length.

V. Leclère Numerical Methods May 6th, 2020 11 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Video explanation

https://www.youtube.com/watch?v=n-Y0SDSOfUI

V. Leclère Numerical Methods May 6th, 2020 12 / 32

https://www.youtube.com/watch?v=n-Y0SDSOfUI

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Descent direction

For a differentiable objective function f , d (k) will be a descent
direction iff ∇f (x (k)) · d (k) ≤ 0, which can be seen from a first
order development:

f (x (k) + t(k)d (k)) = f (x (k)) + t
〈
∇f (x (k)) , d (k)

〉
+ o(t).

The most classical descent direction is d (k) = −∇f (x (k)), which
correspond to the gradient algorithm.

V. Leclère Numerical Methods May 6th, 2020 13 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Descent direction

For a differentiable objective function f , d (k) will be a descent
direction iff ∇f (x (k)) · d (k) ≤ 0, which can be seen from a first
order development:

f (x (k) + t(k)d (k)) = f (x (k)) + t
〈
∇f (x (k)) , d (k)

〉
+ o(t).

The most classical descent direction is d (k) = −∇f (x (k)), which
correspond to the gradient algorithm.

V. Leclère Numerical Methods May 6th, 2020 13 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Step-size choice

The step-size t(k) can be:

fixed t(k) = t(0), for all iteration,

optimal t(k) ∈ arg min
t≥0

f (x (k) + td (k)),

a ”good” step, following some rules (e.g Armijo’s rules).

Finding the optimal step size is a special case of unidimensional
optimization (or linear search).

V. Leclère Numerical Methods May 6th, 2020 14 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Step-size choice

The step-size t(k) can be:

fixed t(k) = t(0), for all iteration,

optimal t(k) ∈ arg min
t≥0

f (x (k) + td (k)),

a ”good” step, following some rules (e.g Armijo’s rules).

Finding the optimal step size is a special case of unidimensional
optimization (or linear search).

V. Leclère Numerical Methods May 6th, 2020 14 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Contents

1 Where we got
System optimum
Wardrop equilibrium

2 Optimization methods
Miscellaneous
Unidimensional optimization

3 Conditional gradient algorithm

4 Algorithm for computing User Equilibrium
Heuristics algorithms
Frank-Wolfe for UE

V. Leclère Numerical Methods May 6th, 2020 14 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Unidimensional optimization

We assume that the objective function J : R→ R is strictly
convex.
We are going to consider two types of methods:

interval reduction algorithms: constructing [a(l), b(l)]
containing the optimal point;

successive approximation algorithms: approximating J and
taking the minimum of the approximation.

V. Leclère Numerical Methods May 6th, 2020 15 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Bisection method

We assume that J is differentiable over [a, b]. Note that, for
c ∈ [a, b], t∗ < c iff J ′(c) > 0. From this simple remark we
construct the bisection method.

while b(l) − a(l) > ε do

c (l) =
b(l) + a(l)

2
;

if J ′(c (l)) > 0 then

a(l+1) = a(l) ; b(l+1) = c (l) ;
else if J ′(c (l)) < 0 then

a(l+1) = c (l) ; b(l+1) = b(l) ;

else

return interval [a(l), b(l)]

l = l + 1

Note that Ll = b(l) − a(l) =
L0

2l
.

V. Leclère Numerical Methods May 6th, 2020 16 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Golden section I

Consider a < t1 < t2 < b, we are looking for t∗ = arg min
t∈[a,b]

J(t)

Note that

if J(t1) < J(t2), then t∗ ∈ [a, t2] ;

if J(t1) > J(t2), then t∗ ∈ [t1, b] ;

if J(t1) = J(t2), then t∗ ∈ [t1, t2] .

Hence, at each iteration the interval [a(l), b(l)] is updated into

[a(l), t
(l)
2] or [t

(l)
1 , b(l)].

V. Leclère Numerical Methods May 6th, 2020 17 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Golden section I

Consider a < t1 < t2 < b, we are looking for t∗ = arg min
t∈[a,b]

J(t)

Note that

if J(t1) < J(t2), then t∗ ∈ [a, t2] ;

if J(t1) > J(t2), then t∗ ∈ [t1, b] ;

if J(t1) = J(t2), then t∗ ∈ [t1, t2] .

Hence, at each iteration the interval [a(l), b(l)] is updated into

[a(l), t
(l)
2] or [t

(l)
1 , b(l)].

V. Leclère Numerical Methods May 6th, 2020 17 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Golden section II

We now want to know how to choose t
(l)
1 and t

(l)
2 . To minimize

the worst case complexity we want equity between both possibility,

hence b(l) − t
(l)
1 = t

(l)
2 − a(l). Now assume that J(t

(l)
1) < J(t

(l)
2).

Hence a(l+1) = a(l), and b(l+1) = t2. We would like to reuse the
computation of J(t

(l)
1) by defining t

(k+1)
1 = t

(l)
2 .

In order to satisfy this constraint we need to haveL2 + L1 = L
L2

L
=

L1

L2
=: R

(4)

where L = b(l) − a(l), L1 = t
(l)
1 − a(l) and L2 = t

(l)
2 − a(l).

This implies

1 + R =
1

R
(5)

V. Leclère Numerical Methods May 6th, 2020 18 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Golden section II

We now want to know how to choose t
(l)
1 and t

(l)
2 . To minimize

the worst case complexity we want equity between both possibility,

hence b(l) − t
(l)
1 = t

(l)
2 − a(l). Now assume that J(t

(l)
1) < J(t

(l)
2).

Hence a(l+1) = a(l), and b(l+1) = t2. We would like to reuse the
computation of J(t

(l)
1) by defining t

(k+1)
1 = t

(l)
2 .

In order to satisfy this constraint we need to haveL2 + L1 = L
L2

L
=

L1

L2
=: R

(4)

where L = b(l) − a(l), L1 = t
(l)
1 − a(l) and L2 = t

(l)
2 − a(l).

This implies

1 + R =
1

R
(5)

V. Leclère Numerical Methods May 6th, 2020 18 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Golden section II

We now want to know how to choose t
(l)
1 and t

(l)
2 . To minimize

the worst case complexity we want equity between both possibility,

hence b(l) − t
(l)
1 = t

(l)
2 − a(l). Now assume that J(t

(l)
1) < J(t

(l)
2).

Hence a(l+1) = a(l), and b(l+1) = t2. We would like to reuse the
computation of J(t

(l)
1) by defining t

(k+1)
1 = t

(l)
2 .

In order to satisfy this constraint we need to haveL2 + L1 = L
L2

L
=

L1

L2
=: R

(4)

where L = b(l) − a(l), L1 = t
(l)
1 − a(l) and L2 = t

(l)
2 − a(l).

This implies

1 + R =
1

R
(5)

V. Leclère Numerical Methods May 6th, 2020 18 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Golden section III

R =

√
5− 1

2
. (6)

Finally, in order to satisfy equity and reusability it is enough to set

t
(l)
1 = a(l) + (1− R)(b(l) − a(l))

t
(l)
1 = a(l) + R(b(l) − a(l))

The same happens for the J(t
(l)
1) > J(t

(l)
2) case.

V. Leclère Numerical Methods May 6th, 2020 19 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Golden section algorithm

a(0) = a, b(0) = b;

t
(0)
1 = a + (1− R)b, t

(0)
2 = a + Rb;

J1 = J(t
(0)
1), J2 = J(t

(0)
2);

while b(l) − a(l) > ε do
if J1 < J2 then

a(l+1) = a(l) ; b(l+1) = t
(l)
2 ;

t
(l+1)
1 = a(l+1) + (1− R)b(l+1) ; t

(l+1)
2 = t

(
1l) ;

J2 = J1;

J1 = J(t
(l+1)
1);

else

a(l+1) = t
(l)
1 ; b(l+1) = b(l) ;

t
(l+1)
1 = t

(l)
2 ; t

(l+1)
2 = a(l+1) + Rb(l+1) ;

J1 = J2;

J2 = J(t
(l+1)
2);

l = l + 1

Note that Ll = R lL0.
V. Leclère Numerical Methods May 6th, 2020 20 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Video explantion

Golden section
https://www.youtube.com/watch?v=6NYp3td3cjU

V. Leclère Numerical Methods May 6th, 2020 21 / 32

https://www.youtube.com/watch?v=6NYp3td3cjU

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Curve fitting : Newton method

If J is twice-differentiable (with non-null second order derivative) is
to determine t(k+1) as the minimum of the second order Taylor’s
of J at t(k) :

t(l+1) − t(l) = arg min
t

J(t(l)) + J ′(t(l))t +
t2

2
J ′′(t(l))

=
(
J ′′(t(l))

)−1
J ′(t(l))

This is the well known, and very efficient, Newton method.

V. Leclère Numerical Methods May 6th, 2020 22 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Conditional gradient algorithm

We address an optimization
problem with convex objective
function f and compact
polyhedral constraint set X , i.e.

min
x∈X⊂Rn

f (x)

where

X =
{
x ∈ Rn | Ax ≤ b, Ãx = b̃

}

V. Leclère Numerical Methods May 6th, 2020 23 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Conditional gradient algorithm

It is a descent algorithm, where
we first look for an admissible
descent direction d (k), and then
look for the optimal step.

As f is convex, we know that for
any point x (k),

f (y) ≥ f (x (k))+∇f (x (k))·(y−x (k))

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X .

V. Leclère Numerical Methods May 6th, 2020 23 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Conditional gradient algorithm

It is a descent algorithm, where
we first look for an admissible
descent direction d (k), and then
look for the optimal step.
As f is convex, we know that for
any point x (k),

f (y) ≥ f (x (k))+∇f (x (k))·(y−x (k))

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X .

V. Leclère Numerical Methods May 6th, 2020 23 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Conditional gradient algorithm

It is a descent algorithm, where
we first look for an admissible
descent direction d (k), and then
look for the optimal step.
As f is convex, we know that for
any point x (k),

f (y) ≥ f (x (k))+∇f (x (k))·(y−x (k))

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X .

V. Leclère Numerical Methods May 6th, 2020 23 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Conditional gradient algorithm

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X . More
precisely, at step k we solve

y (k) ∈ arg min
y∈X

f (x (k))+∇f (x (k))·(y−x (k)).

V. Leclère Numerical Methods May 6th, 2020 23 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Remarks on conditional gradient

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).

This problem is linear, hence easy to solve.

By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

As y (k) ∈ X , d (k) = y (k) − x (k) is a feasable direction, in the sense
that for all t ∈ [0, 1], x (k) + td (k) ∈ X .

If y (k) is obtained through the simplex method it is an extreme
point of X , which means that, for t > 1, x (k) + td (k) /∈ X .

If y (k) = x (k) then we have found an optimal solution.

We also have y (k) ∈ arg min
x∈X

∇f (x (k)) · y , the lower-bound being

obtained easily.

V. Leclère Numerical Methods May 6th, 2020 24 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Remarks on conditional gradient

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).

This problem is linear, hence easy to solve.

By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

As y (k) ∈ X , d (k) = y (k) − x (k) is a feasable direction, in the sense
that for all t ∈ [0, 1], x (k) + td (k) ∈ X .

If y (k) is obtained through the simplex method it is an extreme
point of X , which means that, for t > 1, x (k) + td (k) /∈ X .

If y (k) = x (k) then we have found an optimal solution.

We also have y (k) ∈ arg min
x∈X

∇f (x (k)) · y , the lower-bound being

obtained easily.

V. Leclère Numerical Methods May 6th, 2020 24 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Remarks on conditional gradient

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).

This problem is linear, hence easy to solve.

By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

As y (k) ∈ X , d (k) = y (k) − x (k) is a feasable direction, in the sense
that for all t ∈ [0, 1], x (k) + td (k) ∈ X .

If y (k) is obtained through the simplex method it is an extreme
point of X , which means that, for t > 1, x (k) + td (k) /∈ X .

If y (k) = x (k) then we have found an optimal solution.

We also have y (k) ∈ arg min
x∈X

∇f (x (k)) · y , the lower-bound being

obtained easily.

V. Leclère Numerical Methods May 6th, 2020 24 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Remarks on conditional gradient

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).

This problem is linear, hence easy to solve.

By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

As y (k) ∈ X , d (k) = y (k) − x (k) is a feasable direction, in the sense
that for all t ∈ [0, 1], x (k) + td (k) ∈ X .

If y (k) is obtained through the simplex method it is an extreme
point of X , which means that, for t > 1, x (k) + td (k) /∈ X .

If y (k) = x (k) then we have found an optimal solution.

We also have y (k) ∈ arg min
x∈X

∇f (x (k)) · y , the lower-bound being

obtained easily.

V. Leclère Numerical Methods May 6th, 2020 24 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Remarks on conditional gradient

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).

This problem is linear, hence easy to solve.

By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

As y (k) ∈ X , d (k) = y (k) − x (k) is a feasable direction, in the sense
that for all t ∈ [0, 1], x (k) + td (k) ∈ X .

If y (k) is obtained through the simplex method it is an extreme
point of X , which means that, for t > 1, x (k) + td (k) /∈ X .

If y (k) = x (k) then we have found an optimal solution.

We also have y (k) ∈ arg min
x∈X

∇f (x (k)) · y , the lower-bound being

obtained easily.

V. Leclère Numerical Methods May 6th, 2020 24 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Remarks on conditional gradient

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).

This problem is linear, hence easy to solve.

By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

As y (k) ∈ X , d (k) = y (k) − x (k) is a feasable direction, in the sense
that for all t ∈ [0, 1], x (k) + td (k) ∈ X .

If y (k) is obtained through the simplex method it is an extreme
point of X , which means that, for t > 1, x (k) + td (k) /∈ X .

If y (k) = x (k) then we have found an optimal solution.

We also have y (k) ∈ arg min
x∈X

∇f (x (k)) · y , the lower-bound being

obtained easily.

V. Leclère Numerical Methods May 6th, 2020 24 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Frank Wolfe algorithm

Data: objective function f , constraints, initial point x (0), precision ε
Result: ε-optimal solution x (k), upperbound f (x (k)), lowerbound f
f = −∞ ;
k = 0 ;

while f (x (k))− f > ε do

solve the LP min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)) ;

let y (k) be an optimal solution, and f the optimal value ;

set d (k) = y (k) − x (k) ;

solve t(k) ∈ arg min
t∈[0,1]

f
(
x (k) + td (k)

)
;

update x (k+1) = x (k) + t(k)d (k) ;
k = k + 1;

V. Leclère Numerical Methods May 6th, 2020 25 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Contents

1 Where we got
System optimum
Wardrop equilibrium

2 Optimization methods
Miscellaneous
Unidimensional optimization

3 Conditional gradient algorithm

4 Algorithm for computing User Equilibrium
Heuristics algorithms
Frank-Wolfe for UE

V. Leclère Numerical Methods May 6th, 2020 25 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

All-or nothing

A very simple heuristic consists in:

1 Set k = 0.

2 Assume initial cost per edge `
(k)
e = `e(x refe).

3 For each origin-destination pair (oi , di) find the shortest path
associated with `(k).

4 Associate the full flow ri to this path, which form a flow of
user f (k).

5 Deducing the travel cost per edge is `
(k+1)
e = `e(f (k)).

6 Go to step 3.

This method is simple and requires only to compute the shortest
path in a fixed cost graph.
However it is not converging as it can cycle.

V. Leclère Numerical Methods May 6th, 2020 26 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

All-or nothing

A very simple heuristic consists in:

1 Set k = 0.

2 Assume initial cost per edge `
(k)
e = `e(x refe).

3 For each origin-destination pair (oi , di) find the shortest path
associated with `(k).

4 Associate the full flow ri to this path, which form a flow of
user f (k).

5 Deducing the travel cost per edge is `
(k+1)
e = `e(f (k)).

6 Go to step 3.

This method is simple and requires only to compute the shortest
path in a fixed cost graph.
However it is not converging as it can cycle.

V. Leclère Numerical Methods May 6th, 2020 26 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

All-or nothing

A very simple heuristic consists in:

1 Set k = 0.

2 Assume initial cost per edge `
(k)
e = `e(x refe).

3 For each origin-destination pair (oi , di) find the shortest path
associated with `(k).

4 Associate the full flow ri to this path, which form a flow of
user f (k).

5 Deducing the travel cost per edge is `
(k+1)
e = `e(f (k)).

6 Go to step 3.

This method is simple and requires only to compute the shortest
path in a fixed cost graph.
However it is not converging as it can cycle.

V. Leclère Numerical Methods May 6th, 2020 26 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Smoothed all-or-nothing

The all-or-nothing method can be understood as follow: each day
every user choose the shortest path according to the traffice on the
previous day. We can smooth the approach by saying that only a
fraction ρ of user is going to update its path from one day to the
next.
Hence the smoothed all-or-nothing approach reads

1 Set k = 0.
2 Assume initial cost per arc `

(k)
e = `e(x refe).

3 For each pair origin destination (oi , di) find the shortest path
associated with `(k).

4 Associate the full flow ri to this path, which form a flow of
user f̃ (k).

5 Compute the new flow f (k) = (1− ρ)f (k−1) + ρf̃ (k).

6 Deducing the travel cost per arc as `
(k+1)
e = `e(f (k)).

7 Go to step 3.
V. Leclère Numerical Methods May 6th, 2020 27 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Smoothed all-or-nothing

The all-or-nothing method can be understood as follow: each day
every user choose the shortest path according to the traffice on the
previous day. We can smooth the approach by saying that only a
fraction ρ of user is going to update its path from one day to the
next.
Hence the smoothed all-or-nothing approach reads

1 Set k = 0.
2 Assume initial cost per arc `

(k)
e = `e(x refe).

3 For each pair origin destination (oi , di) find the shortest path
associated with `(k).

4 Associate the full flow ri to this path, which form a flow of
user f̃ (k).

5 Compute the new flow f (k) = (1− ρ)f (k−1) + ρf̃ (k).

6 Deducing the travel cost per arc as `
(k+1)
e = `e(f (k)).

7 Go to step 3.
V. Leclère Numerical Methods May 6th, 2020 27 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Contents

1 Where we got
System optimum
Wardrop equilibrium

2 Optimization methods
Miscellaneous
Unidimensional optimization

3 Conditional gradient algorithm

4 Algorithm for computing User Equilibrium
Heuristics algorithms
Frank-Wolfe for UE

V. Leclère Numerical Methods May 6th, 2020 27 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

UE problem

Recall that, if the arc-cost functions are non-decreasing finding a
user-equilibrium is equivalent to solving

min
f≥0

W (x(f))

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

where
W (f) = W (x(f)) =

∑
e∈E

Le(xe(f)),

with

Le(xe) :=

∫ xe

0
`e(u)du,

and
xe(f) =

∑
p3e

fp.

V. Leclère Numerical Methods May 6th, 2020 28 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Frank-Wolfe for UE I

Let’s compute the linearization of the objective function. Consider
an admissible flow f (κ) and a path p ∈ Pi . We have

∂W ◦ x
∂fp

(f (κ)) =
∂

∂fp

(∑
e∈E

Le(
∑
p′3e

f
(κ)
p′)

)
=
∑
e∈p

∂

∂xe
Le(xe(f (κ)))

=
∑
e∈p

`e(xe(f (κ)) = `p(f (κ)).

Hence, the linearized problem around f (k) reads

min{
yp
}

p∈P

∑
p∈P

yp`p(f (κ))

s.t rk =
∑
p∈Pk

yp k ∈ J1,KK

yp ≥ 0 p ∈ PV. Leclère Numerical Methods May 6th, 2020 29 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Frank-Wolfe for UE I

Let’s compute the linearization of the objective function. Consider
an admissible flow f (κ) and a path p ∈ Pi . We have

∂W ◦ x
∂fp

(f (κ)) =
∂

∂fp

(∑
e∈E

Le(
∑
p′3e

f
(κ)
p′)

)
=
∑
e∈p

∂

∂xe
Le(xe(f (κ)))

=
∑
e∈p

`e(xe(f (κ)) = `p(f (κ)).

Hence, the linearized problem around f (k) reads

min{
yp
}

p∈P

∑
p∈P

yp`p(f (κ))

s.t rk =
∑
p∈Pk

yp k ∈ J1,KK

yp ≥ 0 p ∈ PV. Leclère Numerical Methods May 6th, 2020 29 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Frank-Wolfe for UE II

min{
yp
}

p∈P

∑
p∈P

yp`p(f (κ))

s.t rk =
∑
p∈Pk

yp k ∈ J1,KK

yp ≥ 0 p ∈ P

Note that this problem is an all-or-nothing iteration and can be
solved (o, d)-pair by (o, d)-pair by solving a shortest path problem.
As the cost tka := `e(f (κ)) is non-negative we can use Djikstra’s
algorithm to solve this problem.

V. Leclère Numerical Methods May 6th, 2020 30 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Frank-Wolfe for UE II

min{
yp
}

p∈P

∑
p∈P

yp`p(f (κ))

s.t rk =
∑
p∈Pk

yp k ∈ J1,KK

yp ≥ 0 p ∈ P

Note that this problem is an all-or-nothing iteration and can be
solved (o, d)-pair by (o, d)-pair by solving a shortest path problem.
As the cost tka := `e(f (κ)) is non-negative we can use Djikstra’s
algorithm to solve this problem.

V. Leclère Numerical Methods May 6th, 2020 30 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Frank-Wolfe for UE III

aving found y (κ), we now have to solve

min
t∈[0,1]

J(t) := W
(

(1− t)f (κ) + ty (κ))
)
.

As J is convex, the bisection method seems adapted. We have

J ′(t) = ∇W
(

(1− t)f (κ) + ty (κ)
)
· (y (κ) − f (κ))

=
∑
p∈P

(y
(κ)
p − f

(κ)
p)`p

(
(1− t)f (κ) + ty (κ)

)
hence the bisection method is readily implementable.

V. Leclère Numerical Methods May 6th, 2020 31 / 32

Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Frank Wolfe is a smoothed all-or-nothing

Data: cost function `, constraints, initial flow f (0)

Result: equilibrium flow f (κ)

W = −∞ ;
k = 0 ;
compute starting travel time c (0)

e = `e(x(f (κ)));

while W (x (κ))−W > ε do
foreach pair origin-destination (oi , di) do

find a shortest path pi from oi to di for the loss c (κ) ;

deduce an auxiliary flow y (κ) by setting ri to pi ;

set descent direction d (κ) = y (κ) − f (κ) ;

find optimal step t(κ) ∈ arg min
t∈[0,1]

W
(
x (κ) + td (κ)

)
;

update f (k+1) = f (κ) + t(κ)d (κ) ;
κ = κ+ 1;

V. Leclère Numerical Methods May 6th, 2020 32 / 32

	Urban Transportation Network Analysis
	Showcasing an example of Braess Paradox
	Graphs
	Shortest path problem
	Label algorithm
	Dijkstra's Algorithm

	Topological Ordering
	Dynamic Programming
	A algorithm
	Recalls on optimization and convexity
	Recalls on convexity
	Optimization Recalls

	Modelling a traffic assignement problem
	System optimum
	Wardrop equilibrium

	Price of anarchy
	Where we got
	System optimum
	Wardrop equilibrium

	Optimization methods
	Miscellaneous
	Unidimensional optimization

	Conditional gradient algorithm
	Algorithm for computing User Equilibrium
	Heuristics algorithms
	Frank-Wolfe for UE

