Stochastic Optimization - 2 hours

Vincent Leclère

16/01/2020

Name: \qquad

1 Linear quadratic control (11 points)

We consider the following problem

$$
\begin{array}{cl}
\min _{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}} & \mathbb{E}\left[\frac{1}{2}\left(\boldsymbol{x}_{1}-\boldsymbol{\xi}_{1}\right)^{2}+\frac{1}{2}\left(\boldsymbol{x}_{2}-\boldsymbol{\xi}_{2}\right)^{2}+\frac{1}{2}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)^{2}\right] \\
\text { s.t. } & \sigma\left(\boldsymbol{x}_{1}\right) \subset \sigma\left(\boldsymbol{\xi}_{1}\right) \\
& \sigma\left(\boldsymbol{x}_{2}\right) \subset \sigma\left(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}\right) \tag{1c}
\end{array}
$$

where $\boldsymbol{\xi}_{i}$ are centered random variable (i.e. with $\mathbb{E}\left[\boldsymbol{\xi}_{i}\right]=0$) with finite covariance matrix Σ. This means that, $\operatorname{var}\left(\boldsymbol{\xi}_{i}\right)=\Sigma_{i, i}$ and $\operatorname{cov}\left(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}\right)=\Sigma_{1,2}$. When possible the result are to be given in function of the coefficient of Σ.

1. (1 point) Assuming that $\boldsymbol{\xi}_{1}$ and $\boldsymbol{\xi}_{2}$ are deterministic, find the optimal solution to Problem (1) in function of x_{0}, ξ_{1}, ξ_{2} and k, and show that the optimal value is of the form

$$
V^{d e t}\left(\xi_{1}, \xi_{2}\right)=\kappa\left(\xi_{2}-\xi_{1}\right)^{2}
$$

κ to be determined.

Solution: The problem is convex (0.5), hence optimality is guaranteed by first order condition.

$$
\left\{\begin{array}{l}
x_{1}-\xi_{1}+x_{1}-x_{2}=0 \\
x_{2}-\xi_{2}+x_{2}-x_{1}=0
\end{array}\right.
$$

leading to (1)

$$
\left\{\begin{array}{l}
x_{1}=\frac{2 \xi_{1}+\xi_{2}}{3} \\
x_{2}=\frac{\xi_{1}+2 \xi_{2}}{3}
\end{array}\right.
$$

pluging the optimal solution yield $V^{\text {det }}$ with $\kappa=\frac{1}{6}(0.5)$.
2. (2 points) Using Question 1 propose a natural open-loop solution to Problem (1) and compute the associated upper bound. Can you also give a lower bound ?

Solution: Replacing $\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}$ by their expectation (0.5) we get as optimal solution (0.5)

$$
\left\{\begin{array}{l}
x_{1}^{E F}=0 \\
x_{2}^{E F}=0
\end{array}\right.
$$

the expected cost of $x^{E F}$ is thus (0.5)

$$
v^{E E F}=\frac{\Sigma_{1,1}+\Sigma_{2,2}}{2}
$$

Remark : on this problem we can show that this solution is actually the best open-loop solution. By convexity we know that the value of the expected problem, i.e. 0 , is a lower bound (0.5).
3. (1 point) Using Question 1 give a lower bound of Problem (1).

Solution: The anticipative lower (0.5) bound yields (0.5)

$$
v^{\text {antipicative }}=\frac{1}{6} \mathbb{E}\left[\left(\boldsymbol{\xi}_{2}-\boldsymbol{\xi}_{1}\right)^{2}\right]=\frac{1}{6}\left(\Sigma_{1,1}-2 \Sigma_{1,2}+\Sigma_{2,2}\right) .
$$

4. (4 points) Assume that $\boldsymbol{\xi}_{1}$ and $\boldsymbol{\xi}_{2}$ are independent. Solve Problem (1) giving both the value and optimal strategy.

Solution: By independence of $\boldsymbol{\xi}$ we can use Dynamic Programming (0.5). We have (2.5)

$$
\begin{aligned}
\hat{V}_{1}\left(x_{1}, \xi_{2}\right) & =\min _{x_{2}} \frac{1}{2}\left(x_{2}-x_{1}\right)^{2}+\left(x_{2}-\xi_{2}\right)^{2} \\
& =\frac{\left(x_{1}-\xi_{2}\right)^{2}}{4} \\
V_{1}\left(x_{1}\right) & =\frac{x_{1}^{2}+\Sigma_{2,2}}{4} \\
\hat{V}_{0}\left(\xi_{1}\right) & =\frac{\Sigma_{2,2}}{4}+\min _{x_{1}} \frac{1}{2}\left(x_{1}-\xi_{1}\right)^{2}+\frac{1}{4} x_{1}^{2} \\
& =\frac{\Sigma_{2,2}}{4}+\frac{1}{6} \boldsymbol{\xi}_{1}^{2} \\
V_{0} & =\frac{\Sigma_{2,2}}{4}+\frac{\Sigma_{1,1}}{6}
\end{aligned}
$$

With optimal strategy (1)

$$
\begin{aligned}
x_{2}^{\sharp}\left(x_{1}, \xi_{2}\right) & =\frac{x_{1}+\xi_{2}}{2} \\
x_{1}^{\sharp}\left(\xi_{1}\right) & =\frac{2}{3} \xi_{1}
\end{aligned}
$$

5. (2 points) For generic $\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}$ prove that the policy obtained in the previous question is ε-optimal for Problem (1), where ε is to be given in function of Σ.

Solution: The expected costs of $x_{2}^{\sharp}, x_{1}^{\sharp}$ is (1)

$$
\begin{aligned}
v^{D P} & =\mathbb{E}\left[\frac{1}{2}\left(\frac{2}{3} \boldsymbol{\xi}_{1}-\boldsymbol{\xi}_{1}\right)^{2}+\frac{1}{2}\left(\frac{x_{1}^{\sharp}+\boldsymbol{\xi}_{2}}{2}-\boldsymbol{\xi}_{2}\right)^{2}+\frac{1}{2}\left(\frac{x_{1}^{\sharp}+\boldsymbol{\xi}_{2}}{2}-x_{1}^{\sharp}\right)^{2}\right] \\
& =\mathbb{E}\left[\frac{1}{2} \frac{\Sigma_{11}}{9}+\left(\frac{\frac{2 \boldsymbol{\xi}_{1}}{3}+\boldsymbol{\xi}_{2}}{2}-\boldsymbol{\xi}_{2}\right)^{2}\right] \\
& =\frac{\Sigma_{11}}{6}-\frac{\Sigma_{12}}{3}+\frac{\Sigma_{22}}{4}
\end{aligned}
$$

And using the anticipative lower bound we have(1)

$$
v^{D P}-v^{\text {anticipative }}=\frac{\Sigma_{22}}{12}
$$

2 A unit commitment problem (11 points)

We consider an energy production company which has a set of production unit \mathcal{I}. Each unit $i \in \mathcal{I}$ is either on $\left(x^{i}=1\right)$ or off $\left(x^{i}=0\right)$ for the day (decided the day before). If it is on, its production u_{t}^{i} at time $t \in \llbracket 1,24 \rrbracket$ should be in $\left[\underline{u}^{i}, \bar{u}^{i}\right]$. Turning on a unit has a cost c^{i} (for the day), while the production cost per hour is e^{i}.

Let's denote \boldsymbol{z}_{t} the production of the company sold on the market, and $\boldsymbol{\varepsilon}_{t} \geq 0$ the lost production, i.e. $\sum_{i \in \mathcal{I}} \boldsymbol{u}_{t}^{i}=$ $\boldsymbol{z}_{t}+\boldsymbol{\varepsilon}_{t}$. For each hour there is a demand \boldsymbol{d}_{t} such that $\boldsymbol{z}_{t} \in\left[0.8 \boldsymbol{d}_{t}, 1.2 \boldsymbol{d}_{t}\right]$ almost surely. The company is paid $\boldsymbol{p}_{t} \boldsymbol{z}_{t}$ at time t.
\boldsymbol{d}_{t} and \boldsymbol{p}_{t} are revealed at the beginning of hour $t . u_{t}^{i}$ is decided once they are revealed.
The company aims at minimizing the expected cost.

1. (3 points) Write the problem has a multistage stochastic program and give the information structure. Justify the choice of expectation in the objective.

Solution: It's a repeated problem that happens everyday, law of large number justify expectation. (0.5) The problem is in hazard decision. (0.5)

$$
\begin{array}{llr}
\text { min } & \sum_{i \in \mathcal{I}} c^{i} x^{i}+\mathbb{E}\left[\sum_{t=1}^{24}\left(\sum_{i \in \mathcal{I}} e^{i} \boldsymbol{u}_{t}^{i}\right)-\boldsymbol{p}_{t} \boldsymbol{z}_{t}\right] & \\
\text { s.t. } & \boldsymbol{z}_{t}+\boldsymbol{\varepsilon}_{t}=\sum_{i \in \mathcal{I}} \boldsymbol{u}_{t}^{i} & \\
& & \\
& 0.8 \boldsymbol{d}_{t} \leq \boldsymbol{z}_{t} \leq 1.2 \boldsymbol{d}_{t} & \mathbb{P}-a . s ., \forall t \\
& x^{i} \underline{u}^{i} \leq \boldsymbol{u}_{t}^{i} \leq x^{i} \bar{u}^{i} & \mathbb{P}-a . s ., \forall t \\
& \boldsymbol{\varepsilon}_{t} \geq 0 & \mathbb{P}-a . s ., \forall i \in \mathcal{I} \\
& x^{i} \in\{0,1\} & \mathbb{P}-a . s ., \forall t \in \llbracket 1,24 \rrbracket \\
& \sigma\left(u_{t}^{i}\right) \subset \sigma\left(\left(\boldsymbol{d}_{\tau}, \boldsymbol{p}_{\tau}\right)_{\tau \in \llbracket 1, t \rrbracket}\right) & \forall i \in \mathcal{I}, \forall t \in \llbracket 1,24 \rrbracket
\end{array}
$$

(2 points in total : -0.5 by error)
2. (2 points) Justify that this problem can be reduced to a two stage program. Specify the decomposition in first stage and second stage program.

Solution: There is nothing coupling time step t and t^{\prime}, thus all the information needed to take decisions $\left(u_{t}^{i}\right)_{i \in \mathcal{I}}$ is the information revealed at time t. Consequently all u_{t}^{i} can be seen as second stage variable, while x is the first stage decision.
The first stage problem now reads (1)

$$
\begin{array}{lll}
\min & \sum_{i \in \mathcal{I}} c^{i} x^{i}+\mathbb{E}[Q(x, \boldsymbol{\xi})] \\
\text { s.t. } & x^{i} \in\{0,1\} & \forall i \in \mathcal{I}
\end{array}
$$

where $\boldsymbol{\xi}=\left(\boldsymbol{d}_{t}, \boldsymbol{p}_{t}\right)_{t \in \llbracket 1,24 \rrbracket}$. The second stage problem reads (1)

$$
\begin{array}{rlr}
Q(x, \xi)=\min & \sum_{t=1}^{24}\left(\sum_{i \in \mathcal{I}} e^{i} u_{t}^{i}\right)-p_{t} z_{t} & \\
\text { s.t. } & z_{t}+\varepsilon_{t}=\sum_{i \in \mathcal{I}} u_{t}^{i} & \forall t \\
& 0.8 d_{t} \leq z_{t} \leq 1.2 d_{t} & \forall t \\
& x^{i} \underline{u}^{i} \leq u_{t}^{i} \leq x^{i} \bar{u}^{i} & \forall i \in \mathcal{I} \\
& \varepsilon_{t} \geq 0 & \forall t \in \llbracket 1,24 \rrbracket
\end{array}
$$

3. (1 point) Give a simple necessary and sufficient condition under which this problem has finite value. Give a necessary and sufficient condition for the decomposition to present relatively complete recourse.

Solution: For the problem to have finite value we need that the minimum demand can always be covered, that is (0.5)

$$
\sum_{i \in \mathcal{I}} \bar{u}^{i} \geq 0.8 \boldsymbol{d}_{t} \quad \mathbb{P}-a . s ., \forall t \in \llbracket 1,24 \rrbracket .
$$

We are not in relatively complete recourse. To have RCR it is enough to add (0.5)

$$
\sum_{i \in \mathcal{I}} x^{i} \bar{u}^{i} \geq 0.8 \boldsymbol{d}_{t} \quad \mathbb{P}-\text { a.s., } \forall t \in \llbracket 1,24 \rrbracket .
$$

to the first-stage problem.
4. (2 points) Assuming that you have a sample of $S=1000$ scenarios of $\left(\boldsymbol{d}_{t}, \boldsymbol{p}_{t}\right)_{t \in \llbracket 1,24 \rrbracket}$. Write the extensive formulation SAA approximation of the above two-stage program as a MILP. Precise the number and type of first stage and second stage variables.

Solution: The problem reads (1)

$$
\begin{array}{llr}
\text { min } & \sum_{i \in \mathcal{I}} c^{i} x^{i}+\frac{1}{S} \sum_{t=1}^{24}\left(\sum_{i \in \mathcal{I}} e^{i} u_{t}^{i}(s)\right)-p_{t}(s) z_{t}(s) & \\
\text { s.t. } & z_{t}(s)+\varepsilon_{t}(s)=\sum_{i \in \mathcal{I}} \boldsymbol{u}_{t}^{i}(s) & \forall s, \forall t \\
& 0.8 d_{t}(s) \leq z_{t}(s) \leq 1.2 d_{t}(s) & \forall s, \forall t \\
& x^{i} \underline{u}^{i} \leq u_{t}^{i}(s) \leq x^{i} \bar{u}^{i} & \forall i \in \mathcal{I}, \forall s \\
& \varepsilon_{t} \geq 0 & \forall t \in \llbracket 1,24 \rrbracket \\
& x^{i} \in\{0,1\} & \forall i \in \mathcal{I}
\end{array}
$$

There are $|I|$ first stage binary decision (0.5), and $S \times 24 \times(|\mathcal{I}|+1)$ continuous recourse decision (0.5).
5. (3 points) Is the SAA problem better addressed by Progressive Hedging or L-Shaped method ? Justify your answer. Write the master and slave problems.

Solution: There are integer first stage decision, thus L-Shaped is adapted to the problem. (1)

Let $\underline{d}=\max _{s, t} d_{t}(s)$, then the master problem at iteration k reads (1)

$$
\begin{array}{ll}
\min _{x, \theta} & \sum_{i \in \mathcal{I}} c^{i} x^{i}+\frac{1}{S} \sum_{s=1}^{1000} \theta(s) \\
\text { s.t. } & \sum_{i \in \mathcal{I}} x^{i} \bar{u}^{i} \geq 0.8 \underline{d} \\
& \theta(s) \geq\left(\alpha_{\kappa}(s)\right)^{T} x+\beta_{\kappa}(s) \quad \forall \kappa \leq k
\end{array}
$$

while the slave problems reads (1)

$$
\begin{array}{llr}
\text { min } & \sum_{t=1}^{24}\left(\sum_{i \in \mathcal{I}} e^{i} u_{t}^{i}\right)-p_{t}(s) z_{t} & \\
\text { s.t. } & z_{t}+\varepsilon_{t}=\sum_{i \in \mathcal{I}} u_{t}^{i} & \forall t \\
& 0.8 d_{t}(s) \leq z_{t} \leq 1.2 d_{t}(s) & \forall t \\
& x_{k+1}^{i} \underline{u}^{i} \leq u_{t}^{i} \leq x_{k+1}^{i} \bar{u}^{i} & \forall i \in \mathcal{I} \\
& \varepsilon_{t} \geq 0 & \forall t \in \llbracket 1,24 \rrbracket
\end{array}
$$

