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1 Linear quadratic control (11 points)

We consider the following problem

min
x1,x2

E
[

1

2
(x1 − ξ1)2 +

1

2
(x2 − ξ2)2 +

1

2
(x2 − x1)2

]
(1a)

s.t. σ(x1) ⊂ σ(ξ1) (1b)

σ(x2) ⊂ σ(ξ1, ξ2) (1c)

(1d)

where ξi are centered random variable (i.e. with E[ξi] = 0) with finite covariance matrix Σ. This means that,
var(ξi) = Σi,i and cov(ξ1, ξ2) = Σ1,2. When possible the result are to be given in function of the coefficient of Σ.

1. (1 point) Assuming that ξ1 and ξ2 are deterministic, find the optimal solution to Problem (1) in function of
x0, ξ1, ξ2 and k, and show that the optimal value is of the form

V det(ξ1, ξ2) = κ(ξ2 − ξ1)2,

κ to be determined.

Solution: The problem is convex (0.5), hence optimality is guaranteed by first order condition.{
x1 − ξ1 + x1 − x2 = 0

x2 − ξ2 + x2 − x1 = 0

leading to (1) {
x1 = 2ξ1+ξ2

3

x2 = ξ1+2ξ2
3

pluging the optimal solution yield V det with κ = 1
6 (0.5).

2. (2 points) Using Question 1 propose a natural open-loop solution to Problem (1) and compute the associated
upper bound. Can you also give a lower bound ?

Solution: Replacing ξ1, ξ2 by their expectation (0.5) we get as optimal solution (0.5){
xEF1 = 0

xEF2 = 0

the expected cost of xEF is thus (0.5)

vEEF =
Σ1,1 + Σ2,2

2

Remark : on this problem we can show that this solution is actually the best open-loop solution.

By convexity we know that the value of the expected problem, i.e. 0, is a lower bound (0.5).
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3. (1 point) Using Question 1 give a lower bound of Problem (1).

Solution: The anticipative lower (0.5) bound yields (0.5)

vantipicative =
1

6
E
[
(ξ2 − ξ1)2

]
=

1

6
(Σ1,1 − 2Σ1,2 + Σ2,2).

4. (4 points) Assume that ξ1 and ξ2 are independent. Solve Problem (1) giving both the value and optimal
strategy.

Solution: By independence of ξ we can use Dynamic Programming (0.5). We have (2.5)

V̂1(x1, ξ2) = min
x2

1

2
(x2 − x1)2 + (x2 − ξ2)2

=
(x1 − ξ2)2

4

V1(x1) =
x21 + Σ2,2

4

V̂0(ξ1) =
Σ2,2

4
+ min

x1

1

2
(x1 − ξ1)2 +

1

4
x21

=
Σ2,2

4
+

1

6
ξ21

V0 =
Σ2,2

4
+

Σ1,1

6

With optimal strategy (1)

x]2(x1, ξ2) =
x1 + ξ2

2

x]1(ξ1) =
2

3
ξ1

5. (2 points) For generic ξ1, ξ2 prove that the policy obtained in the previous question is ε-optimal for Problem (1),
where ε is to be given in function of Σ.

Solution: The expected costs of x]2, x
]
1 is (1)

vDP = E
[1

2
(
2

3
ξ1 − ξ1)2 +

1

2
(
x]1 + ξ2

2
− ξ2)2 +

1

2
(
x]1 + ξ2

2
− x]1)2

]
= E

[1

2

Σ11

9
+ (

2ξ1
3 + ξ2

2
− ξ2)2

]
=

Σ11

6
− Σ12

3
+

Σ22

4

And using the anticipative lower bound we have(1)

vDP − vanticipative =
Σ22

12
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2 A unit commitment problem (11 points)

We consider an energy production company which has a set of production unit I. Each unit i ∈ I is either on
(xi = 1) or off (xi = 0) for the day (decided the day before). If it is on, its production uit at time t ∈ J1, 24K should
be in [ui, ūi]. Turning on a unit has a cost ci (for the day), while the production cost per hour is ei.

Let’s denote zt the production of the company sold on the market, and εt ≥ 0 the lost production, i.e.
∑
i∈I u

i
t =

zt + εt. For each hour there is a demand dt such that zt ∈ [0.8dt, 1.2dt] almost surely. The company is paid ptzt
at time t.
dt and pt are revealed at the beginning of hour t. uit is decided once they are revealed.
The company aims at minimizing the expected cost.

1. (3 points) Write the problem has a multistage stochastic program and give the information structure. Justify
the choice of expectation in the objective.

Solution: It’s a repeated problem that happens everyday, law of large number justify expectation. (0.5)
The problem is in hazard decision. (0.5)

min
∑
i∈I

cixi + E
[ 24∑
t=1

(∑
i∈I

eiuit

)
− ptzt

]
s.t. zt + εt =

∑
i∈I

uit P− a.s.,∀t

0.8dt ≤ zt ≤ 1.2dt P− a.s.,∀t
xiui ≤ uit ≤ xiui P− a.s.,∀i ∈ I
εt ≥ 0 P− a.s.,∀t ∈ J1, 24K

xi ∈ {0, 1} ∀i ∈ I
σ(uit) ⊂ σ((dτ ,pτ )τ∈J1,tK) ∀i ∈ I,∀t ∈ J1, 24K

(2 points in total : -0.5 by error)

2. (2 points) Justify that this problem can be reduced to a two stage program. Specify the decomposition in first
stage and second stage program.

Solution: There is nothing coupling time step t and t′, thus all the information needed to take decisions
(uit)i∈I is the information revealed at time t. Consequently all uit can be seen as second stage variable,
while x is the first stage decision.

The first stage problem now reads (1)

min
∑
i∈I

cixi + E
[
Q(x, ξ)

]
s.t. xi ∈ {0, 1} ∀i ∈ I

where ξ = (dt,pt)t∈J1,24K. The second stage problem reads (1)
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Q(x, ξ) = min

24∑
t=1

(∑
i∈I

eiuit

)
− ptzt

s.t. zt + εt =
∑
i∈I

uit ∀t

0.8dt ≤ zt ≤ 1.2dt ∀t
xiui ≤ uit ≤ xiui ∀i ∈ I
εt ≥ 0 ∀t ∈ J1, 24K

3. (1 point) Give a simple necessary and sufficient condition under which this problem has finite value. Give a
necessary and sufficient condition for the decomposition to present relatively complete recourse.

Solution: For the problem to have finite value we need that the minimum demand can always be covered,
that is (0.5) ∑

i∈I
ui ≥ 0.8dt P− a.s.,∀t ∈ J1, 24K.

We are not in relatively complete recourse. To have RCR it is enough to add (0.5)∑
i∈I

xiui ≥ 0.8dt P− a.s.,∀t ∈ J1, 24K.,

to the first-stage problem.

4. (2 points) Assuming that you have a sample of S = 1000 scenarios of (dt,pt)t∈J1,24K. Write the extensive
formulation SAA approximation of the above two-stage program as a MILP. Precise the number and type of
first stage and second stage variables.

Solution: The problem reads (1)

min
∑
i∈I

cixi +
1

S

24∑
t=1

(∑
i∈I

eiuit(s)
)
− pt(s)zt(s)

s.t. zt(s) + εt(s) =
∑
i∈I

uit(s) ∀s,∀t

0.8dt(s) ≤ zt(s) ≤ 1.2dt(s) ∀s,∀t
xiui ≤ uit(s) ≤ xiui ∀i ∈ I,∀s
εt ≥ 0 ∀t ∈ J1, 24K

xi ∈ {0, 1} ∀i ∈ I

There are |I| first stage binary decision (0.5), and S × 24× (|I|+ 1) continuous recourse decision (0.5).

5. (3 points) Is the SAA problem better addressed by Progressive Hedging or L-Shaped method ? Justify your
answer. Write the master and slave problems.

Solution: There are integer first stage decision, thus L-Shaped is adapted to the problem. (1)

Page 4



Let d = maxs,t dt(s), then the master problem at iteration k reads (1)

min
x,θ

∑
i∈I

cixi +
1

S

1000∑
s=1

θ(s)

s.t.
∑
i∈I

xiui ≥ 0.8d

θ(s) ≥ (ακ(s))Tx+ βκ(s) ∀κ ≤ k

while the slave problems reads (1)

min

24∑
t=1

(∑
i∈I

eiuit

)
− pt(s)zt

s.t. zt + εt =
∑
i∈I

uit ∀t

0.8dt(s) ≤ zt ≤ 1.2dt(s) ∀t
xik+1u

i ≤ uit ≤ xik+1u
i ∀i ∈ I

εt ≥ 0 ∀t ∈ J1, 24K
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