Spatial Decomposition in Stochastic Optimization: Theoretical and Practical Questions.

P. Carpentier, J-Ph. Chancelier, M. De Lara, <u>V. Leclère</u> SESO Week

2014, June 24

Mulstistage Stochastic Optimization : an Example

How to manage a chain of dam producing electricity from the turbine water to optimize the gain ?

$$\mathbb{E}\bigg[\sum_{i=1}^{N}\sum_{t=0}^{T-1}L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})+K_{i}(\mathbf{X}_{T}^{i})\bigg]$$

Constraints:

• dynamics:

$$\mathbf{X}_{t+1} = f_t \big(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1} \big),$$

- on nonanticipativity:
 - $\mathbf{U}_{t} \preceq \mathcal{F}_{t}$,
- spatial coupling: $\mathbf{Z}_{t}^{i+1} = g_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}^{i}).$

Mulstistage Stochastic Optimization : an Example

How to manage a chain of dam producing electricity from the turbine water to optimize the gain ?

$$\mathbb{E}\bigg[\sum_{i=1}^{N}\sum_{t=0}^{T-1}L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})+\mathcal{K}_{i}(\mathbf{X}_{T}^{i})\bigg]$$

Constraints:

• dynamics:

$$\mathbf{X}_{t+1} = f_t \big(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1} \big),$$

- ononanticipativity:
 - $\mathbf{U}_{t} \preceq \mathcal{F}_{t}$,
- spatial coupling: $\mathbf{Z}_{t}^{i+1} = g_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}^{i}).$

Mulstistage Stochastic Optimization : an Example

How to manage a chain of dam producing electricity from the turbine water to optimize the gain ?

$$\mathbb{E}\bigg[\sum_{i=1}^{N}\sum_{t=0}^{T-1}L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})+\mathcal{K}_{i}(\mathbf{X}_{T}^{i})\bigg]$$

Constraints:

- dynamics: $\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}),$
- nonanticipativity:
 - $\mathbf{U}_t \preceq \mathcal{F}_t$,
- spatial coupling: $\mathbf{Z}_{t}^{i+1} = g_{t}^{i} \left(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}^{i} \right)$

Contents

1 The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in L^∞
- Existence of Multiplier

Oual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

Presentation Outline

1 The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- ullet Uzawa Algorithm in L^∞
- Existence of Multiplier

3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Intuition of Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t ,
 - the units send their production planning $\mathbf{U}_{\star}^{(i)}$
 - the coordinator compare total production and demand and updates the price,
 - and so on...

Intuition of Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t ,
 - the units send their production planning $\mathbf{U}_{\star}^{(i)}$
 - the coordinator compare total production and demand and updates the price, • and so on...

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t,
 - the units send their production planning U⁽ⁱ⁾_t,
 - the coordinator compare total production and demand and updates the price,
 and so on...

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t,
 - the units send their production planning U_t⁽ⁱ⁾,
 - the coordinator compare total production and demand and updates the price,
 - and so on...

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t,
 - the units send their production planning U_t⁽ⁱ⁾,
 - the coordinator compare total production and demand and updates the price,
 - and so on...

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t,
 - the units send their production planning U_t⁽ⁱ⁾,
 - the coordinator compare total production and demand and updates the price,
 - and so on...

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t,
 - the units send their production planning U_t⁽ⁱ⁾,
 - the coordinator compare total production and demand and updates the price,
 - and so on...

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

Presentation Outline

The Idea of Spatial Decomposition Intuition of Spatial Decomposition

• Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in L^{∞}
- Existence of Multiplier

3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

Primal Problem

$$\begin{split} \min_{\mathbf{X},\mathbf{U}} \sum_{i=1}^{N} & \mathbb{E} \left[\sum_{t=0}^{T} L_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}) + \mathcal{K}^{i} (\mathbf{X}_{T}^{i}) \right] \\ & \forall i, \quad \mathbf{X}_{t+1}^{i} = f_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ & \forall i, \quad \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \\ & \sum_{i=1}^{N} \theta_{t}^{i} (\mathbf{U}_{t}^{i}) = 0 \end{split}$$

Solvable by DP with state (X_1, \dots, X_N)

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

Primal Problem

$$\begin{split} \min_{\mathbf{X},\mathbf{U}} \; \sum_{i=1}^{N} \; & \mathbb{E} \left[\sum_{t=0}^{T} L_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}) + \mathcal{K}^{i} (\mathbf{X}_{T}^{i}) \right] \\ & \forall \; i, \quad \mathbf{X}_{t+1}^{i} = f_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}), \quad \mathbf{X}_{0}^{i} = \mathbf{x}_{0}^{i}, \\ & \forall \; i, \quad \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \\ & \sum_{i=1}^{N} \theta_{t}^{i} (\mathbf{U}_{t}^{i}) = 0 \qquad \rightsquigarrow \boldsymbol{\lambda}_{t} \quad \text{multiplier} \end{split}$$

Solvable by DP with state (X_1, \ldots, X_N)

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

Primal Problem with Dualized Constraint

$$\begin{split} \min_{\mathbf{X},\mathbf{U}} \; \max_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \; \mathbb{E} \bigg[\sum_{t=0}^{T} L_{t}^{i} \big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big) + \big\langle \boldsymbol{\lambda}_{t}, \boldsymbol{\theta}_{t}^{i} \big(\mathbf{U}_{t}^{i} \big) \big\rangle + \mathcal{K}^{i} \big(\mathbf{X}_{T}^{i} \big) \bigg] \\ \forall \; i, \quad \mathbf{X}_{t+1}^{i} = f_{t}^{i} \big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ \forall \; i, \quad \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

Coupling constraint dualized \implies all constraints are unit by unit

Dual Problem

$$\begin{split} \max_{\boldsymbol{\lambda}} \min_{\boldsymbol{X}, \boldsymbol{\mathsf{U}}} \sum_{i=1}^{N} & \mathbb{E} \bigg[\sum_{t=0}^{T} L_{t}^{i} \big(\boldsymbol{\mathsf{X}}_{t}^{i}, \boldsymbol{\mathsf{U}}_{t}^{i}, \boldsymbol{\mathsf{W}}_{t+1} \big) + \big\langle \boldsymbol{\lambda}_{t}, \boldsymbol{\theta}_{t}^{i} \big(\boldsymbol{\mathsf{U}}_{t}^{i} \big) \big\rangle + \mathcal{K}^{i} \big(\boldsymbol{\mathsf{X}}_{T}^{i} \big) \bigg] \\ & \forall i, \quad \boldsymbol{\mathsf{X}}_{t+1}^{i} = f_{t}^{i} \big(\boldsymbol{\mathsf{X}}_{t}^{i}, \boldsymbol{\mathsf{U}}_{t}^{i}, \boldsymbol{\mathsf{W}}_{t+1} \big), \quad \boldsymbol{\mathsf{X}}_{0}^{i} = \boldsymbol{x}_{0}^{i}, \\ & \forall i, \quad \boldsymbol{\mathsf{U}}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \boldsymbol{\mathsf{U}}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

Exchange operator min and max to obtain a new problem

V. Leclère

Spatial Decomposition in Stochastic Optimization

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

Decomposed Dual Problem

$$\begin{split} \max_{\boldsymbol{\lambda}} \sum_{i=1}^{N} & \min_{\mathbf{X}^{i}, \mathbf{U}^{i}} \mathbb{E} \left[\sum_{t=0}^{T} L_{t}^{i} \big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big) + \big\langle \boldsymbol{\lambda}_{t}, \boldsymbol{\theta}_{t}^{i} \big(\mathbf{U}_{t}^{i} \big) \big\rangle + \mathcal{K}^{i} \big(\mathbf{X}_{T}^{i} \big) \right] \\ & \mathbf{X}_{t+1}^{i} = f_{t}^{i} \big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

For a given λ , minimum of sum is sum of minima

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

Inner Minimization Problem

$$\begin{split} \min_{\mathbf{X}^{i},\mathbf{U}^{i}} & \mathbb{E}\bigg[\sum_{t=0}^{T} L_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big) + \big\langle\boldsymbol{\lambda}_{t},\boldsymbol{\theta}_{t}^{i}(\mathbf{U}_{t}^{i})\big\rangle + \mathcal{K}^{i}(\mathbf{X}_{T}^{i})\bigg] \\ & \mathbf{X}_{t+1}^{i} = f_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

We have N smaller subproblems. Can they be solved by DP ?

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

Inner Minimization Problem

$$\begin{split} \min_{\mathbf{X}^{i},\mathbf{U}^{i}} & \mathbb{E}\bigg[\sum_{t=0}^{T} L_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big) + \big\langle \boldsymbol{\lambda}_{t},\boldsymbol{\theta}_{t}^{i}(\mathbf{U}_{t}^{i}) \big\rangle + \mathcal{K}^{i}(\mathbf{X}_{T}^{i}) \bigg] \\ & \mathbf{X}_{t+1}^{i} = f_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

No : λ is a time-dependent noise \rightsquigarrow state $(\mathbf{W}_1, \dots, \mathbf{W}_t)$

A Few Questions

- In which space lives the multiplier process λ ? For which duality ?
 - L²
 L¹
 (L[∞])^{*}
- What are the relations between the primal and dual problems ?
- Can we solve the subproblems by Dynamic Programming ?
 → No!
- How to update the multiplier process ? Uzawa Algorithm

 $\begin{array}{l} \mbox{Presentation of Uzawa Algorithm} \\ \mbox{Uzawa Algorithm in L^{∞}} \\ \mbox{Existence of Multiplier} \end{array}$

Presentation Outline

The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in L^{∞}
- Existence of Multiplier

3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of Uzawa Algorithm Uzawa Algorithm in L^∞ Existence of Multiplier

Problem Statement

We consider the following (primal) problem:

 $egin{array}{lll} (\mathcal{P}) & \min_{u\in\mathcal{U}^{\mathrm{ad}}} & J(u) \;, \ & s.t. & \Theta(u)\in-\mathcal{C} \;. \end{array}$

Where ${\boldsymbol{\mathcal{U}}}$ and ${\boldsymbol{\mathcal{V}}}$ are two Hausdorff spaces, and

- $J:\mathcal{U}\to \bar{\mathbb{R}}$ is an objective function ,
- $\Theta: \mathcal{U} \to \mathcal{V}$ is a constraint function (to be dualized),
- $C \subset V$ is a cone of constraints,
- $\mathcal{U}^{\mathrm{ad}} \subset \mathcal{U}$ is a constraint set (not to be dualized).

 $\begin{array}{l} \mbox{Presentation of Uzawa Algorithm} \\ \mbox{Uzawa Algorithm in L^{∞}} \\ \mbox{Existence of Multiplier} \end{array}$

Dual Problem

The primal problem can be written

 $\begin{array}{l} \left(\mathcal{P}\right) & \min_{u \in \mathcal{U}^{\mathrm{ad}}} & \max_{\lambda \in C^{\star}} & J(u) + \left\langle \lambda, \Theta(u) \right\rangle_{\mathcal{V}^{\star}, \mathcal{V}}, \\ \\ \text{where } C^{\star} \subset \mathcal{V}^{\star} \text{ is given by} \\ \\ C^{\star} = \left\{ \lambda \in \mathcal{V}^{\star} \mid \forall x \in C, \quad \left\langle \lambda, x \right\rangle_{\mathcal{V}^{\star}, \mathcal{V}} \geq 0 \right\}. \end{array}$

The dual problem of Problem (\mathcal{P}) reads

 $(\mathcal{D}) \qquad \max_{\lambda \in C^{\star}} \quad \min_{u \in \mathcal{U}^{\mathrm{ad}}} \qquad J(u) + \langle \lambda, \Theta(u) \rangle_{\mathcal{V}^{\star}, \mathcal{V}}.$

 $\begin{array}{l} \mbox{Presentation of Uzawa Algorithm} \\ \mbox{Uzawa Algorithm in L^{∞}} \\ \mbox{Existence of Multiplier} \end{array}$

Gradient of the Dual

Assume that $\mathcal{U} = \mathcal{U}^{\star}$, and $\mathcal{V} = \mathcal{V}^{\star}$ are Hilbert spaces. Recall the dual problem (\mathcal{D}) as

$$\max_{\lambda \in C^{\star}} \underbrace{\min_{u \in \mathcal{U}^{\mathrm{ad}}} \left\{ J(u) + \langle \lambda, \Theta(u) \rangle_{\mathcal{V}^{\star}, \mathcal{V}} \right\}}_{:=\varphi(\lambda)} .$$

Under some regularity and unicity conditions, if $u^{\sharp}(\lambda)$ is a minimizer of the above problem, then

 $\Theta(u^{\sharp}(\lambda)) = \nabla \varphi(\lambda) .$

Uzawa Algorithm

Data: Initial multiplier $\lambda^{(0)} \in \mathcal{V}$, step $\rho > 0$; **Result**: Optimal solution u^{\sharp} and multiplier λ^{\sharp} ; **repeat**

$$u^{(k)} \in \underset{u \in \mathcal{U}^{\mathrm{ad}}}{\operatorname{arg\,min}} \quad \left\{ J(u) + \left\langle \lambda^{(k)}, \Theta(u) \right\rangle \right\},$$
$$\lambda^{(k+1)} = \operatorname{proj}_{\mathcal{C}^{\star}} \left(\lambda^{(k)} + \rho \; \Theta(u^{(k)}) \right) \;.$$

until $\Theta(u^{(k)}) \in -C$;

Presentation of Uzawa Algorithm Uzawa Algorithm in \mathbf{L}^∞ Existence of Multiplier

Presentation Outline

The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- \bullet Uzawa Algorithm in L^∞
- Existence of Multiplier

3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of Uzawa Algorithm Uzawa Algorithm in L^∞ Existence of Multiplier

From now on we consider that

$$\begin{split} \mathcal{U} &= \mathrm{L}^{\infty} \big(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n \big) \ , \\ \mathcal{V} &= \mathrm{L}^{\infty} \big(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^m \big) \ , \\ \mathcal{C} &= \{ 0 \}. \end{split}$$

Where the σ -algebra is not finite (modulo \mathbb{P}). Hence, \mathcal{U} and \mathcal{V} are non-reflexive, non-separable, Banach spaces. If the σ -algebra is finite modulo \mathbb{P} , \mathcal{U} and \mathcal{V} are finite dimensional

spaces, and the usual result applies.

 L^{∞} setting

Presentation of Uzawa Algorithm Uzawa Algorithm in \mathbf{L}^∞ Existence of Multiplier

Perks of an Hilbert Space

Fact

In an Hilbert space \mathcal{H} we know that

- i) the weak and weak* topologies are identical,
- ii) the space \mathcal{H} and its topological dual can be identified.

Point *i*) allows to formulate existence of minimizer results:

- weakly closed bounded \implies weakly compact;
- for a convex set: weakly closed \iff closed;
- for a convex function: weakly l.s.c \iff l.s.c.

Hence, a coercive, l.s.c. function J admits an infimum. Point ii) allows to write gradient-like algorithm: at any iteration k, linear combination of $\lambda^{(k)}$ and $g^{(k)}$ take place in \mathcal{H} .

Difficulties Appearing in a Banach Space

- Reflexive Banach space:
 - *i*) still holds true (~> existence of minimizers)
 - *ii*) no longer true (\rightsquigarrow linear combination of $u^{(k)} \in E$ and $g^{(k)} \in E^*$ does not have any sense).
- Non-reflexive Banach space *E*: neither *i*) nor *ii*) holds true.
- *E* is the topological dual of a Banach space: a weakly* closed bounded subset of *E* is weak* compact. Thus, weak* lower semicontinuity and coercivity of a function *J* gives the existence of minimizers of *J*.

Presentation of Uzawa Algorithm Uzawa Algorithm in \mathbf{L}^∞ Existence of Multiplier

Specificities of $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$

- L[∞] is the topological dual of the Banach space L¹. Hence, if *J* is weak^{*} l.s.c and coercive, then *J* admits a minimizer.
- L^{∞} can be identified with a subset of its topological dual $\left(L^{\infty}\right)^{\star}$. Thus,

$$\boldsymbol{\lambda}^{(k+1)} = \boldsymbol{\lambda}^{(k)} + \rho \, \Theta(\mathbf{U}^{(k)}) \; ,$$

make sense: it is a linear combination of elements of $(L^{\infty})^{\hat{}}$.

• Moreover, if $\lambda^{(0)}$ is chosen in L^{∞} , then the sequence $\{\lambda^{(k)}\}_{k\in\mathbb{N}}$ remains in L^{∞} .

Uzawa Algorithm

Data: Initial multiplier $\lambda^{(0)} \in L^{\infty}$, step $\rho > 0$; **Result**: Optimal solution U^{\sharp} and multiplier λ^{\sharp} ; **repeat**

$$\begin{split} \mathbf{U}^{(k)} &\in \mathop{\arg\min}\limits_{\mathbf{U}\in\mathcal{U}^{\mathrm{ad}}} \quad \left\{ J(\mathbf{U}) + \left\langle \boldsymbol{\lambda}^{(k)} , \boldsymbol{\Theta}(\mathbf{U}) \right\rangle \right\}, \\ \boldsymbol{\lambda}^{(k+1)} &= \boldsymbol{\lambda}^{(k)} + \rho \; \boldsymbol{\Theta}(\mathbf{U}^{(k)}) \; . \end{split}$$

until $\Theta(\mathbf{U}^{(k)}) = 0;$

Remark: numerically, other update rules (e.g. quasi-Newton) can be used, convergence being proven when we find a multiplier $\lambda^{(k)}$ such that $\Theta(\mathbf{U}^{(k)}) = 0$.

Existence of Solution

Theorem

Assume that:

- the constraint set \mathcal{U}^{ad} is weakly^{*} closed;
- $@ \Theta: \mathcal{U} \to \mathcal{V} \text{ is affine, weakly}^{\star} \text{ continuous;}$
- Some interpretation J: U → ℝ is weak* lower semicontinuous and coercive on U^{ad};
- Ithere exists an admissible control.

Then the primal problem admits at least one solution. Moreover for any $\lambda \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^m)$

$$rgmin_{oldsymbol{U}\in\mathcal{U}^{
m ad}}\left\{Jig(oldsymbol{U}ig)+ig\langleoldsymbol{\lambda}\,,\Thetaig(oldsymbol{U}ig)ig
ight\}
eq \emptyset \ .$$

Convergence Result

Theorem

Assume that:

- J: U → ℝ is a proper, weak* lower semicontinuous, Gâteaux-differentiable, a-convex function;
- there exists an admissible control;
- \mathcal{U}^{ad} is weak* closed convex;
- **5** there is an optimal L^1 -multiplier to the constraint $\Theta(\mathbf{U}) = 0$;
- the step ρ is such that $0 < \rho < \frac{2a}{\kappa}$.

Then, Uzawa algorithm is well defined and there exists a subsequence $(\mathbf{U}^{(n_k)})_{k\in\mathbb{N}}$ converging in \mathbf{L}^{∞} toward the optimal solution \mathbf{U}^{\sharp} of the primal problem.
Convergence Result

Theorem

Assume that:

- J: U → ℝ is a proper, weak* lower semicontinuous, Gâteaux-differentiable, a-convex function;
- there exists an admissible control;
- \mathcal{U}^{ad} is weak* closed convex;
- **(**) there is an optimal L^1 -multiplier to the constraint $\Theta(\mathbf{U}) = 0$;
- the step ρ is such that $0 < \rho < \frac{2a}{\kappa}$.

Then, Uzawa algorithm is well defined and there exists a subsequence $(\mathbf{U}^{(n_k)})_{k\in\mathbb{N}}$ converging in \mathbf{L}^{∞} toward the optimal solution \mathbf{U}^{\sharp} of the primal problem.

Convergence Result

Theorem

Assume that:

- J: U → ℝ is a proper, weak* lower semicontinuous, Gâteaux-differentiable, a-convex function;
- there exists an admissible control;
- \mathcal{U}^{ad} is weak* closed convex;
- **5** there is an optimal L^1 -multiplier to the constraint $\Theta(\mathbf{U}) = 0$;
- the step ρ is such that $0 < \rho < \frac{2a}{\kappa}$.

Then, Uzawa algorithm is well defined and there exists a subsequence $(\mathbf{U}^{(n_k)})_{k\in\mathbb{N}}$ converging in \mathbf{L}^{∞} toward the optimal solution \mathbf{U}^{\sharp} of the primal problem.

Presentation of Uzawa Algorithm Uzawa Algorithm in L^∞ Existence of Multiplier

Presentation Outline

The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in L^{∞}
- Existence of Multiplier

3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of Uzawa Algorithm Uzawa Algorithm in L^∞ Existence of Multiplier

Standard duality in L^2 spaces

Assume that $\mathcal{U} = L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n)$ and $\mathcal{V} = L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m)$.

The standard sufficient constraint qualification condition

$$0\in \mathrm{ri}\Big(\Thetaig(\mathcal{U}^{\mathrm{ad}}\cap\mathrm{dom}(J)ig)+\mathcal{C}\Big)\ ,$$

is scarcely satisfied in such a stochastic setting.

Proposition

If the σ -algebra \mathcal{A} is not finite modulo \mathbb{P} , then for any subset $U^{\mathrm{ad}} \subset \mathbb{R}^n$ that is not an affine subspace, the set

$$\mathcal{U}^{\mathrm{ad}} = \left\{ \mathbf{U} \in \mathrm{L}^p(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n) \mid \mathbf{U} \in U^{\mathrm{ad}} \mid \mathbb{P}-a.s.
ight\}$$

has an empty relative interior in L^p , for any $p < +\infty$.

Presentation of Uzawa Algorithm Uzawa Algorithm in L^∞ Existence of Multiplier

Standard duality in L^2 spaces

Assume that $\mathcal{U} = L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n)$ and $\mathcal{V} = L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m)$.

The standard sufficient constraint qualification condition

$$0\in \mathrm{ri}\Big(\Thetaig(\mathcal{U}^{\mathrm{ad}}\cap\mathrm{dom}(J)ig)+\mathcal{C}\Big)\ ,$$

is scarcely satisfied in such a stochastic setting.

Proposition

If the σ -algebra \mathcal{A} is not finite modulo \mathbb{P} , then for any subset $U^{\mathrm{ad}} \subset \mathbb{R}^n$ that is not an affine subspace, the set

$$\mathcal{U}^{\mathrm{ad}} = \left\{ \mathbf{U} \in \mathrm{L}^p(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n) \mid \mathbf{U} \in U^{\mathrm{ad}} \mid \mathbb{P} - a.s.
ight\}$$

has an empty relative interior in L^p , for any $p < +\infty$.

Presentation of Uzawa Algorithm Uzawa Algorithm in L^∞ Existence of Multiplier

Standard duality in L^2 spaces

Consider the following optimization problem:

$$\begin{split} \inf_{u_0,\mathbf{U}_1} & u_0^2 + \mathbb{E} \left[(\mathbf{U}_1 + \alpha)^2 \right] \,, \\ \text{s.t.} & u_0 \geq a \,, \\ & \mathbf{U}_1 \geq 0 \,, \\ & u_0 - \mathbf{U}_1 \geq \mathbf{W} \,, \end{split}$$
 to be dualized

where W is a random variable uniform on [1, 2].

For *a* < 2:

- we can construct a maximizing sequence of multipliers for the dual problem that does not converge in L²;
- this is a case of *non relatively complete recourse* (constraints on U₁ induce stronger constraint on u₀;
- however there exists an optimal multiplier in $(L^{\infty})^{\star}$

Presentation of Uzawa Algorithm Uzawa Algorithm in L^∞ Existence of Multiplier

Standard duality in L^2 spaces

Consider the following optimization problem:

$$\begin{split} & \inf_{u_0, \mathbf{U}_1} \quad u_0^2 + \mathbb{E}\left[(\mathbf{U}_1 + \alpha)^2\right] \,, \\ & \text{s.t.} \quad u_0 \geq a \,, \\ & \mathbf{U}_1 \geq 0 \,, \\ & u_0 - \mathbf{U}_1 \geq \mathbf{W} \,, \end{split} \qquad \text{to be dualized} \end{split}$$

where \mathbf{W} is a random variable uniform on [1, 2].

For *a* < 2:

- we can construct a maximizing sequence of multipliers for the dual problem that does not converge in L²;
- this is a case of non relatively complete recourse (constraints on U₁ induce stronger constraint on u₀;
- however there exists an optimal multiplier in $(L^{\infty})^{\star}$

Constraint qualification in (L^{∞}, L^1)

From now on, we assume that

$$egin{aligned} \mathcal{U} &= \mathrm{L}^\inftyig(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^nig) \;, \ \mathcal{V} &= \mathrm{L}^\inftyig(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^mig) \;, \ \mathcal{C} &= \{0\} \;, \end{aligned}$$

where the σ -algebra \mathcal{A} is not finite modulo $\mathbb{P}^{.1}$

We consider the pairing $\left(L^{\infty},L^{1}\right)$ with the following topologies:

- $\sigma(L^{\infty}, L^1)$: weak* topology on L^{∞} (coarsest topology such that all the L¹-linear forms are continuous),
- $\tau(L^{\infty}, L^1)$: Mackey-topology on L^{∞} (finest topology such that the continuous linear forms are only the L^1 -linear forms).

¹If the σ -algebra is finite modulo \mathbb{P} , \mathcal{U} and \mathcal{V} are finite dimensional spaces.

V. Leclère

Weak* closedness of linear subspaces of L^{∞}

Proposition

Let $\Theta : L^{\infty}(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n) \to L^{\infty}(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m)$ be a linear operator, and assume that there exists a linear operator $\Theta^{\dagger} : L^1(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m) \to L^1(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n)$ such that:

 $\left<\boldsymbol{\mathsf{V}}\;,\boldsymbol{\Theta}(\boldsymbol{\mathsf{U}})\right>=\left<\boldsymbol{\Theta}^{\dagger}(\boldsymbol{\mathsf{V}})\;,\boldsymbol{\mathsf{U}}\right>\;\;\forall\boldsymbol{\mathsf{U}},\;\forall\boldsymbol{\mathsf{V}}\;.$

Then the linear operator Θ is weak^{*} continuous.

Applications

- $\Theta(\mathbf{U}) = \mathbf{U} \mathbb{E}[\mathbf{U} \mid \mathcal{B}]$: non-anticipativity constraints,
- $\Theta(\mathbf{U}) = A\mathbf{U}$ with $A \in \mathcal{M}_{m,n}(\mathbb{R})$: finite number of constraints.

The Idea of Spatial Decomposition Uzawa Algorit Uzawa Algorithm Dual Approximate Dynamic Programming Existence of Multiplier

A duality theorem

$$\begin{aligned} (\mathcal{P}) & \min_{\mathbf{U} \in \mathcal{U}} J(\mathbf{U}) \quad \text{s.t.} \quad \Theta(\mathbf{U}) = 0 , \\ \text{with } J(\mathbf{U}) = \mathbb{E} \big[j(\mathbf{U}, \mathbf{W}) \big]. \end{aligned}$$

Theorem

Assume that j is a convex normal integrand, that J is continuous in the Mackey topology at some point \mathbf{U}_0 such that $\Theta(\mathbf{U}_0) = 0$, and that Θ is weak^{*} continuous on $\mathcal{L}^{\infty}(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n)$. Then, $\mathbf{U}^{\sharp} \in \mathcal{U}$ is an optimal solution of Problem (\mathcal{P}) if and only if there exists $\lambda^{\sharp} \in L^1(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m)$ such that

•
$$\mathbf{U}^{\sharp} \in \operatorname*{arg\,min}_{\mathbf{U} \in \mathcal{U}} \mathbb{E}\left[j(\mathbf{U}, \mathbf{W}) + \lambda^{\sharp} \cdot \Theta(\mathbf{U})\right]$$
,

• $\Theta(\mathbf{U}^{\sharp}) = 0.$

Extension of a result given by R. Wets for non-anticipativity constraints.

Presentation of DADP Practical Questions Numerical Results

Presentation Outline

The Idea of Spatial Decomposition
 Intuition of Spatial Decomposition

• Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in L^{∞}
- Existence of Multiplier

Oual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of DADP Practical Questions Numerical Results

Dual approximation as constraint relaxation

The original problem is (abstract form)

written as

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\left[\langle \boldsymbol{\lambda}, \Theta(\mathbf{U}) \rangle\right]$$

Subsituting λ by $\mathbb{E}(\lambda | \mathbf{Y})$ gives

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\Big[\big\langle \mathbb{E}\big(\boldsymbol{\lambda}\big|\mathbf{Y}\big), \Theta(\mathbf{U})\big\rangle\Big]$$

Presentation of DADP Practical Questions Numerical Results

Dual approximation as constraint relaxation

The original problem is (abstract form)

written as

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\left[\langle \boldsymbol{\lambda}, \Theta(\mathbf{U}) \rangle\right]$$

Subsituting λ by $\mathbb{E}(\lambda | \mathbf{Y})$ gives

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\Big[\langle \boldsymbol{\lambda}, \mathbb{E}\big(\Theta(\mathbf{U})\big|\mathbf{Y}\big) \rangle \Big]$$

Presentation of DADP Practical Questions Numerical Results

Dual approximation as constraint relaxation

The original problem is (abstract form)

written as

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\left[\langle \boldsymbol{\lambda}, \Theta(\mathbf{U}) \rangle\right]$$

Subsituting λ by $\mathbb{E}(\lambda | \mathbf{Y})$ gives

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\Big[\big\langle \boldsymbol{\lambda}, \mathbb{E}\big(\Theta(\mathbf{U})\big|\mathbf{Y}\big)\big\rangle\Big]$$

equivalent to

 $\min_{\mathbf{U} \in \mathcal{U}} J(\mathbf{U})$ s.t. $\mathbb{E}(\Theta(\mathbf{U}) | \mathbf{Y}) = 0$

Presentation of DADP Practical Questions Numerical Results

Recall of the Multistage Problem

$$\begin{split} \min_{\mathbf{U}} \quad & \sum_{i=1}^{N} \mathbb{E} \Big[\sum_{t=1}^{T-1} L_{t}^{i} \big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big) + \mathcal{K}^{i} \big(\mathbf{X}_{T} \big) \Big] \\ & \mathbf{X}_{t+1}^{i} = f_{t}^{i} \big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big), \qquad \mathbf{X}_{0}^{i} = \mathbf{x}_{0}^{i} \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \qquad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t} \\ & \sum_{i=1}^{N} \theta_{t}^{i} \big(\mathbf{U}_{t}^{i} \big) = \mathbf{0} \qquad \rightsquigarrow \mathbf{\lambda}_{t} \end{split}$$

Presentation of DADP Practical Questions Numerical Results

Main idea of DADP: $\boldsymbol{\lambda}_t \rightsquigarrow \boldsymbol{\mu}_t := \mathbb{E}(\boldsymbol{\lambda}_t | \mathbf{Y}_t)$

Global problem:

$$\begin{split} \min_{\left\{\mathbf{U}_{t}^{i}\right\}_{i,t}} \quad \sum_{i=1}^{N} \mathbb{E}\Big[\sum_{t=1}^{T} L_{t}^{i}\big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\big) + \mathcal{K}\big(\mathbf{X}_{T}^{i}\big)\Big] \\ \mathbf{X}_{t+1}^{i} &= f_{t}\big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\big), \qquad \mathbf{X}_{0}^{i} = x_{0}^{i} \\ \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \qquad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t} \\ \sum_{i=1}^{n} \theta_{t}^{i}\big(\mathbf{U}_{t}^{i}\big) = \mathbf{0} \end{split}$$

Solved by DP with state $(\mathbf{X}_t^1, \dots, \mathbf{X}_t^N)$:

$$V_{t}(\mathbf{x}) = \min_{\{\mathbf{U}_{t}^{i}\}_{i}} \sum_{i=1}^{N} \mathbb{E} \left[L_{t}^{i} (\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}, \mathbf{W}_{t+1}) + V_{t+1} (\mathbf{X}_{t+1}) \right]$$
$$\mathbf{X}_{t+1}^{i} = f_{t} (\mathbf{x}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}),$$
$$u_{t}^{i} \in \mathcal{U}_{t,i}^{ad},$$
$$\sum_{i=1}^{n} \theta_{t}^{i} (\mathbf{U}_{t}^{i}) = 0$$

The Idea of Spatial Decomposition Presentation of DADP Uzawa Algorithm Practical Questions Dual Approximate Dynamic Programming

Subproblem of Stochastic Decomposition

$$\min_{\left\{\mathbf{u}_{t}^{i}\right\}_{t}} \mathbb{E}\left[\sum_{t=1}^{T} L_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}) + \langle \boldsymbol{\lambda}_{t}, \theta_{t}(\mathbf{U}_{t}^{i}) \rangle + \mathcal{K}(\mathbf{X}_{T}^{i})\right] \\ \mathbf{X}_{t+1}^{i} = f_{t}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}), \qquad \mathbf{X}_{0}^{i} = \mathbf{x}_{0}^{i} \\ \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \qquad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}$$

Solved by DP with state $(\mathbf{W}_1, \dots, \mathbf{W}_t)$: $V_t(\{w_{\tau}\}_1^{t-1}) = \min_{\{\mathbf{U}_t^i\}} \mathbb{E}\left[L_t^i(\mathbf{x}_t^i, u_t^i, \mathbf{W}_{t+1}) + \langle \boldsymbol{\lambda}_t, \theta_t(\mathbf{U}_t^i) \rangle + V_{t+1}(\{\mathbf{W}_{\tau}\}_1^t) \right]$ $\{\mathbf{W}_{\tau}\}_1^{t-1} = \{w_{\tau}\}_1^{t-1}$ $\mathbf{X}_{t+1}^i = f_t(\mathbf{x}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}),$ $u_t^i \in \mathcal{U}_{t,i}^{ad},$ The Idea of Spatial Decomposition Presentation of DADP Uzawa Algorithm Practical Questions Dual Approximate Dynamic Programming Numerical Results

Subproblem of DADP

$$\begin{split} \min_{\left\{\mathbf{U}_{t}^{i}\right\}_{t}} & \mathbb{E}\Big[\sum_{t=1}^{T} L_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}) + \langle \mu_{t} (\mathbf{Y}_{t}), \theta_{t} (\mathbf{U}_{t}^{i}) \rangle + \mathcal{K} (\mathbf{X}_{T}^{i}) \Big] \\ & \mathbf{X}_{t+1}^{i} = f_{t} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}), \qquad \mathbf{X}_{0}^{i} = \mathbf{x}_{0}^{i} \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \qquad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t} \\ & \mathbf{Y}_{t+1} = \tilde{f}_{t} (\mathbf{Y}_{t}, \mathbf{W}_{t+1}) \end{split}$$

Solved by DP with state $(\mathbf{X}_t^i, \mathbf{Y}_t)$:

$$V_t^i(\mathbf{x}, \mathbf{y}) = \min_{\{\mathbf{U}_t^i\}} \quad \mathbb{E} \left[L_t^i(\mathbf{x}_t^i, u_t^i, \mathbf{W}_{t+1}) + \langle \mu_t(\mathbf{Y}_t), \theta_t(\mathbf{U}_t^i) \rangle + V_{t+1}(\mathbf{X}_{t+1}, \mathbf{Y}_{t+1}) \right]$$
$$\mathbf{X}_{t+1}^i = f_t(\mathbf{x}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}),$$
$$u_t^i \in \mathcal{U}_{t,i}^{ad},$$
$$\mathbf{Y}_{t+1} = \tilde{f}_t(\mathbf{y}, \mathbf{W}_{t+1})$$

Main idea of DADP: $\lambda_t \rightsquigarrow \mu_t := \mathbb{E}(\lambda_t | \mathbf{Y}_t)$

Main problems:

- Subproblems not easily solvable by DP
- $\lambda^{(k)}$ live in a huge space

Advantages:

- Subproblems solvable by DP with state (Xⁱ_t, Y_t)
- $\mu^{(k)}$ live in a smaller space

Presentation of DADP Practical Questions Numerical Results

3 Interpretations of DADP

• DADP as an approximation of the optimal multiplier

 $\boldsymbol{\lambda}_t \quad \rightsquigarrow \quad \mathbb{E}(\boldsymbol{\lambda}_t | \mathbf{Y}_t) \ .$

• DADP as a decision-rule approach in the dual

 $\max_{\boldsymbol{\lambda}} \min_{\boldsymbol{U}} L(\boldsymbol{\lambda}, \boldsymbol{U}) \qquad \rightsquigarrow \qquad \max_{\boldsymbol{\lambda}_t \preceq \boldsymbol{Y}_t} \min_{\boldsymbol{U}} L(\boldsymbol{\lambda}, \boldsymbol{U}) \; .$

• DADP as a constraint relaxation

$$\sum_{i=1}^{n} \theta_t^i (\mathbf{U}_t^i) = 0 \qquad \rightsquigarrow \qquad \mathbb{E} \bigg(\sum_{i=1}^{n} \theta_t^i (\mathbf{U}_t^i) \bigg| \mathbf{Y}_t \bigg) = 0 .$$

Theoretical Results

- Consistence of the approximation (if we consider a sequence of approximated problems).
- Existence of multiplier of the coupling constraint.
- Convergence of the decomposition algorithm for a given relaxation.
- Lower and upper bounds on the original problem.
- A posteriori verification allowing for better multiplier update.

Presentation of DADP Practical Questions Numerical Results

Presentation Outline

The Idea of Spatial Decomposition Intuition of Spatial Decomposition

• Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in L^{∞}
- Existence of Multiplier

Oual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of DADP Practical Questions Numerical Results

Choosing an Information Process Y

• Perfect memory: $\mathbf{Y}_t^i = (\mathbf{W}_0, \dots, \mathbf{W}_t).$

 \rightsquigarrow equivalent to original problem, no numerical gain.

• Minimal information: $\mathbf{Y}_t^i \equiv \text{cste.}$

 \rightsquigarrow equivalent to replacing a.s. constraint by expected constraint. Subproblems solved efficiently (state \mathbf{X}_t^i), multiplier is deterministic.

• Static information: $\mathbf{Y}_t^i = h_t^i(\mathbf{W}_t)$.

 \rightsquigarrow Subproblems solved efficiently (state \mathbf{X}_t^i).

- Dynamic information: Yⁱ_{t+1} = hⁱ_t(Yⁱ_t, W_{t+1}).
 → A number of possibilities. Some ideas:
 - mimicking the trajectory of the state of another unit (phantom state),
 - mimicking the control of other units,
 - Markov chain representing rougly the general state of the system.

Numerical Advantages of a finitely supported Y

- Assume that each noise \mathbf{W}_t take w values, and the constraint function take value in \mathbb{R} .
- Then the multiplier λ_t of the almost sure constraint at time t lives in \mathbb{R}^{wt} .
- Assume that the information process at time t take y values, then the multiplier of the relaxed constraint μ_t lives in ℝ^y.
- Moreover each subproblems take "only" roughly y times more computational effort to solve than the subproblem with local state Xⁱ_t.

Presentation of DADP Practical Questions Numerical Results

Back to Admissibility

- Consider an information process $\mathbf{Y}_{t+1} = \tilde{f}_t(\mathbf{Y}_t, \mathbf{W}_{t+1})$.
- For a multiplier process $\mu_t^{(k)}$ we obtain local Bellman function

$$\begin{split} \tilde{V}_t^i(x^i, y) &= \min_{u^i} \quad \mathbb{E}\left[L_t^i\left(x^i, u^i, \mathbf{W}_{t+1}\right) + \tilde{V}_t^i\left(x_{t+1}^i, y_{t+1}\right)\right] \\ \mathbf{X}_{t+1}^i &= f_t(x^i, u^i, \mathbf{W}_{t+1}) \\ \mathbf{Y}_{t+1} &= \tilde{f}_t(y, \mathbf{W}_{t+1}) \end{split}$$

• An admissible strategy is given by

$$\begin{aligned} \pi_t^{\mathrm{ad}}(x,y) \in & \underset{\{u^i\}_{i \in [1,N]}}{\operatorname{arg\,min}} \quad \mathbb{E}\left[\sum_{i=1}^N \left(L_t^i(x^i, u^i, \mathbf{W}_{t+1}) + \tilde{V}_t^i(\mathbf{X}_{t+1}, \mathbf{Y}_{t+1})\right)\right] \\ & \mathbf{X}_{t+1}^i = f_t^i(x^i, u^i, \mathbf{W}_{t+1}), \\ & \mathbf{Y}_{t+1} = \tilde{f}_t(y, \mathbf{W}_{t+1}) \end{aligned}$$

Presentation of DADP Practical Questions Numerical Results

Presentation Outline

The Idea of Spatial Decomposition Intuition of Spatial Decomposition

• Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in L^{∞}
- Existence of Multiplier

Oual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Problem Specification

- We consider a 3 dam problem, over 12 time steps.
- We relax each constraint with a given information process \mathbf{Y}^{i} .
- All random variable are discrete (noise, control, state).
- We test the following information processes:
 Constant information equivalent to replace the a.s. constraint by an expected constraint,
 Part of noise the information process is the inflow of the above dam Yⁱ_t = Wⁱ⁻¹_t,
 Phantom state the information process mimick the optimal trajectory of the state of the first dam (by statistical regression over the known optimal trajectory in this case)

Presentation of DADP Practical Questions Numerical Results

Numerical Results on the 3 Dams Example

	DADP - $\mathbb E$	DADP - \mathbf{W}^{i-1}	DADP - dyn.	DP
Nb of it.	165	170	25	1
Time (min)	2	3	67	41
Lower Bound	$-1.386 imes10^{6}$	$-1.379 imes10^{6}$	$-1.373 imes10^{6}$	
Final Value	$-1.335 imes10^{6}$	$-1.321 imes10^{6}$	$-1.344 imes10^{6}$	$-1.366 imes10^{6}$
Loss	-2.3%	-3.3%	-1.6%	ref.

Table: Numerical results on the 3-dam problem

Presentation of DADP Practical Questions Numerical Results

Summing up DADP

• Choose an information process **Y** following

 $\mathbf{Y}_{t+1} = \tilde{f}_t \big(\mathbf{Y}_t, \mathbf{W}_{t+1} \big).$

- We relax the almost sure coupling constraint into a conditional expectation one and apply a price decomposition scheme to the relaxed problem.
- The subproblems can be solved by dynamic programming with the state $(\mathbf{X}_{t}^{i}, \mathbf{Y}_{t})$.
- We give a consistency result (family of information process), a convergence result (fixed information process) and an existence of multiplier condition.
The Idea of Spatial Decomposition Uzawa Algorithm Dual Approximate Dynamic Programming Numerical Results

The end

Thanks for your attention!

More information² on theoretical results tomorrow at ENPC, amphi Caquot I, (14h).

²and hopefully some champagne

V. Leclère