
Prelimineraries SDDP and decomposition algorithm Conclusion

On the convergence of decomposition methods for
multistage stochastic convex programs

P.Girardeau (Univ. of Auckland), V. Leclère (ENPC),
A. Philpott (Univ. of Auckland).

July 29, 2013

Girardeau, Leclère, Philpott. Convex SDDP Convergence July 2013 1 / 24



Prelimineraries SDDP and decomposition algorithm Conclusion

Contents

1 Prelimineraries
Problem statement
Dynamic Programming
Kelley’s Algorithm

2 SDDP and decomposition algorithm
Algorithm presentation
Convergence result
Known algorithms

3 Conclusion

Girardeau, Leclère, Philpott. Convex SDDP Convergence July 2013 2 / 24



Prelimineraries SDDP and decomposition algorithm Conclusion

Contents

1 Prelimineraries
Problem statement
Dynamic Programming
Kelley’s Algorithm

2 SDDP and decomposition algorithm
Algorithm presentation
Convergence result
Known algorithms

3 Conclusion

Girardeau, Leclère, Philpott. Convex SDDP Convergence July 2013 2 / 24



Prelimineraries SDDP and decomposition algorithm Conclusion

Problem statement

We consider a probabilistic world encoded on a
(non-recombining) finite tree N , such that each node m has a
probability Φm.
We consider a discrete time controled dynamical system where
the state x follow the equation

xm = fm(xp(m), um)

where
p(m) is the parent node of m,
um is the control choosen from node p(m) to reach node m, so
knowing the uncertainty,
the uncertainty in the evolution is taken into account in the
evolution function fm itself.

Loosely speaking we want to minimize the expected cost

E
( T∑

t=0

Ct(xt , ut) + VT (xT )

)
.
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Problem statement

min
x ,u

∑
n∈N\{L}

∑
m∈r(n)

ΦmCm (xn, um) +
∑
m∈L

ΦmVm (xm) (1a)

s.t. xm = fm
(
xp(m), um

)
, ∀m ∈ N\{0}, (1b)

x0 is given, (1c)

xm ∈ Xm, ∀m ∈ N , (1d)

um ∈ Um(xp(m)), ∀m ∈ N\{0}. (1e)

xm is the state, um the control for node m,

Cm the cost function at node m, Vm the final cost function,
fm the dynamic function (depending on uncertainties),

Φm the probability of node m,

Xm constraint set on the state, Um a constraint multifunction
on the control.
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Bellman’s function

We introduce, for each node n, the Bellman function Vn(x).

Vn(x) =
∑

m∈r(n)

Φm

Φn
min

u∈U(x)

{
Cm(x , u) + Vm ◦ fm(x , u)

}
.

And selecting for any node n the control un(x) in

um(x) ∈ argmin
u∈Um(x)

{
Cm(x , u) + Vm ◦ fm(x , u)

}
,

gives an optimal strategy.
Moreover assuming that we have for any children m of a node n an
outer approximation of Vm, i.e a function V k

m such that V k
m ≤ Vm,

then the function

V k
n : x 7→

∑
m∈r(n)

Φm

Φn
min

u∈U(x)

{
Cm(x , u) + V k

m ◦ fm(x , u)
}
,

is an outer approximation of Vn.
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V (x)
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Bird eye view

The class of algorithms studied consist in having an
outer-approximation of Vn denoted V k−1

n for any node and
updating him by adding cuts comparable to the Kelley’s algorithm.
The algorithm is two-folds :

In a first place, called forward path, given the actual set of
outer approximation we generate state trajectories on the
whole tree denoted xkn .

In a second place, we select a set of nodes (ni )i∈I . For each of
this nodes we update the outer approximations by adding a
cut. For the other nodes we simply conserve our former outer
approximation.
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Forward path

In the first part, also called Forward path we visit the tree from the
root node, were xk0 = x0 and recursively choose, for any children m
of a node n,

ukm ∈ argmin
u∈Um(xkn )

{
Cm(xkn , u) + V k−1

m ◦ fm(xkn , u)
}
,

and define
xkm = fm(xkn , u

k
m).
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“Backward path” (1/2)

We consider a selecting stochastic process (yk)k∈N, with value in
{0, 1}|N |. For each selected node n, i.e node n such that ykn = 1,
and for every child node m of node n, solve:

θ̂km = min
um,x

Cm(x , um) + V k−1
m ◦ fm(x , um), (2a)

x = xkni [β̂km] (2b)

um ∈ Um(x) (2c)

fm(x , um) ∈ Xm (2d)
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“Backward path” (2/2)

For each selected node n, define :

θkn =
∑

m∈r(n)

Φm

Φn
θ̂km and βkn =

∑
m∈r(n)

Φm

Φn
β̂km.

Thus
x 7→ θkn +

〈
βkn , x − xkn

〉
is an affine function below Vn. Finally, we update the outer
approximations. For every selected node n

V k
n (x) := max

(
V k−1
n (x) , θkn +

〈
βkn , x − xkn

〉)
, x ∈ Xt .
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Selection process

Definition

Let τ be a positive integer. The process (yk)k∈N is called a
τ -admissible selection process if

(i) For all k ∈ N, and all κ ∈ {0, . . . , τ − 1}, if the node m is
selected at time kτ + κ (i.e. ykτ+κ

m = 1) then all ancesters n
of m, have not been selected between time kτ and time
kτ + κ− 1.

(ii) ỹkn := max{y jn | kτ ≤ j < (k + 1)τ} (which determine if Vn is
updated during the “big step” k) satisfies, (ỹkm)k∈N is i.i.d.
and ỹkm is independent of the selection process up to time
kτ − 1.

(iii) All nodes are updated with positive probability in a “big step”:

∀n ∈ N\L, P(ỹkn = 1) > 0.

Girardeau, Leclère, Philpott. Convex SDDP Convergence July 2013 15 / 24



Prelimineraries SDDP and decomposition algorithm Conclusion

Hypotheses

1 Xn is convex compact;

2 the multifunctions Um are convex and convex compact valued
(equivalent to taking the control in a compact set with
constraint gm(x , um) ≤ 0 where g is jointly convex);

3 all cost functions Cn, and final cost functionsVm, are convex
lower semicontinuous proper functions;

4 the functions fm are linear;

5 all final cost functions Vm are Lipschitz-continuous on Xm;

6 There exists δ > 0 such that for all non terminal nodes n,

1 ∀x ∈ Xn + B(0, δ), ∀m ∈ r(n), fm(x ,Um(x)) ∩ Xm 6= ∅,
2 ∀x ∈ Xn + B(0, δ), ∀u ∈ Um(x), Cn(x , u) <∞.

Girardeau, Leclère, Philpott. Convex SDDP Convergence July 2013 16 / 24



Prelimineraries SDDP and decomposition algorithm Conclusion

Hypotheses

1 Xn is convex compact;

2 the multifunctions Um are convex and convex compact valued
(equivalent to taking the control in a compact set with
constraint gm(x , um) ≤ 0 where g is jointly convex);

3 all cost functions Cn, and final cost functionsVm, are convex
lower semicontinuous proper functions;

4 the functions fm are linear;

5 all final cost functions Vm are Lipschitz-continuous on Xm;

6 There exists δ > 0 such that for all non terminal nodes n,

1 ∀x ∈ Xn + B(0, δ), ∀m ∈ r(n), fm(x ,Um(x)) ∩ Xm 6= ∅,
2 ∀x ∈ Xn + B(0, δ), ∀u ∈ Um(x), Cn(x , u) <∞.

Girardeau, Leclère, Philpott. Convex SDDP Convergence July 2013 16 / 24



Prelimineraries SDDP and decomposition algorithm Conclusion

Convergence result

Theorem

Assume the preceding hypotheses holds true and that the selection
process is τ -admissible for some integer τ > 0.
Then we have that, P-almost surely the upper and lower bound are
converging toward the optimal value, and we can obtain an
ε−optimal strategy for any ε > 0.
More precisely∑
m∈r(n)

Φm

Φn

[
Cm

(
xkτn , ukτm

)
+ V k

m ◦ fm
(
xkτn , ukτm

)]
−Vn

(
xkτn

)
→ 0.

and
lim

k→+∞
Vn

(
xkτn

)
− V kτ

n

(
xkτn

)
= 0.
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Broad sketch of the proof

1 A first lemma gives regularity results on Vm and V k
m.

2 A second lemma assert that if V k
m converges toward Vm at

points xkm for all children of n, then the estimation of the cost
at node n is also convergent. The proof is close to Kelley’s
algorithm proof and rely on compacity of

∏
m∈r(n)Xm.

3 Finally the proof is done by backward induction. It is
straightforward for the node selected when they are selected,
and extended to all nodes by an independence property and
law of large number.
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CUPPS

Here at each major iteration we choose a T − 1-step scenario and
compute the optimal trajectory while at the same time updating
the value function for each node of the branch.
In our setting, this uses a 1-admissible selection process (yk)k∈N
defined by an i.i.d. sequence of random variables, with y0 selecting
a single branch of the tree. Our Theorem shows that for every
node n the upper and lower bound converges.
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SDDP and DOASA 1/2

There are two phases in each major iteration of the SDDP
algorithm, namely a forward pass, and a backward pass of T − 1
steps.
Given a current polyhedral outer approximation of the Bellman
function (V k̃−1

n )n∈N\L, a major iteration k̃ of the SDDP algorithm
consists in:

selecting uniformly a number N of scenarios (N = 1 for
DOASA);

simulating the optimal strategy for the approximated problem
on each of this scenarios yields a trajectory,

For t = T − 1 down to t = 0 for each scenario we update the
approximation by adding a cut, and then go backward in time.
Thus at time t when we compute a new cut the
approximation of Vt+1 has already been updated.
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SDDP and DOASA 2/2

SDDP fits into our framework as follows. Given N, we define the
T − 1-admissible selection process, (y (T−1)k)k∈N by an i.i.d.
sequence of random variables with y0 selecting uniformly a set of
N pre-leaves (i.e. nodes whose children are leaves) of the tree.
Then for κ ∈ {1, . . . ,T − 2}, k ∈ N, n ∈ N\L, we define

y
k(T−1)+κ
n :=

{
1 if there exist m ∈ r(n) such that y

k(T−1)+κ−1
m = 1

0 otherwise.

Our theorem gives convergence of upper and lower bound in this
case.
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Conclusion

The SDDP algorithms are well known and quite used in
practice especially in a linear framework to be able to use
powerful solver like CPLEX.

Until now every convergence proof has been done in the linear
case and most of the time for specific implementation of the
algorithm.

Our result extend the convergence to the convex, finite
distribution case, and for a wide class of algorithm.

It rely on an assumption sligthly stronger than the relatively
complete recourse case, and of some independence in the
selection process which forbid deterministic (Round-robin like)
selection.

Work is ongoing to extend to the continuous distribution case.
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The end

Thank you for your attention !
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