Problem Statement and Hilbert Case	Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$	Application to a Multistage Problem	Conclusion

Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$

V. Leclère (ENPC), P. Carpentier (ENSTA)

Conférence MODE, Rennes March 27, 2014

Problem Statement and Hilbert CaseUzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ Application to a Multistage Problem Conclusion0000000000000000000000000000000

- We want to treat constraints in a stochastic optimization problem, by duality methods.
- Uzawa algorithm is a simple dual method: it is a gradient algorithm for the dual problem.
- Uzawa algorithm is naturally described in an Hilbert space, thus in L², but conditions of convergence in stochastic optimization fails: we cannot guarantee the existence of an optimal multiplier.
- Consequently, we extend the algorithm to the non-reflexive Banach L[∞](Ω, F, ℙ; ℝⁿ) and gives a result of convergence.
- We also give conditions of existence of optimal multiplier.
- Finally we apply the algorithm to a multistage problem.

Problem Statement and Hilbert CaseUzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ Application to a Multistage Problem Conclusion00000000000000000000000000000

- We want to treat constraints in a stochastic optimization problem, by duality methods.
- Uzawa algorithm is a simple dual method: it is a gradient algorithm for the dual problem.
- Uzawa algorithm is naturally described in an Hilbert space, thus in L², but conditions of convergence in stochastic optimization fails: we cannot guarantee the existence of an optimal multiplier.
- Consequently, we extend the algorithm to the non-reflexive Banach L[∞](Ω, F, ℙ; ℝⁿ) and gives a result of convergence.
- We also give conditions of existence of optimal multiplier.
- Finally we apply the algorithm to a multistage problem.

- We want to treat constraints in a stochastic optimization problem, by duality methods.
- Uzawa algorithm is a simple dual method: it is a gradient algorithm for the dual problem.
- Uzawa algorithm is naturally described in an Hilbert space, thus in L², but conditions of convergence in stochastic optimization fails: we cannot guarantee the existence of an optimal multiplier.
- Consequently, we extend the algorithm to the non-reflexive Banach $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ and gives a result of convergence.
- We also give conditions of existence of optimal multiplier.
- Finally we apply the algorithm to a multistage problem.

- We want to treat constraints in a stochastic optimization problem, by duality methods.
- Uzawa algorithm is a simple dual method: it is a gradient algorithm for the dual problem.
- Uzawa algorithm is naturally described in an Hilbert space, thus in L², but conditions of convergence in stochastic optimization fails: we cannot guarantee the existence of an optimal multiplier.
- Consequently, we extend the algorithm to the non-reflexive Banach $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ and gives a result of convergence.
- We also give conditions of existence of optimal multiplier.
- Finally we apply the algorithm to a multistage problem.

Presentation Outline

- Problem Statement and Hilbert Case
 - Problem Statement
 - Uzawa Algorithm in Hilbert Spaces
 - $\bullet\ {\rm L}^2$ not Adapted for Almost Sure Constraint
- 2 Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$
 - Differences Between $\mathrm{L}^\inftyig(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^nig)$ and an Hilbert space
 - Uzawa in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$
 - Existence of L¹-multiplier
- 3 Application to a Multistage Problem
 - Multistage setup
 - Convergence Result and Remarks

Problem Statement and Hilbert Case	Uzawa Algorithm in $\mathrm{L}^{\infty}\left(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^{n} ight)$	Application to a Multistage Problem	Conclusion
•••••			

Contents

Problem Statement and Hilbert Case Problem Statement

- Uzawa Algorithm in Hilbert Spaces
- $\bullet\ {\rm L}^2$ not Adapted for Almost Sure Constraint
- 2 Uzawa Algorithm in $\mathrm{L}^\infty(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^n)$
 - Differences Between $\mathrm{L}^\inftyig(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^nig)$ and an Hilbert space
 - Uzawa in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$
 - Existence of L¹-multiplier
- 3 Application to a Multistage Problem
 - Multistage setup
 - Convergence Result and Remarks

Problem Statement

We consider the following (primal) problem:

$$egin{array}{lll} (\mathcal{P}) & \min_{u\in\mathcal{U}^{\mathrm{ad}}} & J(u) \;, \ & s.t. & \Theta(u)\in-C \;. \end{array}$$

Where ${\boldsymbol{\mathcal{U}}}$ and ${\boldsymbol{\mathcal{V}}}$ are two Hausdorff spaces, and

- $J:\mathcal{U}\to \bar{\mathbb{R}}$ is an objective function ,
- $\Theta: \mathcal{U} \to \mathcal{V}$ is a constraint function (to be dualized),
- $\mathcal{C} \subset \mathcal{V}$ is a cone of constraints,
- $\mathcal{U}^{\mathrm{ad}} \subset \mathcal{U}$ is a constraint set (not to be dualized).

Problem Statement and Hilbert Case	Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$	Application to a Multistage Problem Conclusion	
0000000000			

Dual Problem

The primal problem can be written

 $\begin{array}{l} \left(\mathcal{P}\right) & \min_{u \in \mathcal{U}^{\mathrm{ad}}} & \max_{\lambda \in C^{\star}} & J(u) + \left\langle \lambda, \Theta(u) \right\rangle_{\mathcal{V}^{\star}, \mathcal{V}}, \\ \\ \text{where } C^{\star} \subset \mathcal{V}^{\star} \text{ is given by} \\ \\ C^{\star} = \left\{ \lambda \in \mathcal{V}^{\star} \mid \forall x \in C, \quad \left\langle \lambda, x \right\rangle_{\mathcal{V}^{\star}, \mathcal{V}} \geq 0 \right\}. \end{array}$

The dual problem of Problem (\mathcal{P}) reads $(\mathcal{D}) = \max_{\lambda \in C^{\star}} \min_{u \in \mathcal{U}^{\mathrm{ad}}} J(u) + \langle \lambda, \Theta(u) \rangle_{\mathcal{V}^{\star}, \mathcal{V}}.$

Equivalence of (\mathcal{P}) and (\mathcal{D}) , Saddle-Point and Multiplier.

We introduce the Lagrangian associated to Problem (\mathcal{P}) ,

 $L(u,\lambda) := J(u) + \langle \lambda, \Theta(u) \rangle_{\mathcal{V}^{\star},\mathcal{V}}.$

Proposition

The primal problem (\mathcal{P}) and the dual problem (\mathcal{D}) are equivalent (same value and same set of solutions), i.e,

 $\min_{u \in \mathcal{U}^{\mathrm{ad}}} \max_{\lambda \in C^{\star}} L(u, \lambda) = \max_{\lambda \in C^{\star}} \min_{u \in \mathcal{U}^{\mathrm{ad}}} L(u, \lambda) ,$

iff the Lagrangian *L* admits a saddle point on $\mathcal{U}^{\mathrm{ad}} \times C^*$, or equivalently if the constraint $\Theta(u) \in -C$ is qualified.

Problem Statement and Hilbert Case	Uzawa Algorithm in $\mathrm{L}^{\infty}\left(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^{n} ight)$	Application to a Multistage Problem	Conclusion
0000000000			

Contents

Problem Statement and Hilbert Case Problem Statement • Uzawa Algorithm in Hilbert Spaces • L² not Adapted for Almost Sure Constraint • Differences Between $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ and an Hilbert space • Uzawa in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ • Existence of L¹-multiplier Multistage setup

• Convergence Result and Remarks

Gradient of the Dual

Assume that $\mathcal{U} = \mathcal{U}^{\star}$, and $\mathcal{V} = \mathcal{V}^{\star}$ are Hilbert spaces. Recall the dual problem (\mathcal{D}) as

$$\max_{\lambda \in C^{\star}} \underbrace{\min_{u \in \mathcal{U}^{\mathrm{ad}}} \left\{ J(u) + \langle \lambda, \Theta(u) \rangle_{\mathcal{V}^{\star}, \mathcal{V}} \right\}}_{:=\varphi(\lambda)} .$$

Under some regularity conditions, if $u^{\sharp}(\lambda)$ is a minimizer of the above problem, then

 $\Theta(u^{\sharp}(\lambda)) = \nabla \varphi(\lambda) \; .$

$$\begin{cases} u^{(k)} &\in \operatorname{arg\,min}_{u \in \mathcal{U}^{\mathrm{ad}}} \left\{ J(u) + \left\langle \lambda^{(k)}, \Theta(u) \right\rangle_{\mathcal{V}^{\star}, \mathcal{V}} \right\} \\ \lambda^{(k+1)} &= \operatorname{proj}_{\mathcal{C}^{\star}} \left(\lambda^{(k)} + \rho \; \Theta(u^{(k)}) \right) \end{cases}$$

Problem Statement and Hilbert Case	Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$	Application to a Multistage Problem	Conclusion
00000000000			

Uzawa Algorithm

Data: Initial multiplier $\lambda^{(0)} \in \mathcal{V}$, step $\rho > 0$; **Result**: Optimal solution u^{\sharp} and multiplier λ^{\sharp} ; **repeat**

$$u^{(k)} \in \underset{u \in \mathcal{U}^{\mathrm{ad}}}{\operatorname{arg min}} \quad \left\{ J(u) + \left\langle \lambda^{(k)}, \Theta(u) \right\rangle \right\},$$
$$\lambda^{(k+1)} = \operatorname{proj}_{\mathcal{C}^{\star}} \left(\lambda^{(k)} + \rho \; \Theta(u^{(k)}) \right) \;.$$

until $\Theta(u^{(k)}) \in -C$;

Application to a Multistage Problem Conclusion 000000

Convergence of Uzawa Algorithm in Hilbert Spaces

proposition

Assume that,

- the function $J : \mathcal{U} \to \mathbb{R}$ is strongly convex of modulus *a*, and Gâteaux-differentiable;
- **2** the function $\Theta : \mathcal{U} \to \mathcal{V}$ is *C*-convex, and κ -Lipschitz;
- **3** $\mathcal{U}^{\mathrm{ad}} \neq \emptyset$ is a closed convex subset of the Hilbert space \mathcal{U} ;
- C is a non empty, closed convex cone of the Hilbert space \mathcal{V} ;
- the Lagrangian *L* admits a saddle-point $(u^{\sharp}, \lambda^{\sharp})$ on $\mathcal{U}^{\mathrm{ad}} \times C^{\star}$;
- the step size is small enough $(0 < \rho < 2a/\kappa^2)$.

Then, the Uzawa algorithm is well defined and, the sequence $\{u^{(k)}\}_{k\in\mathbb{N}}$ converges toward u^{\sharp} in norm.

Convergence of Uzawa Algorithm in Hilbert Spaces

proposition

Assume that,

- the function $J : \mathcal{U} \to \mathbb{R}$ is strongly convex of modulus *a*, and Gâteaux-differentiable;
- **2** the function $\Theta : \mathcal{U} \to \mathcal{V}$ is *C*-convex, and κ -Lipschitz;
- **3** $\mathcal{U}^{\mathrm{ad}} \neq \emptyset$ is a closed convex subset of the Hilbert space \mathcal{U} ;
- C is a non empty, closed convex cone of the Hilbert space \mathcal{V} ;
- the Lagrangian L admits a saddle-point $(u^{\sharp}, \lambda^{\sharp})$ on $\mathcal{U}^{\mathrm{ad}} \times C^{\star}$;
- the step size is small enough $(0 < \rho < 2a/\kappa^2)$.

Then, the Uzawa algorithm is well defined and, the sequence $\{u^{(k)}\}_{k\in\mathbb{N}}$ converges toward u^{\sharp} in norm.

Problem Statement and Hilbert Case	Uzawa Algorithm in $\mathrm{L}^{\infty}\left(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^{n} ight)$	Application to a Multistage Problem	Conclusion
000000000000			

Contents

Problem Statement and Hilbert Case

- Problem Statement
- Uzawa Algorithm in Hilbert Spaces
- L² not Adapted for Almost Sure Constraint
- 2 Uzawa Algorithm in $\mathrm{L}^\inftyig(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^nig)$
 - Differences Between $\mathrm{L}^\inftyig(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^nig)$ and an Hilbert space
 - Uzawa in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$
 - Existence of L¹-multiplier
- 3 Application to a Multistage Problem
 - Multistage setup
 - Convergence Result and Remarks

Problem Statement and Hilbert CaseUzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ Application to a Multistage ProblemConclusion00000000000000000000000000000000

Stochastic Optimization Setting

In a stochastic optimization setting the most natural Hilbert space is $L^2(\Omega, \mathcal{F}, \mathbb{P})$. A natural optimization problem is thus

$$\min_{\substack{\mathbf{U}\in\mathcal{U}^{\mathrm{ad}}\subset L^2\\ s.t.}} \quad \overbrace{\mathbb{E}\left[j(\mathbf{U})\right]}^{:=J(\mathbf{U})} = \int_{\Omega} j(\mathbf{U}(\omega),\omega) d\mathbb{P}(\omega) ,$$

where $j : \mathbb{R}^n \times \Omega \to \overline{\mathbb{R}}$ is a convex normal integrand (for example a Carathéodory integrand, that is continuous in u for almost all ω , and measurable in ω for all u).

Application to a Multistage Problem Conclusion

Sufficient Condition of Qualification

Proposition

Under the following assumption

$$\mathsf{0}\in\mathrm{ri}\left(\Thetaig(\mathcal{U}^{\mathrm{ad}}\cap\mathrm{dom}(J)ig)+\mathcal{C}ig)\,,$$

The primal problem admits an optimal solution and constraint $\Theta(\mathbf{U}) \in -C$ is qualified.

Proposition

If the σ -algebra \mathcal{F} is not finite, then for any set $U^{\mathrm{ad}} \subsetneq \mathbb{R}^n$, that is not a linear space, the set

$$\mathcal{U}^{\mathrm{ad}} = \left\{ \mathbf{U} \in \mathrm{L}^{p}ig(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^{n}ig) \mid \mathbf{U} \in U^{\mathrm{ad}} \mid \mathbb{P}-\textit{a.s.}
ight\},$$

has an empty (relative) interior in L^p , for $p < +\infty$.

Problem State	ement	and	Hilbert	Case

use Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$

Application to a Multistage Problem Conclusion

Contents

- Problem Statement and Hilbert Case
 - Problem Statement
 - Uzawa Algorithm in Hilbert Spaces
 - L² not Adapted for Almost Sure Constraint
- 2 Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$
 - Differences Between $\mathrm{L}^\inftyig(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^nig)$ and an Hilbert space
 - Uzawa in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$
 - Existence of L¹-multiplier
- 3 Application to a Multistage Problem
 - Multistage setup
 - Convergence Result and Remarks

Problem Statement and Hilbert Case	Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$	Application to a Multistage Problem Conclusion
	00000000000000	

From now on we consider that

$$egin{aligned} &\mathcal{U} = \mathrm{L}^\inftyig(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^nig)\;, \ &\mathcal{V} = \mathrm{L}^\inftyig(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^mig)\;, \ &\mathcal{C} = \{0\}. \end{aligned}$$

Where the σ -algebra is not finite (modulo \mathbb{P}). Hence, \mathcal{U} and \mathcal{V} are non-reflexive, non-separable, Banach spaces. If the σ -algebra is finite modulo \mathbb{P} , \mathcal{U} and \mathcal{V} are finite dimensional spaces, and the usual result applies.

Application to a Multistage Problem Conclusion

Perks of an Hilbert Space

Fact

In an Hilbert space \mathcal{H} we know that

- i) the weak and weak* topologies are identical,
- ii) the space ${\mathcal H}$ and its topological dual can be identified.

Point *i*) allows to formulate existence of minimizer results:

- weakly closed bounded \implies weakly compact;
- for a convex set : weakly closed \iff closed;
- for a convex function: weakly $I.s.c \iff I.s.c.$

Hence, a strongly-convex, lower semicontinuous function ${\boldsymbol{J}}$ admits an infimum.

Point *ii*) allows to write gradient-like algorithm: at any iteration k, we have a point $u^{(k)} \in \mathcal{H}$, and the gradient $g^{(k)} = \nabla f(u^{(k)}) \in \mathcal{H}$. Hence, linear combination of $\lambda^{(k)}$ and $g^{(k)}$ make sense. Problem Statement and Hilbert CaseUzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ Application to a Multistage Problem Conclusion00000000000000000000000000000

Difficulties Appearing in a Banach Space

- In a reflexive Banach space E, i) still holds true, and thus the existence of a minimizer remains easy to show. However ii) does not hold anymore. Indeed g now belongs to the topological dual of E. Thus a combination of $u^{(k)} \in E$ and $g^{(k)} \in E^*$ does not have any sense.
- In a non-reflexive Banach space *E*, neither *i*) nor *ii*) holds true.
- However if E is the topological dual of a Banach space, then a weakly* closed bounded subset of E is weak* compact. Thus, weak* lower semicontinuity and coercivity of a function J gives the existence of minimizers of J.

Specificities of $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$

- L[∞](Ω, F, P; ℝⁿ) is the topological dual of the Banach space L¹(Ω, F, P; ℝⁿ). Hence, if J is weak^{*} l.s.c and coercive, then J admits a minimizer.
- L^{∞} can be identified with a subset of its topological dual $(L^{\infty})^{\star}$. Thus, the update step

 $\boldsymbol{\lambda}^{(k+1)} = \boldsymbol{\lambda}^{(k)} + \rho \, \Theta(\mathbf{U}^{(k)}) \; ,$

make sense: it is a linear combination of elements of $(L^{\infty})^{\hat{}}$.

• Moreover, if $\lambda^{(0)}$ is chosen in L^{∞} , then the sequence $\{\lambda^{(k)}\}_{k\in\mathbb{N}}$ remains in L^{∞} .

Problem Statement and Hilbert Case	Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$	Application to a Multistage Problem	Conclusio
	000000000000000000000000000000000000000		

Contents

- Problem Statement and Hilbert Case
 - Problem Statement
 - Uzawa Algorithm in Hilbert Spaces
 - L² not Adapted for Almost Sure Constraint
- 2 Uzawa Algorithm in L[∞](Ω, F, P; ℝⁿ)
 Differences Between L[∞](Ω, F, P; ℝⁿ) and an Hilbert space
 - Uzawa in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$
 - Existence of L¹-multiplier
- 3 Application to a Multistage Problem
 - Multistage setup
 - Convergence Result and Remarks

Uzawa Algorithm

Data: Initial multiplier $\lambda^{(0)} \in L^{\infty}$, step $\rho > 0$; **Result**: Optimal solution U^{\sharp} and multiplier λ^{\sharp} ; **repeat**

$$\begin{split} \mathbf{U}^{(k)} &\in \mathop{\arg\min}_{\mathbf{U} \in \mathcal{U}^{\mathrm{ad}}} \quad \left\{ J(\mathbf{U}) + \left\langle \boldsymbol{\lambda}^{(k)} , \boldsymbol{\Theta}(\mathbf{U}) \right\rangle \right\}, \\ \mathbf{\lambda}^{(k+1)} &= \mathbf{\lambda}^{(k)} + \rho \; \boldsymbol{\Theta}(\mathbf{U}^{(k)}) \; . \end{split}$$

until $\Theta(\mathbf{U}^{(k)}) = 0$;

Remark: numerically, other update rules (e.g. quasi-Newton) can be used, convergence being proven when we find a multiplier $\lambda^{(k)}$ such that $\Theta(\mathbf{U}^{(k)}) = 0$.

Existence of Solution

Theorem

Assume that:

- the constraint set \mathcal{U}^{ad} is weakly^{*} closed;
- $\textcircled{O} \ \Theta: \mathcal{U} \rightarrow \mathcal{V} \text{ is affine, weakly}^{\star} \text{ continuous;}$
- Some semicontinuous and coercive on \mathcal{U}^{ad} ;
- there exists an admissible control.

Then the primal problem admits at least one solution. Moreover for any $\lambda \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^m)$

$$rgmin_{\mathbf{U}\in\mathcal{U}^{\mathrm{ad}}}\left\{J(\mathbf{U})+\left\langle \boldsymbol{\lambda}\,,\Theta(\mathbf{U})
ight
angle
ight\}
eq\emptyset$$
 .

Convergence Result

Theorem

Assume that:

- $J: \mathcal{U} \to \overline{\mathbb{R}}$ is a proper, weak^{*} lower semicontinuous, Gâteaux-differentiable, *a*-convex function;
- **2** $\Theta: \mathcal{U} \to \mathcal{V}$ is affine, weak^{*} continuous and κ -Lipschitz;
- 3 there exists an admissible control;
- \mathcal{U}^{ad} is weak* closed convex;
- **(**) there is an optimal L^1 -multiplier to the constraint $\Theta(U) = 0$;
- the step ρ is such that $0 < \rho < \frac{2a}{\kappa}$.

Then, Uzawa algorithm is well defined and there exists a subsequence $(\mathbf{U}^{(n_k)})_{k\in\mathbb{N}}$ converging in \mathbf{L}^{∞} toward the optimal solution \mathbf{U}^{\sharp} of the primal problem.

Convergence Result

Theorem

Assume that:

- $J: \mathcal{U} \to \overline{\mathbb{R}}$ is a proper, weak^{*} lower semicontinuous, Gâteaux-differentiable, *a*-convex function;
- **2** $\Theta: \mathcal{U} \to \mathcal{V}$ is affine, weak^{*} continuous and κ -Lipschitz;
- 3 there exists an admissible control;
- \mathcal{U}^{ad} is weak* closed convex;
- **(**) there is an optimal L^1 -multiplier to the constraint $\Theta(\mathbf{U}) = 0$;
- the step ρ is such that $0 < \rho < \frac{2a}{\kappa}$.

Then, Uzawa algorithm is well defined and there exists a subsequence $(\mathbf{U}^{(n_k)})_{k\in\mathbb{N}}$ converging in \mathbf{L}^{∞} toward the optimal solution \mathbf{U}^{\sharp} of the primal problem.

Problem Statement and Hilbert Case	Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$	Application to a Multistage Problem Conclusion
	000000000000000	

Contents

Problem Statement and Hilbert Case

- Problem Statement
- Uzawa Algorithm in Hilbert Spaces
- L² not Adapted for Almost Sure Constraint

2 Uzawa Algorithm in L[∞](Ω, F, P; Rⁿ) • Differences Between L[∞](Ω, F, P; Rⁿ) and an Hilbert space • Uzawa in L[∞](Ω, F, P; Rⁿ)

Existence of L¹-multiplier

3 Application to a Multistage Problem

- Multistage setup
- Convergence Result and Remarks

Some Topologies on L^{∞}

- The topology $\tau_{\parallel\parallel}$ is the norm topology of L^{∞} .
- The weak topology $\sigma(L^{\infty}, (L^{\infty})^{\star})$ is the coarsest topology such that all norm-continuous linear form on L^{∞} remains continuous.
- The weak* topology $\sigma(L^{\infty}, L^1)$ is the coarsest topology such that all the L¹-linear form are continuous.
- The Mackey-topology $\tau(L^{\infty}, L^1)$ is the finest topology such that the only continuous linear form are the L¹-linear form.

$\sigma \big(\mathrm{L}^\infty, (\mathrm{L}^\infty)^* \big) \subset \tau \big(\mathrm{L}^\infty, \mathrm{L}^1 \big) \subset \sigma \big(\mathrm{L}^\infty, \mathrm{L}^1 \big) \subset \tau_{|||} \; .$

Coarser topology => more compact.

Finer topology

more continuous real valued function.

Some Topologies on L^{∞}

- The topology $\tau_{\parallel\parallel}$ is the norm topology of L^{∞} .
- The weak topology $\sigma(L^{\infty}, (L^{\infty})^*)$ is the coarsest topology such that all norm-continuous linear form on L^{∞} remains continuous.
- The weak* topology $\sigma(L^{\infty}, L^1)$ is the coarsest topology such that all the L¹-linear form are continuous.
- The Mackey-topology $\tau(L^{\infty}, L^1)$ is the finest topology such that the only continuous linear form are the L¹-linear form. We have

$$\sigma\big(\mathrm{L}^{\infty},(\mathrm{L}^{\infty})^{\star}\big)\subset\tau\big(\mathrm{L}^{\infty},\mathrm{L}^{1}\big)\subset\sigma\big(\mathrm{L}^{\infty},\mathrm{L}^{1}\big)\subset\tau_{||||}\;.$$

- Coarser topology \implies more compact.
- Finer topology \implies more continuous real valued function.

A Theoretical Condition

Proposition

Assume that:

• $j: \mathbb{R}^d \times \Omega \to \bar{\mathbb{R}}$ is a convex normal integrand, such that

$$\begin{split} \exists \varepsilon > 0, \quad \exists \, \mathbf{U}_0 \in \mathcal{U}^{ad}, \quad \forall u \in \mathbb{R}^d, \\ \|u\|_{\mathbb{R}^d} \leq \varepsilon \implies j(\mathbf{U}_0 + u, \cdot) < +\infty \quad \mathbb{P} - \mathsf{a.s.} \end{split}$$

• $J = \mathbb{E}[j(\cdot)]$ is $\tau(L^{\infty}, L^1)$ -(upper-semi)continuous at some point $\mathbf{U}_0 \in \mathcal{U}^{ad} \cap \operatorname{dom}(J)$;

• $\mathcal{U}^{\mathrm{ad}}$ is a weak^{*} closed linear subspace of $\mathrm{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$;

Then, the constraint $\Theta(\mathbf{U}) = 0$ admit a multiplier in L^1 .

Remark : J is weak* l.s.c.

Problem Statement and Hilbert CaseUzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ Application to a Multistage Problem Conclusion00000000000000000000000000000

A Practical Condition

Proposition

Assume that j is a convex integrand and that and that J is finite everywhere on $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$. Then, J is $\tau(L^{\infty}, L^1)$ -continuous.

Proposition

Consider a convex normal integrand $j : \mathbb{R}^n \times \Omega \to \mathbb{R}$, Consider a set $U^{\text{nd}} \subseteq \mathbb{R}^m$ and define the set of random variable

$$\mathcal{U}^{\operatorname{a.s.}} := \left\{ \mathbf{U} \in \mathrm{L}^\infty(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d) \mid \ \mathbf{U} \in U^{\operatorname{ad}} \mid \mathbb{P}-\operatorname{a.s.}
ight\}$$

Then,

$\widetilde{J}: \mathbf{U} \mapsto J(\mathbf{U}) + \chi_{\mathbf{U} \in \mathcal{U}^{\mathtt{a.s.}}},$

is not Mackey continuous on its domain.

Problem Statement and Hilbert CaseUzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ Application to a Multistage Problem Conclusion00000000000000000000000000000

A Practical Condition

Proposition

Assume that j is a convex integrand and that and that J is finite everywhere on $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$. Then, J is $\tau(L^{\infty}, L^1)$ -continuous.

Proposition

Consider a convex normal integrand $j : \mathbb{R}^n \times \Omega \to \overline{\mathbb{R}}$, Consider a set $U^{\mathrm{ad}} \subsetneq \mathbb{R}^m$ and define the set of random variable

$$\mathcal{U}^{\mathsf{a.s.}} := ig \{ \mathbf{U} \in \mathrm{L}^\inftyig(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^dig) \ | \ \mathbf{U} \in U^{\mathrm{ad}} \ \mathbb{P}-\mathsf{a.s.} ig \}$$

Then,

 $\widetilde{J}: \mathbf{U} \mapsto J(\mathbf{U}) + \chi_{\mathbf{U} \in \mathcal{U}^{\mathsf{a.s.}}} ,$

is not Mackey continuous on its domain.

Problem Statement and Hilbert CaseUzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ Application to a Multistage ProblemConclusion000000000000000000000000000000

Other Conditions with Relatively Complete Recourse Assumptions

- This Mackey-continuity assumption forbid the use of almost sure bounds.
- In order to deal with almost sure bounds, we can turn towards the work of R.T.Rockafellar and R.J-B.Wets. In a first series of 4 papers (stochastic convex programming) they detailed the duality on a two stage problem; which was extended to multistage problems in 3 other papers (with a specific focus on non-anticipativity constraints).
- These papers require:
 - a strict feasability assumption,
 - a relatively complete recourse assumption.

Problem Statement and Hilbert Case	Uzawa Algorithm in $\mathrm{L}^{\infty}\left(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^{n} ight)$

Contents

- Problem Statement and Hilbert Case
 - Problem Statement
 - Uzawa Algorithm in Hilbert Spaces
 - L² not Adapted for Almost Sure Constraint
- 2 Uzawa Algorithm in $\mathrm{L}^\infty(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^n)$
 - Differences Between $\mathrm{L}^\inftyig(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^nig)$ and an Hilbert space
 - Uzawa in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$
 - Existence of L¹-multiplier
- 3 Application to a Multistage Problem
 - Multistage setup
 - Convergence Result and Remarks

Application to a Multistage Problem Conclusion

Problem Statement

$$\begin{split} \min_{\mathbf{X},\mathbf{D}} & & \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t\big(\mathbf{X}_t,\mathbf{D}_t,\mathbf{W}_t\big) + \mathcal{K}(\mathbf{X}_T)\Big] \\ s.t. & & \mathbf{X}_0 = x_0 \\ & & \mathbf{X}_{t+1} = f_t\big(\mathbf{X}_t,\mathbf{D}_t,\mathbf{W}_t\big), & \text{dynamic} \\ & & \mathbf{D}_t \preceq \sigma\big(\mathbf{W}_0,\ldots,\mathbf{W}_t\big), & \text{non-anticipativity} \\ & & \mathbf{D}_t \in \mathcal{D}_t^{\mathrm{ad}}, \quad \mathbb{P}-\mathrm{a.s.} & \text{bound constraint} \\ & & \mathbf{X}_t \in \mathcal{X}_t^{\mathrm{ad}}, \quad \mathbb{P}-\mathrm{a.s.} & \text{bound constraint} \\ & & \theta_t\big(\mathbf{X}_t,\mathbf{D}_t\big) = \mathbf{B}_t \quad \mathbb{P}-\mathrm{a.s.} & \text{affine constraint} \end{split}$$

Application to a Multistage Problem Conclusion ○○●○○○

Uzawa algorithm

Data: Initial multiplier process $\lambda^{(0)} \in L^{\infty}$, step $\rho > 0$; **Result**: Optimal solution D^{\sharp} and multiplier process λ^{\sharp} ; **repeat**

$$\begin{split} \left(\mathbf{D}^{(k)}, \mathbf{X}^{(k)}\right) &\in \quad \arg\min_{\mathbf{D}, \mathbf{X}} \quad \left\{ \mathbb{E} \left[\sum_{t=0}^{T-1} L_t \left(\mathbf{X}_t, \mathbf{D}_t, \mathbf{W}_t\right) \right. \\ &+ \lambda_t^{(k)} \cdot \theta_t \left(\mathbf{X}_t, \mathbf{D}_t\right) \right] \right\} \\ \lambda_t^{(k+1)} &= \quad \lambda_t^{(k)} + \rho_t \left(\theta_t \left(\mathbf{X}_t^{(k)}, \mathbf{D}^{(k)}\right) - \mathbf{B}_t \right) . \\ \text{where } \left(\mathbf{D}, \mathbf{X}\right) \text{ satisfies all constraint except the dualized one.} \\ \text{until } \forall t \in \llbracket 0, T \rrbracket, \quad \theta_t \left(\mathbf{X}_t^{(k+1)}, \mathbf{D}^{(k+1)}\right) = \mathbf{B}_t ; \end{split}$$

Problem Statement and Hilbert Case	Uzawa Algorithm in $\mathrm{L}^{\infty}\left(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^{n} ight)$	Applica
		00000

Contents

- Problem Statement and Hilbert Case
 - Problem Statement
 - Uzawa Algorithm in Hilbert Spaces
 - L² not Adapted for Almost Sure Constraint
- 2 Uzawa Algorithm in $\mathrm{L}^\infty(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^n)$
 - Differences Between $\mathrm{L}^\inftyig(\Omega,\mathcal{F},\mathbb{P};\mathbb{R}^nig)$ and an Hilbert space
 - Uzawa in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$
 - Existence of L¹-multiplier
- 3 Application to a Multistage Problem
 - Multistage setup
 - Convergence Result and Remarks

Convergence Result

Proposition

Assume that,

- the cost functions L_t are Gâteaux-differentiable (in (x, u)), strongly-convex (in (x, u)) functions and continuous in w;
- **2** the constraint functions $\theta_t : \mathbb{R}^{n_x + n_d} \to \mathbb{R}^{n_c}$ are affine;
- **③** the evolution functions $f_t : \mathbb{R}^{n_x + n_d + n_w} \to \mathbb{R}^{n_x}$ are affine;
- the constraint sets $\mathcal{X}_t^{\mathrm{ad}}$ and $\mathcal{U}_t^{\mathrm{ad}}$ are weak* closed, convex;
- there exist a process (X, D) satisfying all constraints;
- there exist an optimal multiplier process in L¹ to the almost sure affine constraint.

Then Uzawa algorithm is well defined, and there exists a subsequence $(\mathbf{D}^{(n_k)})_{k\in\mathbb{N}}$ converging in \mathbf{L}^{∞} toward the optimal control of the multistage problem.

Problem Statement and Hilbert CaseUzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$ Application to a Multistage ProblemConclusion0000000000000000000000000000000000000

Remarks

- If there is no bound constraint, then there exist a L^1 -multiplier.
- A multiplier $\lambda = \{\lambda_0, \dots, \lambda_T\}$ is a stochastic process that can be chosen adapted with respect to $\mathfrak{F} = \{\mathcal{F}_0, \dots, \mathcal{F}_T\}$ where $\mathcal{F}_t := \sigma(\mathbf{W}_0, \dots, \mathbf{W}_t)$.
- However, if we want to use this algorithm as the master programm of a decomposition algorithm (by price) we have to solve, for a given adapted process λ^(k)

$$\min_{\mathbf{D},\mathbf{X}} \quad \left\{ \mathbb{E} \bigg[\sum_{t=0}^{T-1} L_t \big(\mathbf{X}_t, \mathbf{D}_t, \mathbf{W}_t \big) + \boldsymbol{\lambda}_t^{(k)} \cdot \boldsymbol{\theta}_t \big(\mathbf{X}_t, \mathbf{D}_t \big) \bigg] \right\},$$

where (D, X) satisfies all constraint except the dualized one.
If we approximate the multiplier process λ by E[λ_t | Y_t], where Y_t is a Markov chain, then we can solve this minimization problem by DP (with the state (X_t, Y_t).

Problem Statement and Hilbert Case	Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$	Application to a Multistage Problem	Conclusion

In a nutshell

- Uzawa algorithm is a gradient algorithm for the dual problem, that naturally take place in Hilbert space, like L^2 .
- Convergence result of Uzawa algorithm require the existence of an optimal multiplier of the dualized constraint.
- Sufficient conditions of existence of an optimal multiplier in L^2 are not adapted to almost sure constraint. L^∞ is better suited to this purpose.
- Consequently we have seen that Uzawa algorithm make sense in L^∞ and given a result of convergence (of a subsequence) that require a L^1 multiplier...
- ullet and we have given conditions of existence of a L^1 multiplier.

The next steps

- Finally we have applied this algorithm to a multistage problem, and given conditions of convergence.
- However, there is two difficulties:
 - solving the minimization problem for a given $\lambda^{(k)}$ is difficult;
 - the space of stochastic process in which we apply the gradient algorithm is very large.
- Hence, we propose to search the multiplier $\lambda^{(k)}$ in a smaller space: λ_t is assumed to be measurable with respect to an information process \mathbf{Y}_t .
- Thus this algorithm can be used as the master problem of a (spatial) decomposition method in stochastic optimization.
- This is the Dual Approximate Dynamique Programming (DADP) algorithm. More ar SPO on 15th of April by P.Carpentier.

Problem Statement and Hilbert Case	Uzawa Algorithm in $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^n)$	Application to a Multistage Problem	Conclusion

The end

Thank you for your attention !