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1 Linear quadratic control (11 points)

We consider the following problem

. 1 1 1
min B (x1— &) + 5 (w2 — €)° + 5 (w2 — 21) (1a)
1,22 2 2 2
s.t. o(x1) C o(&) (1b)
o(xs) Co(&;,€>) (1c)
(1d)
where &, are centered random variable (i.e. with E[§;] = 0) with finite covariance matrix ¥. This means that,

var(€;) = %;,; and cov(&y,&5) = ¥1,2. When possible the result are to be given in function of the coefficient of X.

1. (1 point) Assuming that &, and &, are deterministic, find the optimal solution to Problem (1) in function of
o, &1, & and k, and show that the optimal value is of the form

Vet (&1,6) = k(& — &)?,

x to be determined.

Solution: The problem is convex (0.5), hence optimality is guaranteed by first order condition.

1 —&+x1—29=0
o — &+ 1o —21 =0

leading to (1)
Ty = 251;-52
To = 51-‘?}252

pluging the optimal solution yield V% with x = %(05)

2. (2 points) Using Question 1 propose a natural open-loop solution to Problem (1) and compute the associated
upper bound. Can you also give a lower bound ?

Solution: Replacing &;, &, by their expectation (0.5) we get as optimal solution (0.5)
oPF =0
o¥E =0

EEF _ 211+ 200
2

Remark : on this problem we can show that this solution is actually the best open-loop solution.

the expected cost of 2% is thus (0.5)

v

By convexity we know that the value of the expected problem, i.e. 0, is a lower bound (0.5).




3. (1 point) Using Question 1 give a lower bound of Problem (1).

Solution: The anticipative lower (0.5) bound yields (0.5)

ntipicative 1 1
pantipicative _ EE [(52 _ 51)2] — 6(21’1 — 2812+ X229).

4. (4 points) Assume that &, and &, are independent. Solve Problem (1) giving both the value and optimal
strategy.

Solution: By independence of € we can use Dynamic Programming (0.5). We have (2.5)
’ 1 2 2
Vi(z1,&) = min 5(352 —x1)" + (12 — &2)
_ (31— &)
4
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Vi) = 222
. b)) ! 1
Vo(&1) = % +min 2 (21 — &)+ fo
Yo, 1,
= + 651
Yoo X1
Vo= 1 + 6
With optimal strategy (1)
T+
z3(21,&2) = - B &
2
2} (&) = gfl

5. (2 points) For generic &, &, prove that the policy obtained in the previous question is e-optimal for Problem (1),
where € is to be given in function of 3.

Solution: The expected costs of x4,z is (1)
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And using the anticipative lower bound we have(1)
bpP anticipative Yoo

v T




2 A unit commitment problem (11 points)

We consider an energy production company which has a set of production unit Z. Each unit ¢ € Z is either on
(z* = 1) or off (z* = 0) for the day (decided the day before). If it is on, its production u} at time ¢ € [1,24] should
be in [u?, %!]. Turning on a unit has a cost ¢ (for the day), while the production cost per hour is e'.

Let’s denote z; the production of the company sold on the market, and €; > 0 the lost production, i.e. ), 7 ul =
z+ + €. For each hour there is a demand d; such that z; € [0.8d:, 1.2d;] almost surely. The company is paid p,z;
at time ¢.

d; and p, are revealed at the beginning of hour ¢. u! is decided once they are revealed.

The company aims at minimizing the expected cost.

1. (3 points) Write the problem has a multistage stochastic program and give the information structure. Justify
the choice of expectation in the objective.

Solution: It’s a repeated problem that happens everyday, law of large number justify expectation. (0.5)
The problem is in hazard decision. (0.5)

i el () i)

ieT t=1 €T

s.t. zi +er = Z ui P—a.s., Vt
ieT

0.8d; < z; <1.2d; P—a.s.,Vt

migi < u; < 2’7 P—a.s.,Viel

g >0 P—a.s.,Vt €[1,24]

z' € {0,1} VieT

o(up) C o((dr,Pr)refr) Vi € I,vt € [1,24]

(2 points in total : -0.5 by error)

2. (2 points) Justify that this problem can be reduced to a two stage program. Specify the decomposition in first
stage and second stage program.

Solution: There is nothing coupling time step ¢ and ', thus all the information needed to take decisions
(ul)iez is the information revealed at time t. Consequently all u} can be seen as second stage variable,
while z is the first stage decision.

The first stage problem now reads (1)

min Z cdrt +E [Q(a:, 5)]
1€T
st. 2" {0,1} Viel

where & = (dy, P;)ie[1,24]- The second stage problem reads (1)




24

Q(x,€) = min Z (Ze%i) — Di2t

t=1 €T
s.t. zi +ep = Z u,ﬁ Vi
ieT
0.8d; < z; < 1.2d; vt
2t < uz < 2’7 Viel
e >0 vt € [1,24]

3. (1 point) Give a simple necessary and sufficient condition under which this problem has finite value. Give a
necessary and sufficient condition for the decomposition to present relatively complete recourse.

Solution: For the problem to have finite value we need that the minimum demand can always be covered,
that is (0.5)

> u' >08d,  P-—as.,Vte [1,24].

ieT

We are not in relatively complete recourse. To have RCR it is enough to add (0.5)

> 2w >08d,  P—a.s.,Vte[1,24],
€T

to the first-stage problem.

4. (2 points) Assuming that you have a sample of S = 1000 scenarios of (d, p;)ici,24)- Write the extensive
formulation SAA approximation of the above two-stage program as a MILP. Precise the number and type of
first stage and second stage variables.

Solution: The problem reads (1)

min Z cat + ;i (Z e%i(s)) — pi(8)ze(s)

i€ t=1 i€z
s.t. z1(s) +e(s) = Zuz(s) Vs, Vit
i€
0.8d:(s) < z:(s) < 1.2d¢(s) Vs, Vit
rlu’ < ul(s) < 2'ut VieZ,Vs
e >0 vt € [1,24]
z' € {0,1} VieZI

There are || first stage binary decision (0.5), and S x 24 x (|Z]| + 1) continuous recourse decision (0.5).

5. (3 points) Is the SAA problem better addressed by Progressive Hedging or L-Shaped method ? Justify your
answer. Write the master and slave problems.

Solution: There are integer first stage decision, thus L-Shaped is adapted to the problem. (1)




Let d = max, ¢ di(s), then the master problem at iteration k reads (1)

o 000
min Z 'z + g Z 6(s)
@9 i€l s=1
s.t. szﬂz > 0.8d
i€l
0(s) > (an(s))" + Bu(s) Vi < k
while the slave problems reads (1)
24 o
min Z (Z elu§> —pi(8)z
t=1 ieT
s.t. zi +er = Z ui Vit
icT
zhut <ul < ah T VieTl

e >0 vt € [1,24]




