# Spatial Decomposition in Stochastic Optimization: Theoretical and Practical Questions.

#### P. Carpentier, J-Ph. Chancelier, M. De Lara, <u>V. Leclère</u> SESO Week

2014, June 24

### Mulstistage Stochastic Optimization : an Example

How to manage a chain of dam producing electricity from the turbine water to optimize the gain ?

$$\mathbb{E}\bigg[\sum_{i=1}^{N}\sum_{t=0}^{T-1}L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})+K_{i}(\mathbf{X}_{T}^{i})\bigg]$$

Constraints:

• dynamics:

$$\mathbf{X}_{t+1} = f_t \big( \mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1} \big),$$

- on nonanticipativity:
  - $\mathbf{U}_{t} \preceq \mathcal{F}_{t}$ ,
- spatial coupling:  $\mathbf{Z}_{t}^{i+1} = g_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}^{i}).$



### Mulstistage Stochastic Optimization : an Example

How to manage a chain of dam producing electricity from the turbine water to optimize the gain ?

$$\mathbb{E}\bigg[\sum_{i=1}^{N}\sum_{t=0}^{T-1}L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})+\mathcal{K}_{i}(\mathbf{X}_{T}^{i})\bigg]$$

Constraints:

• dynamics:

$$\mathbf{X}_{t+1} = f_t \big( \mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1} \big),$$

- ononanticipativity:
  - $\mathbf{U}_{t} \preceq \mathcal{F}_{t}$ ,
- spatial coupling:  $\mathbf{Z}_{t}^{i+1} = g_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}^{i}).$



### Mulstistage Stochastic Optimization : an Example

How to manage a chain of dam producing electricity from the turbine water to optimize the gain ?

$$\mathbb{E}\bigg[\sum_{i=1}^{N}\sum_{t=0}^{T-1}L_{t}^{i}(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1})+\mathcal{K}_{i}(\mathbf{X}_{T}^{i})\bigg]$$

Constraints:

- dynamics:  $\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}),$
- nonanticipativity:
  - $\mathbf{U}_t \preceq \mathcal{F}_t$ ,
- spatial coupling:  $\mathbf{Z}_{t}^{i+1} = g_{t}^{i} \left( \mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}^{i} \right)$



### Contents

#### 1 The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

#### 2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in  $\mathrm{L}^\infty$
- Existence of Multiplier

#### Oual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

### Presentation Outline

#### 1 The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

#### 2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- ullet Uzawa Algorithm in  $\mathrm{L}^\infty$
- Existence of Multiplier

#### 3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Intuition of Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
  - the coordinator sets a sequence of price  $\lambda_t$ ,
  - the units send their production planning  $\mathbf{U}_{\star}^{(i)}$
  - the coordinator compare total production and demand and updates the price,
  - and so on...



Intuition of Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
  - the coordinator sets a sequence of price  $\lambda_t$ ,
  - the units send their production planning  $\mathbf{U}_{\star}^{(i)}$
  - the coordinator compare total production and demand and updates the price, • and so on...





Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
  - the coordinator sets a sequence of price λ<sub>t</sub>,
  - the units send their production planning U<sup>(i)</sup><sub>t</sub>,
  - the coordinator compare total production and demand and updates the price,
     and so on...



Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
  - the coordinator sets a sequence of price λ<sub>t</sub>,
  - the units send their production planning U<sub>t</sub><sup>(i)</sup>,
  - the coordinator compare total production and demand and updates the price,
  - and so on...



Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
  - the coordinator sets a sequence of price λ<sub>t</sub>,
  - the units send their production planning U<sub>t</sub><sup>(i)</sup>,
  - the coordinator compare total production and demand and updates the price,
  - and so on...



Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
  - the coordinator sets a sequence of price λ<sub>t</sub>,
  - the units send their production planning U<sub>t</sub><sup>(i)</sup>,
  - the coordinator compare total production and demand and updates the price,
  - and so on...



Intuition of Spatial Decomposition Stochastic Spatial Decomposition

- Satisfy a demand with N units of production at minimal cost.
- Price decomposition:
  - the coordinator sets a sequence of price λ<sub>t</sub>,
  - the units send their production planning U<sub>t</sub><sup>(i)</sup>,
  - the coordinator compare total production and demand and updates the price,
  - and so on...



Intuition of Spatial Decomposition Stochastic Spatial Decomposition



Intuition of Spatial Decomposition Stochastic Spatial Decomposition

### **Presentation Outline**

# The Idea of Spatial Decomposition Intuition of Spatial Decomposition

• Stochastic Spatial Decomposition

#### 2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in  $L^{\infty}$
- Existence of Multiplier

#### 3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

### Primal Problem

$$\begin{split} \min_{\mathbf{X},\mathbf{U}} \sum_{i=1}^{N} & \mathbb{E} \left[ \sum_{t=0}^{T} L_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}) + \mathcal{K}^{i} (\mathbf{X}_{T}^{i}) \right] \\ & \forall i, \quad \mathbf{X}_{t+1}^{i} = f_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ & \forall i, \quad \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \\ & \sum_{i=1}^{N} \theta_{t}^{i} (\mathbf{U}_{t}^{i}) = 0 \end{split}$$

Solvable by DP with state  $(X_1, \dots, X_N)$ 

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

### Primal Problem

$$\begin{split} \min_{\mathbf{X},\mathbf{U}} \; \sum_{i=1}^{N} \; & \mathbb{E} \left[ \sum_{t=0}^{T} L_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}) + \mathcal{K}^{i} (\mathbf{X}_{T}^{i}) \right] \\ & \forall \; i, \quad \mathbf{X}_{t+1}^{i} = f_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}), \quad \mathbf{X}_{0}^{i} = \mathbf{x}_{0}^{i}, \\ & \forall \; i, \quad \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \\ & \sum_{i=1}^{N} \theta_{t}^{i} (\mathbf{U}_{t}^{i}) = 0 \qquad \rightsquigarrow \boldsymbol{\lambda}_{t} \quad \text{multiplier} \end{split}$$

Solvable by DP with state  $(X_1, \ldots, X_N)$ 

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

#### Primal Problem with Dualized Constraint

$$\begin{split} \min_{\mathbf{X},\mathbf{U}} \; \max_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \; \mathbb{E} \bigg[ \sum_{t=0}^{T} L_{t}^{i} \big( \mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big) + \big\langle \boldsymbol{\lambda}_{t}, \boldsymbol{\theta}_{t}^{i} \big( \mathbf{U}_{t}^{i} \big) \big\rangle + \mathcal{K}^{i} \big( \mathbf{X}_{T}^{i} \big) \bigg] \\ \forall \; i, \quad \mathbf{X}_{t+1}^{i} = f_{t}^{i} \big( \mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ \forall \; i, \quad \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

#### Coupling constraint dualized $\implies$ all constraints are unit by unit

**Dual Problem** 

$$\begin{split} \max_{\boldsymbol{\lambda}} \min_{\boldsymbol{X}, \boldsymbol{\mathsf{U}}} \sum_{i=1}^{N} & \mathbb{E} \bigg[ \sum_{t=0}^{T} L_{t}^{i} \big( \boldsymbol{\mathsf{X}}_{t}^{i}, \boldsymbol{\mathsf{U}}_{t}^{i}, \boldsymbol{\mathsf{W}}_{t+1} \big) + \big\langle \boldsymbol{\lambda}_{t}, \boldsymbol{\theta}_{t}^{i} \big( \boldsymbol{\mathsf{U}}_{t}^{i} \big) \big\rangle + \mathcal{K}^{i} \big( \boldsymbol{\mathsf{X}}_{T}^{i} \big) \bigg] \\ & \forall i, \quad \boldsymbol{\mathsf{X}}_{t+1}^{i} = f_{t}^{i} \big( \boldsymbol{\mathsf{X}}_{t}^{i}, \boldsymbol{\mathsf{U}}_{t}^{i}, \boldsymbol{\mathsf{W}}_{t+1} \big), \quad \boldsymbol{\mathsf{X}}_{0}^{i} = \boldsymbol{x}_{0}^{i}, \\ & \forall i, \quad \boldsymbol{\mathsf{U}}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \boldsymbol{\mathsf{U}}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

Exchange operator min and max to obtain a new problem

V. Leclère

Spatial Decomposition in Stochastic Optimization

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

#### **Decomposed Dual Problem**

$$\begin{split} \max_{\boldsymbol{\lambda}} \sum_{i=1}^{N} & \min_{\mathbf{X}^{i}, \mathbf{U}^{i}} \mathbb{E} \left[ \sum_{t=0}^{T} L_{t}^{i} \big( \mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big) + \big\langle \boldsymbol{\lambda}_{t}, \boldsymbol{\theta}_{t}^{i} \big( \mathbf{U}_{t}^{i} \big) \big\rangle + \mathcal{K}^{i} \big( \mathbf{X}_{T}^{i} \big) \right] \\ & \mathbf{X}_{t+1}^{i} = f_{t}^{i} \big( \mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

For a given  $\lambda$ , minimum of sum is sum of minima

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

### Inner Minimization Problem

$$\begin{split} \min_{\mathbf{X}^{i},\mathbf{U}^{i}} & \mathbb{E}\bigg[\sum_{t=0}^{T} L_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big) + \big\langle\boldsymbol{\lambda}_{t},\boldsymbol{\theta}_{t}^{i}(\mathbf{U}_{t}^{i})\big\rangle + \mathcal{K}^{i}(\mathbf{X}_{T}^{i})\bigg] \\ & \mathbf{X}_{t+1}^{i} = f_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

We have N smaller subproblems. Can they be solved by DP ?

Intuition of Spatial Decomposition Stochastic Spatial Decomposition

### Inner Minimization Problem

$$\begin{split} \min_{\mathbf{X}^{i},\mathbf{U}^{i}} & \mathbb{E}\bigg[\sum_{t=0}^{T} L_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big) + \big\langle \boldsymbol{\lambda}_{t},\boldsymbol{\theta}_{t}^{i}(\mathbf{U}_{t}^{i}) \big\rangle + \mathcal{K}^{i}(\mathbf{X}_{T}^{i}) \bigg] \\ & \mathbf{X}_{t+1}^{i} = f_{t}^{i}\big(\mathbf{X}_{t}^{i},\mathbf{U}_{t}^{i},\mathbf{W}_{t+1}\big), \quad \mathbf{X}_{0}^{i} = x_{0}^{i}, \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}, \end{split}$$

No :  $\lambda$  is a time-dependent noise  $\rightsquigarrow$  state  $(\mathbf{W}_1, \dots, \mathbf{W}_t)$ 

## A Few Questions

- In which space lives the multiplier process  $\lambda$  ? For which duality ?
  - L<sup>2</sup>
    L<sup>1</sup>
    (L<sup>∞</sup>)<sup>\*</sup>
- What are the relations between the primal and dual problems ?
- Can we solve the subproblems by Dynamic Programming ?
   → No!
- How to update the multiplier process ? Uzawa Algorithm

 $\begin{array}{l} \mbox{Presentation of Uzawa Algorithm} \\ \mbox{Uzawa Algorithm in $L^{\infty}$} \\ \mbox{Existence of Multiplier} \end{array}$ 

### Presentation Outline

#### The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

#### 2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in  $L^{\infty}$
- Existence of Multiplier

#### 3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of Uzawa Algorithm Uzawa Algorithm in  $\mathrm{L}^\infty$  Existence of Multiplier

### Problem Statement

We consider the following (primal) problem:

 $egin{array}{lll} (\mathcal{P}) & \min_{u\in\mathcal{U}^{\mathrm{ad}}} & J(u) \;, \ & s.t. & \Theta(u)\in-\mathcal{C} \;. \end{array}$ 

Where  ${\boldsymbol{\mathcal{U}}}$  and  ${\boldsymbol{\mathcal{V}}}$  are two Hausdorff spaces, and

- $J:\mathcal{U}\to \bar{\mathbb{R}}$  is an objective function ,
- $\Theta: \mathcal{U} \to \mathcal{V}$  is a constraint function (to be dualized),
- $C \subset V$  is a cone of constraints,
- $\mathcal{U}^{\mathrm{ad}} \subset \mathcal{U}$  is a constraint set (not to be dualized).

 $\begin{array}{l} \mbox{Presentation of Uzawa Algorithm} \\ \mbox{Uzawa Algorithm in $L^{\infty}$} \\ \mbox{Existence of Multiplier} \end{array}$ 

### **Dual Problem**

The primal problem can be written

 $\begin{array}{l} \left(\mathcal{P}\right) & \min_{u \in \mathcal{U}^{\mathrm{ad}}} & \max_{\lambda \in C^{\star}} & J(u) + \left\langle \lambda, \Theta(u) \right\rangle_{\mathcal{V}^{\star}, \mathcal{V}}, \\ \\ \text{where } C^{\star} \subset \mathcal{V}^{\star} \text{ is given by} \\ \\ C^{\star} = \left\{ \lambda \in \mathcal{V}^{\star} \mid \forall x \in C, \quad \left\langle \lambda, x \right\rangle_{\mathcal{V}^{\star}, \mathcal{V}} \geq 0 \right\}. \end{array}$ 

The dual problem of Problem  $(\mathcal{P})$  reads

 $(\mathcal{D}) \qquad \max_{\lambda \in C^{\star}} \quad \min_{u \in \mathcal{U}^{\mathrm{ad}}} \qquad J(u) + \langle \lambda, \Theta(u) \rangle_{\mathcal{V}^{\star}, \mathcal{V}}.$ 

 $\begin{array}{l} \mbox{Presentation of Uzawa Algorithm} \\ \mbox{Uzawa Algorithm in $L^{\infty}$} \\ \mbox{Existence of Multiplier} \end{array}$ 

### Gradient of the Dual

Assume that  $\mathcal{U} = \mathcal{U}^{\star}$ , and  $\mathcal{V} = \mathcal{V}^{\star}$  are Hilbert spaces. Recall the dual problem  $(\mathcal{D})$  as

$$\max_{\lambda \in C^{\star}} \underbrace{\min_{u \in \mathcal{U}^{\mathrm{ad}}} \left\{ J(u) + \langle \lambda, \Theta(u) \rangle_{\mathcal{V}^{\star}, \mathcal{V}} \right\}}_{:=\varphi(\lambda)} .$$

Under some regularity and unicity conditions, if  $u^{\sharp}(\lambda)$  is a minimizer of the above problem, then

 $\Theta(u^{\sharp}(\lambda)) = \nabla \varphi(\lambda) .$ 

### Uzawa Algorithm

**Data**: Initial multiplier  $\lambda^{(0)} \in \mathcal{V}$ , step  $\rho > 0$ ; **Result**: Optimal solution  $u^{\sharp}$  and multiplier  $\lambda^{\sharp}$ ; **repeat** 

$$u^{(k)} \in \underset{u \in \mathcal{U}^{\mathrm{ad}}}{\operatorname{arg\,min}} \quad \left\{ J(u) + \left\langle \lambda^{(k)}, \Theta(u) \right\rangle \right\},$$
$$\lambda^{(k+1)} = \operatorname{proj}_{\mathcal{C}^{\star}} \left( \lambda^{(k)} + \rho \; \Theta(u^{(k)}) \right) \;.$$

until  $\Theta(u^{(k)}) \in -C$ ;

Presentation of Uzawa Algorithm Uzawa Algorithm in  $\mathbf{L}^\infty$  Existence of Multiplier

### Presentation Outline

#### The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

#### 2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- $\bullet$  Uzawa Algorithm in  $\mathrm{L}^\infty$
- Existence of Multiplier

#### 3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of Uzawa Algorithm Uzawa Algorithm in  $L^\infty$  Existence of Multiplier

#### From now on we consider that

$$\begin{split} \mathcal{U} &= \mathrm{L}^{\infty} \big( \Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n \big) \ , \\ \mathcal{V} &= \mathrm{L}^{\infty} \big( \Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^m \big) \ , \\ \mathcal{C} &= \{ 0 \}. \end{split}$$

Where the  $\sigma$ -algebra is not finite (modulo  $\mathbb{P}$ ). Hence,  $\mathcal{U}$  and  $\mathcal{V}$  are non-reflexive, non-separable, Banach spaces. If the  $\sigma$ -algebra is finite modulo  $\mathbb{P}$ ,  $\mathcal{U}$  and  $\mathcal{V}$  are finite dimensional

spaces, and the usual result applies.

 $L^{\infty}$  setting

Presentation of Uzawa Algorithm Uzawa Algorithm in  $\mathbf{L}^\infty$  Existence of Multiplier

### Perks of an Hilbert Space

#### Fact

In an Hilbert space  $\mathcal{H}$  we know that

- i) the weak and weak\* topologies are identical,
- ii) the space  $\mathcal{H}$  and its topological dual can be identified.

Point *i*) allows to formulate existence of minimizer results:

- weakly closed bounded  $\implies$  weakly compact;
- for a convex set: weakly closed  $\iff$  closed;
- for a convex function: weakly l.s.c  $\iff$  l.s.c.

Hence, a coercive, l.s.c. function J admits an infimum. Point ii) allows to write gradient-like algorithm: at any iteration k, linear combination of  $\lambda^{(k)}$  and  $g^{(k)}$  take place in  $\mathcal{H}$ .

# Difficulties Appearing in a Banach Space

- Reflexive Banach space:
  - *i*) still holds true (~> existence of minimizers)
  - *ii*) no longer true ( $\rightsquigarrow$  linear combination of  $u^{(k)} \in E$  and  $g^{(k)} \in E^*$  does not have any sense).
- Non-reflexive Banach space *E*: neither *i*) nor *ii*) holds true.
- *E* is the topological dual of a Banach space: a weakly\* closed bounded subset of *E* is weak\* compact. Thus, weak\* lower semicontinuity and coercivity of a function *J* gives the existence of minimizers of *J*.

Presentation of Uzawa Algorithm Uzawa Algorithm in  $\mathbf{L}^\infty$  Existence of Multiplier

Specificities of  $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ 

- L<sup>∞</sup> is the topological dual of the Banach space L<sup>1</sup>. Hence, if *J* is weak<sup>\*</sup> l.s.c and coercive, then *J* admits a minimizer.
- $L^{\infty}$  can be identified with a subset of its topological dual  $\left(L^{\infty}\right)^{\star}$ . Thus,

$$\boldsymbol{\lambda}^{(k+1)} = \boldsymbol{\lambda}^{(k)} + \rho \, \Theta(\mathbf{U}^{(k)}) \; ,$$

make sense: it is a linear combination of elements of  $(L^{\infty})^{\hat{}}$ .

• Moreover, if  $\lambda^{(0)}$  is chosen in  $L^{\infty}$ , then the sequence  $\{\lambda^{(k)}\}_{k\in\mathbb{N}}$  remains in  $L^{\infty}$ .

# Uzawa Algorithm

**Data**: Initial multiplier  $\lambda^{(0)} \in L^{\infty}$ , step  $\rho > 0$ ; **Result**: Optimal solution  $U^{\sharp}$  and multiplier  $\lambda^{\sharp}$ ; **repeat** 

$$\begin{split} \mathbf{U}^{(k)} &\in \mathop{\arg\min}\limits_{\mathbf{U}\in\mathcal{U}^{\mathrm{ad}}} \quad \left\{ J(\mathbf{U}) + \left\langle \boldsymbol{\lambda}^{(k)} , \boldsymbol{\Theta}(\mathbf{U}) \right\rangle \right\}, \\ \boldsymbol{\lambda}^{(k+1)} &= \boldsymbol{\lambda}^{(k)} + \rho \; \boldsymbol{\Theta}(\mathbf{U}^{(k)}) \; . \end{split}$$

until  $\Theta(\mathbf{U}^{(k)}) = 0;$ 

Remark: numerically, other update rules (e.g. quasi-Newton) can be used, convergence being proven when we find a multiplier  $\lambda^{(k)}$  such that  $\Theta(\mathbf{U}^{(k)}) = 0$ .

# Existence of Solution

#### Theorem

Assume that:

- the constraint set  $\mathcal{U}^{ad}$  is weakly<sup>\*</sup> closed;
- $@ \Theta: \mathcal{U} \to \mathcal{V} \text{ is affine, weakly}^{\star} \text{ continuous;}$
- Some interpretation J: U → ℝ is weak\* lower semicontinuous and coercive on U<sup>ad</sup>;
- Ithere exists an admissible control.

Then the primal problem admits at least one solution. Moreover for any  $\lambda \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^m)$ 

$$rgmin_{oldsymbol{U}\in\mathcal{U}^{
m ad}}\left\{Jig(oldsymbol{U}ig)+ig\langleoldsymbol{\lambda}\,,\Thetaig(oldsymbol{U}ig)ig
ight\}
eq \emptyset \ .$$

# Convergence Result

#### Theorem

Assume that:

- J: U → ℝ is a proper, weak\* lower semicontinuous, Gâteaux-differentiable, a-convex function;
- there exists an admissible control;
- $\mathcal{U}^{ad}$  is weak\* closed convex;
- **5** there is an optimal  $L^1$ -multiplier to the constraint  $\Theta(\mathbf{U}) = 0$ ;
- the step  $\rho$  is such that  $0 < \rho < \frac{2a}{\kappa}$ .

Then, Uzawa algorithm is well defined and there exists a subsequence  $(\mathbf{U}^{(n_k)})_{k\in\mathbb{N}}$  converging in  $\mathbf{L}^{\infty}$  toward the optimal solution  $\mathbf{U}^{\sharp}$  of the primal problem.
# Convergence Result

#### Theorem

Assume that:

- J: U → ℝ is a proper, weak\* lower semicontinuous, Gâteaux-differentiable, a-convex function;
- there exists an admissible control;
- $\mathcal{U}^{ad}$  is weak\* closed convex;
- **(**) there is an optimal  $L^1$ -multiplier to the constraint  $\Theta(\mathbf{U}) = 0$ ;
- the step  $\rho$  is such that  $0 < \rho < \frac{2a}{\kappa}$ .

Then, Uzawa algorithm is well defined and there exists a subsequence  $(\mathbf{U}^{(n_k)})_{k\in\mathbb{N}}$  converging in  $\mathbf{L}^{\infty}$  toward the optimal solution  $\mathbf{U}^{\sharp}$  of the primal problem.

# Convergence Result

#### Theorem

Assume that:

- J: U → ℝ is a proper, weak\* lower semicontinuous, Gâteaux-differentiable, a-convex function;
- there exists an admissible control;
- $\mathcal{U}^{ad}$  is weak\* closed convex;
- **5** there is an optimal  $L^1$ -multiplier to the constraint  $\Theta(\mathbf{U}) = 0$ ;
- the step  $\rho$  is such that  $0 < \rho < \frac{2a}{\kappa}$ .

Then, Uzawa algorithm is well defined and there exists a subsequence  $(\mathbf{U}^{(n_k)})_{k\in\mathbb{N}}$  converging in  $\mathbf{L}^{\infty}$  toward the optimal solution  $\mathbf{U}^{\sharp}$  of the primal problem.

Presentation of Uzawa Algorithm Uzawa Algorithm in  $\mathrm{L}^\infty$  Existence of Multiplier

## Presentation Outline

#### The Idea of Spatial Decomposition

- Intuition of Spatial Decomposition
- Stochastic Spatial Decomposition

#### 2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in  $L^{\infty}$
- Existence of Multiplier

### 3 Dual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of Uzawa Algorithm Uzawa Algorithm in  $\mathrm{L}^\infty$  Existence of Multiplier

# Standard duality in $L^2$ spaces

Assume that  $\mathcal{U} = L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n)$  and  $\mathcal{V} = L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m)$ .

The standard sufficient constraint qualification condition

$$0\in \mathrm{ri}\Big(\Thetaig(\mathcal{U}^{\mathrm{ad}}\cap\mathrm{dom}(J)ig)+\mathcal{C}\Big)\ ,$$

is scarcely satisfied in such a stochastic setting.

#### Proposition

If the  $\sigma$ -algebra  $\mathcal{A}$  is not finite modulo  $\mathbb{P}$ , then for any subset  $U^{\mathrm{ad}} \subset \mathbb{R}^n$  that is not an affine subspace, the set

$$\mathcal{U}^{\mathrm{ad}} = \left\{ \mathbf{U} \in \mathrm{L}^p(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n) \mid \mathbf{U} \in U^{\mathrm{ad}} \mid \mathbb{P}-a.s. 
ight\}$$

has an empty relative interior in  $L^p$ , for any  $p < +\infty$ .

Presentation of Uzawa Algorithm Uzawa Algorithm in  $\mathrm{L}^\infty$  Existence of Multiplier

# Standard duality in $L^2$ spaces

Assume that  $\mathcal{U} = L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n)$  and  $\mathcal{V} = L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m)$ .

The standard sufficient constraint qualification condition

$$0\in \mathrm{ri}\Big(\Thetaig(\mathcal{U}^{\mathrm{ad}}\cap\mathrm{dom}(J)ig)+\mathcal{C}\Big)\ ,$$

is scarcely satisfied in such a stochastic setting.

#### Proposition

If the  $\sigma$ -algebra  $\mathcal{A}$  is not finite modulo  $\mathbb{P}$ , then for any subset  $U^{\mathrm{ad}} \subset \mathbb{R}^n$  that is not an affine subspace, the set

$$\mathcal{U}^{\mathrm{ad}} = \left\{ \mathbf{U} \in \mathrm{L}^p(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n) \mid \mathbf{U} \in U^{\mathrm{ad}} \mid \mathbb{P} - a.s. 
ight\}$$

has an empty relative interior in  $L^p$ , for any  $p < +\infty$ .

Presentation of Uzawa Algorithm Uzawa Algorithm in  $\mathrm{L}^\infty$  Existence of Multiplier

# Standard duality in $L^2$ spaces

Consider the following optimization problem:

$$\begin{split} \inf_{u_0,\mathbf{U}_1} & u_0^2 + \mathbb{E} \left[ (\mathbf{U}_1 + \alpha)^2 \right] \,, \\ \text{s.t.} & u_0 \geq a \,, \\ & \mathbf{U}_1 \geq 0 \,, \\ & u_0 - \mathbf{U}_1 \geq \mathbf{W} \,, \end{split}$$
 to be dualized

#### where W is a random variable uniform on [1, 2].

For *a* < 2:

- we can construct a maximizing sequence of multipliers for the dual problem that does not converge in L<sup>2</sup>;
- this is a case of *non relatively complete recourse* (constraints on U<sub>1</sub> induce stronger constraint on u<sub>0</sub>;
- however there exists an optimal multiplier in  $(L^{\infty})^{\star}$

Presentation of Uzawa Algorithm Uzawa Algorithm in  $\mathrm{L}^\infty$  Existence of Multiplier

# Standard duality in $L^2$ spaces

Consider the following optimization problem:

$$\begin{split} & \inf_{u_0, \mathbf{U}_1} \quad u_0^2 + \mathbb{E}\left[(\mathbf{U}_1 + \alpha)^2\right] \,, \\ & \text{s.t.} \quad u_0 \geq a \,, \\ & \mathbf{U}_1 \geq 0 \,, \\ & u_0 - \mathbf{U}_1 \geq \mathbf{W} \,, \end{split} \qquad \text{to be dualized} \end{split}$$

where  $\mathbf{W}$  is a random variable uniform on [1, 2].

For *a* < 2:

- we can construct a maximizing sequence of multipliers for the dual problem that does not converge in L<sup>2</sup>;
- this is a case of non relatively complete recourse (constraints on U<sub>1</sub> induce stronger constraint on u<sub>0</sub>;
- however there exists an optimal multiplier in  $(L^{\infty})^{\star}$

## Constraint qualification in $(L^{\infty}, L^1)$

From now on, we assume that

$$egin{aligned} \mathcal{U} &= \mathrm{L}^\inftyig(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^nig) \;, \ \mathcal{V} &= \mathrm{L}^\inftyig(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^mig) \;, \ \mathcal{C} &= \{0\} \;, \end{aligned}$$

where the  $\sigma$ -algebra  $\mathcal{A}$  is not finite modulo  $\mathbb{P}^{.1}$ 

We consider the pairing  $\left(L^{\infty},L^{1}\right)$  with the following topologies:

- $\sigma(L^{\infty}, L^1)$ : weak\* topology on  $L^{\infty}$  (coarsest topology such that all the L<sup>1</sup>-linear forms are continuous),
- $\tau(L^{\infty}, L^1)$ : Mackey-topology on  $L^{\infty}$  (finest topology such that the continuous linear forms are only the  $L^1$ -linear forms).

<sup>1</sup>If the  $\sigma$ -algebra is finite modulo  $\mathbb{P}$ ,  $\mathcal{U}$  and  $\mathcal{V}$  are finite dimensional spaces.

V. Leclère

## Weak\* closedness of linear subspaces of $L^{\infty}$

#### Proposition

Let  $\Theta : L^{\infty}(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n) \to L^{\infty}(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m)$  be a linear operator, and assume that there exists a linear operator  $\Theta^{\dagger} : L^1(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m) \to L^1(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n)$  such that:

 $\left<\boldsymbol{\mathsf{V}}\;,\boldsymbol{\Theta}(\boldsymbol{\mathsf{U}})\right>=\left<\boldsymbol{\Theta}^{\dagger}(\boldsymbol{\mathsf{V}})\;,\boldsymbol{\mathsf{U}}\right>\;\;\forall\boldsymbol{\mathsf{U}},\;\forall\boldsymbol{\mathsf{V}}\;.$ 

Then the linear operator  $\Theta$  is weak<sup>\*</sup> continuous.

#### Applications

- $\Theta(\mathbf{U}) = \mathbf{U} \mathbb{E}[\mathbf{U} \mid \mathcal{B}]$ : non-anticipativity constraints,
- $\Theta(\mathbf{U}) = A\mathbf{U}$  with  $A \in \mathcal{M}_{m,n}(\mathbb{R})$ : finite number of constraints.

The Idea of Spatial Decomposition Uzawa Algorit Uzawa Algorithm Dual Approximate Dynamic Programming Existence of Multiplier

## A duality theorem

$$\begin{aligned} (\mathcal{P}) & \min_{\mathbf{U} \in \mathcal{U}} J(\mathbf{U}) \quad \text{s.t.} \quad \Theta(\mathbf{U}) = 0 , \\ \text{with } J(\mathbf{U}) = \mathbb{E} \big[ j(\mathbf{U}, \mathbf{W}) \big]. \end{aligned}$$

#### Theorem

Assume that j is a convex normal integrand, that J is continuous in the Mackey topology at some point  $\mathbf{U}_0$  such that  $\Theta(\mathbf{U}_0) = 0$ , and that  $\Theta$  is weak<sup>\*</sup> continuous on  $\mathcal{L}^{\infty}(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^n)$ . Then,  $\mathbf{U}^{\sharp} \in \mathcal{U}$  is an optimal solution of Problem  $(\mathcal{P})$  if and only if there exists  $\lambda^{\sharp} \in L^1(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R}^m)$  such that

• 
$$\mathbf{U}^{\sharp} \in \operatorname*{arg\,min}_{\mathbf{U} \in \mathcal{U}} \mathbb{E}\left[j(\mathbf{U}, \mathbf{W}) + \lambda^{\sharp} \cdot \Theta(\mathbf{U})\right]$$
,

•  $\Theta(\mathbf{U}^{\sharp}) = 0.$ 

Extension of a result given by R. Wets for non-anticipativity constraints.

Presentation of DADP Practical Questions Numerical Results

## Presentation Outline

The Idea of Spatial Decomposition
 Intuition of Spatial Decomposition

• Stochastic Spatial Decomposition

2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in  $L^{\infty}$
- Existence of Multiplier

## Oual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of DADP Practical Questions Numerical Results

Dual approximation as constraint relaxation

The original problem is (abstract form)

written as

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\left[\langle \boldsymbol{\lambda}, \Theta(\mathbf{U}) \rangle\right]$$

Subsituting  $\lambda$  by  $\mathbb{E}(\lambda | \mathbf{Y})$  gives

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\Big[\big\langle \mathbb{E}\big(\boldsymbol{\lambda}\big|\mathbf{Y}\big), \Theta(\mathbf{U})\big\rangle\Big]$$

Presentation of DADP Practical Questions Numerical Results

Dual approximation as constraint relaxation

The original problem is (abstract form)

written as

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\left[\langle \boldsymbol{\lambda}, \Theta(\mathbf{U}) \rangle\right]$$

Subsituting  $\lambda$  by  $\mathbb{E}(\lambda | \mathbf{Y})$  gives

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\Big[ \langle \boldsymbol{\lambda}, \mathbb{E}\big(\Theta(\mathbf{U})\big|\mathbf{Y}\big) \rangle \Big]$$

Presentation of DADP Practical Questions Numerical Results

Dual approximation as constraint relaxation

The original problem is (abstract form)

written as

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\left[\langle \boldsymbol{\lambda}, \Theta(\mathbf{U}) \rangle\right]$$

Subsituting  $\lambda$  by  $\mathbb{E}(\lambda | \mathbf{Y})$  gives

$$\min_{\mathbf{U}\in\mathcal{U}} \max_{\boldsymbol{\lambda}} J(\mathbf{U}) + \mathbb{E}\Big[\big\langle \boldsymbol{\lambda}, \mathbb{E}\big(\Theta(\mathbf{U})\big|\mathbf{Y}\big)\big\rangle\Big]$$

equivalent to

 $\min_{\mathbf{U} \in \mathcal{U}} J(\mathbf{U})$ s.t.  $\mathbb{E}(\Theta(\mathbf{U}) | \mathbf{Y}) = 0$ 

Presentation of DADP Practical Questions Numerical Results

## Recall of the Multistage Problem

$$\begin{split} \min_{\mathbf{U}} \quad & \sum_{i=1}^{N} \mathbb{E} \Big[ \sum_{t=1}^{T-1} L_{t}^{i} \big( \mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big) + \mathcal{K}^{i} \big( \mathbf{X}_{T} \big) \Big] \\ & \mathbf{X}_{t+1}^{i} = f_{t}^{i} \big( \mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1} \big), \qquad \mathbf{X}_{0}^{i} = \mathbf{x}_{0}^{i} \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \qquad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t} \\ & \sum_{i=1}^{N} \theta_{t}^{i} \big( \mathbf{U}_{t}^{i} \big) = \mathbf{0} \qquad \rightsquigarrow \mathbf{\lambda}_{t} \end{split}$$



Presentation of DADP Practical Questions Numerical Results

## Main idea of DADP: $\boldsymbol{\lambda}_t \rightsquigarrow \boldsymbol{\mu}_t := \mathbb{E}(\boldsymbol{\lambda}_t | \mathbf{Y}_t)$



Global problem:

$$\begin{split} \min_{\left\{\mathbf{U}_{t}^{i}\right\}_{i,t}} \quad \sum_{i=1}^{N} \mathbb{E}\Big[\sum_{t=1}^{T} L_{t}^{i}\big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\big) + \mathcal{K}\big(\mathbf{X}_{T}^{i}\big)\Big] \\ \mathbf{X}_{t+1}^{i} &= f_{t}\big(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}\big), \qquad \mathbf{X}_{0}^{i} = x_{0}^{i} \\ \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \qquad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t} \\ \sum_{i=1}^{n} \theta_{t}^{i}\big(\mathbf{U}_{t}^{i}\big) = \mathbf{0} \end{split}$$

Solved by DP with state  $(\mathbf{X}_t^1, \dots, \mathbf{X}_t^N)$  :

$$V_{t}(\mathbf{x}) = \min_{\{\mathbf{U}_{t}^{i}\}_{i}} \sum_{i=1}^{N} \mathbb{E} \left[ L_{t}^{i} (\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}, \mathbf{W}_{t+1}) + V_{t+1} (\mathbf{X}_{t+1}) \right]$$
$$\mathbf{X}_{t+1}^{i} = f_{t} (\mathbf{x}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}),$$
$$u_{t}^{i} \in \mathcal{U}_{t,i}^{ad},$$
$$\sum_{i=1}^{n} \theta_{t}^{i} (\mathbf{U}_{t}^{i}) = 0$$

The Idea of Spatial Decomposition Presentation of DADP Uzawa Algorithm Practical Questions Dual Approximate Dynamic Programming

Subproblem of Stochastic Decomposition

$$\min_{\left\{\mathbf{u}_{t}^{i}\right\}_{t}} \mathbb{E}\left[\sum_{t=1}^{T} L_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}) + \langle \boldsymbol{\lambda}_{t}, \theta_{t}(\mathbf{U}_{t}^{i}) \rangle + \mathcal{K}(\mathbf{X}_{T}^{i})\right] \\ \mathbf{X}_{t+1}^{i} = f_{t}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}), \qquad \mathbf{X}_{0}^{i} = \mathbf{x}_{0}^{i} \\ \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \qquad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t}$$

Solved by DP with state  $(\mathbf{W}_1, \dots, \mathbf{W}_t)$ :  $V_t(\{w_{\tau}\}_1^{t-1}) = \min_{\{\mathbf{U}_t^i\}} \mathbb{E}\left[L_t^i(\mathbf{x}_t^i, u_t^i, \mathbf{W}_{t+1}) + \langle \boldsymbol{\lambda}_t, \theta_t(\mathbf{U}_t^i) \rangle + V_{t+1}(\{\mathbf{W}_{\tau}\}_1^t) \right]$   $\{\mathbf{W}_{\tau}\}_1^{t-1} = \{w_{\tau}\}_1^{t-1}$   $\mathbf{X}_{t+1}^i = f_t(\mathbf{x}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}),$   $u_t^i \in \mathcal{U}_{t,i}^{ad},$  The Idea of Spatial Decomposition Presentation of DADP Uzawa Algorithm Practical Questions Dual Approximate Dynamic Programming Numerical Results

Subproblem of DADP

$$\begin{split} \min_{\left\{\mathbf{U}_{t}^{i}\right\}_{t}} & \mathbb{E}\Big[\sum_{t=1}^{T} L_{t}^{i} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}) + \langle \mu_{t} (\mathbf{Y}_{t}), \theta_{t} (\mathbf{U}_{t}^{i}) \rangle + \mathcal{K} (\mathbf{X}_{T}^{i}) \Big] \\ & \mathbf{X}_{t+1}^{i} = f_{t} (\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}), \qquad \mathbf{X}_{0}^{i} = \mathbf{x}_{0}^{i} \\ & \mathbf{U}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \qquad \mathbf{U}_{t}^{i} \preceq \mathcal{F}_{t} \\ & \mathbf{Y}_{t+1} = \tilde{f}_{t} (\mathbf{Y}_{t}, \mathbf{W}_{t+1}) \end{split}$$

Solved by DP with state  $(\mathbf{X}_t^i, \mathbf{Y}_t)$ :

$$V_t^i(\mathbf{x}, \mathbf{y}) = \min_{\{\mathbf{U}_t^i\}} \quad \mathbb{E} \left[ L_t^i(\mathbf{x}_t^i, u_t^i, \mathbf{W}_{t+1}) + \langle \mu_t(\mathbf{Y}_t), \theta_t(\mathbf{U}_t^i) \rangle + V_{t+1}(\mathbf{X}_{t+1}, \mathbf{Y}_{t+1}) \right]$$
$$\mathbf{X}_{t+1}^i = f_t(\mathbf{x}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}),$$
$$u_t^i \in \mathcal{U}_{t,i}^{ad},$$
$$\mathbf{Y}_{t+1} = \tilde{f}_t(\mathbf{y}, \mathbf{W}_{t+1})$$

Main idea of DADP:  $\lambda_t \rightsquigarrow \mu_t := \mathbb{E}(\lambda_t | \mathbf{Y}_t)$ 



Main problems:

- Subproblems not easily solvable by DP
- $\lambda^{(k)}$  live in a huge space



Advantages:

- Subproblems solvable by DP with state (X<sup>i</sup><sub>t</sub>, Y<sub>t</sub>)
- $\mu^{(k)}$  live in a smaller space

Presentation of DADP Practical Questions Numerical Results

## 3 Interpretations of DADP

• DADP as an approximation of the optimal multiplier

 $\boldsymbol{\lambda}_t \quad \rightsquigarrow \quad \mathbb{E}(\boldsymbol{\lambda}_t | \mathbf{Y}_t) \ .$ 

• DADP as a decision-rule approach in the dual

 $\max_{\boldsymbol{\lambda}} \min_{\boldsymbol{U}} L(\boldsymbol{\lambda}, \boldsymbol{U}) \qquad \rightsquigarrow \qquad \max_{\boldsymbol{\lambda}_t \preceq \boldsymbol{Y}_t} \min_{\boldsymbol{U}} L(\boldsymbol{\lambda}, \boldsymbol{U}) \; .$ 

• DADP as a constraint relaxation

$$\sum_{i=1}^{n} \theta_t^i (\mathbf{U}_t^i) = 0 \qquad \rightsquigarrow \qquad \mathbb{E} \bigg( \sum_{i=1}^{n} \theta_t^i (\mathbf{U}_t^i) \bigg| \mathbf{Y}_t \bigg) = 0 .$$

## Theoretical Results

- Consistence of the approximation (if we consider a sequence of approximated problems).
- Existence of multiplier of the coupling constraint.
- Convergence of the decomposition algorithm for a given relaxation.
- Lower and upper bounds on the original problem.
- A posteriori verification allowing for better multiplier update.

Presentation of DADP Practical Questions Numerical Results

## Presentation Outline

# The Idea of Spatial Decomposition Intuition of Spatial Decomposition

• Stochastic Spatial Decomposition

### 2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in  $L^{\infty}$
- Existence of Multiplier

## Oual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

Presentation of DADP Practical Questions Numerical Results

## Choosing an Information Process Y

• Perfect memory:  $\mathbf{Y}_t^i = (\mathbf{W}_0, \dots, \mathbf{W}_t).$ 

 $\rightsquigarrow$  equivalent to original problem, no numerical gain.

• Minimal information:  $\mathbf{Y}_t^i \equiv \text{cste.}$ 

 $\rightsquigarrow$  equivalent to replacing a.s. constraint by expected constraint. Subproblems solved efficiently (state  $\mathbf{X}_t^i$ ), multiplier is deterministic.

• Static information:  $\mathbf{Y}_t^i = h_t^i(\mathbf{W}_t)$ .

 $\rightsquigarrow$  Subproblems solved efficiently (state  $\mathbf{X}_t^i$ ).

- Dynamic information: Y<sup>i</sup><sub>t+1</sub> = h<sup>i</sup><sub>t</sub>(Y<sup>i</sup><sub>t</sub>, W<sub>t+1</sub>).
   → A number of possibilities. Some ideas:
  - mimicking the trajectory of the state of another unit (phantom state),
  - mimicking the control of other units,
  - Markov chain representing rougly the general state of the system.

## Numerical Advantages of a finitely supported Y

- Assume that each noise  $\mathbf{W}_t$  take w values, and the constraint function take value in  $\mathbb{R}$ .
- Then the multiplier  $\lambda_t$  of the almost sure constraint at time t lives in  $\mathbb{R}^{wt}$ .
- Assume that the information process at time t take y values, then the multiplier of the relaxed constraint μ<sub>t</sub> lives in ℝ<sup>y</sup>.
- Moreover each subproblems take "only" roughly y times more computational effort to solve than the subproblem with local state X<sup>i</sup><sub>t</sub>.

Presentation of DADP Practical Questions Numerical Results

## Back to Admissibility

- Consider an information process  $\mathbf{Y}_{t+1} = \tilde{f}_t(\mathbf{Y}_t, \mathbf{W}_{t+1})$ .
- For a multiplier process  $\mu_t^{(k)}$  we obtain local Bellman function

$$\begin{split} \tilde{V}_t^i(x^i, y) &= \min_{u^i} \quad \mathbb{E}\left[L_t^i\left(x^i, u^i, \mathbf{W}_{t+1}\right) + \tilde{V}_t^i\left(x_{t+1}^i, y_{t+1}\right)\right] \\ \mathbf{X}_{t+1}^i &= f_t(x^i, u^i, \mathbf{W}_{t+1}) \\ \mathbf{Y}_{t+1} &= \tilde{f}_t(y, \mathbf{W}_{t+1}) \end{split}$$

• An admissible strategy is given by

$$\begin{aligned} \pi_t^{\mathrm{ad}}(x,y) \in & \underset{\{u^i\}_{i \in [1,N]}}{\operatorname{arg\,min}} \quad \mathbb{E}\left[\sum_{i=1}^N \left(L_t^i(x^i, u^i, \mathbf{W}_{t+1}) + \tilde{V}_t^i(\mathbf{X}_{t+1}, \mathbf{Y}_{t+1})\right)\right] \\ & \mathbf{X}_{t+1}^i = f_t^i(x^i, u^i, \mathbf{W}_{t+1}), \\ & \mathbf{Y}_{t+1} = \tilde{f}_t(y, \mathbf{W}_{t+1}) \end{aligned}$$

Presentation of DADP Practical Questions Numerical Results

## Presentation Outline

# The Idea of Spatial Decomposition Intuition of Spatial Decomposition

• Stochastic Spatial Decomposition

### 2 Uzawa Algorithm

- Presentation of Uzawa Algorithm
- Uzawa Algorithm in  $L^{\infty}$
- Existence of Multiplier

## Oual Approximate Dynamic Programming

- Presentation of DADP
- Practical Questions
- Numerical Results

# **Problem Specification**

- We consider a 3 dam problem, over 12 time steps.
- We relax each constraint with a given information process  $\mathbf{Y}^{i}$ .
- All random variable are discrete (noise, control, state).
- We test the following information processes:
   Constant information equivalent to replace the a.s. constraint by an expected constraint,
   Part of noise the information process is the inflow of the above dam Y<sup>i</sup><sub>t</sub> = W<sup>i-1</sup><sub>t</sub>,
   Phantom state the information process mimick the optimal trajectory of the state of the first dam (by statistical regression over the known optimal trajectory in this case)

Presentation of DADP Practical Questions Numerical Results

## Numerical Results on the 3 Dams Example

|             | DADP - $\mathbb E$  | DADP - $\mathbf{W}^{i-1}$ | DADP - dyn.         | DP                  |
|-------------|---------------------|---------------------------|---------------------|---------------------|
| Nb of it.   | 165                 | 170                       | 25                  | 1                   |
| Time (min)  | 2                   | 3                         | 67                  | 41                  |
| Lower Bound | $-1.386	imes10^{6}$ | $-1.379	imes10^{6}$       | $-1.373	imes10^{6}$ |                     |
| Final Value | $-1.335	imes10^{6}$ | $-1.321	imes10^{6}$       | $-1.344	imes10^{6}$ | $-1.366	imes10^{6}$ |
| Loss        | -2.3%               | -3.3%                     | -1.6%               | ref.                |

Table: Numerical results on the 3-dam problem

Presentation of DADP Practical Questions Numerical Results

# Summing up DADP

• Choose an information process **Y** following

 $\mathbf{Y}_{t+1} = \tilde{f}_t \big( \mathbf{Y}_t, \mathbf{W}_{t+1} \big).$ 

- We relax the almost sure coupling constraint into a conditional expectation one and apply a price decomposition scheme to the relaxed problem.
- The subproblems can be solved by dynamic programming with the state  $(\mathbf{X}_{t}^{i}, \mathbf{Y}_{t})$ .
- We give a consistency result (family of information process), a convergence result (fixed information process) and an existence of multiplier condition.
The Idea of Spatial Decomposition Uzawa Algorithm Dual Approximate Dynamic Programming Numerical Results

## The end

## Thanks for your attention!

## More information<sup>2</sup> on theoretical results tomorrow at ENPC, amphi Caquot I, (14h).

<sup>2</sup>and hopefully some champagne

V. Leclère