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What is this about ?

We want to treat constraints in a stochastic optimization
problem, by duality methods.

Uzawa algorithm is a simple dual method: it is a gradient
algorithm for the dual problem.

Uzawa algorithm is naturally described in an Hilbert space,
thus in L2, but conditions of convergence in stochastic
optimization fails: we cannot guarantee the existence of an
optimal multiplier.

Consequently, we extend the algorithm to the non-reflexive
Banach L∞

(
Ω,F ,P;Rn

)
and gives a result of convergence.

We also give conditions of existence of optimal multiplier.

Finally we apply the algorithm to a multistage problem.
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Problem Statement

We consider the following (primal) problem:(
P
)

min
u∈Uad

J(u) ,

s.t. Θ(u) ∈ −C .

Where U and V are two Hausdorff spaces, and

J : U → R̄ is an objective function ,

Θ : U → V is a constraint function (to be dualized),

C ⊂ V is a cone of constraints,

Uad ⊂ U is a constraint set (not to be dualized).
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Dual Problem

The primal problem can be written(
P
)

min
u∈Uad

max
λ∈C?

J(u) +
〈
λ ,Θ(u)

〉
V?,V ,

where C ? ⊂ V? is given by

C ? =
{
λ ∈ V? | ∀x ∈ C ,

〈
λ , x

〉
V?,V ≥ 0

}
.

The dual problem of Problem
(
P
)

reads(
D
)

max
λ∈C?

min
u∈Uad

J(u) +
〈
λ ,Θ(u)

〉
V?,V .
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Equivalence of
(
P
)

and
(
D
)
, Saddle-Point and Multiplier.

We introduce the Lagrangian associated to Problem
(
P
)
,

L(u, λ) := J(u) +
〈
λ ,Θ(u)

〉
V?,V .

Proposition

The primal problem
(
P
)

and the dual problem
(
D
)

are equivalent
(same value and same set of solutions), i.e,

min
u∈Uad

max
λ∈C?

L
(
u, λ

)
= max

λ∈C?
min
u∈Uad

L
(
u, λ

)
,

iff the Lagrangian L admits a saddle point on Uad × C ?, or
equivalently if the constraint Θ(u) ∈ −C is qualified.
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Gradient of the Dual

Assume that U = U?, and V = V? are Hilbert spaces.
Recall the dual problem

(
D
)

as

max
λ∈C?

min
u∈Uad

{
J(u) +

〈
λ ,Θ(u)

〉
V?,V

}
︸ ︷︷ ︸

:=ϕ
(
λ
) .

Under some regularity conditions, if u](λ) is a minimizer of the
above problem, then

Θ
(
u](λ)

)
= ∇ϕ

(
λ
)
.

{
u(k) ∈ arg minu∈Uad

{
J(u) +

〈
λ(k) ,Θ(u)

〉
V?,V

}
λ(k+1) = projC?

(
λ(k) + ρ Θ

(
u(k)

))
Leclère, Carpentier Uzawa in L∞ March 2014 7 / 31
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Uzawa Algorithm

Data: Initial multiplier λ(0) ∈ V, step ρ > 0 ;
Result: Optimal solution u] and multiplier λ] ;
repeat

u(k) ∈ arg min
u∈Uad

{
J(u) +

〈
λ(k) ,Θ(u)

〉}
,

λ(k+1) = projC?

(
λ(k) + ρ Θ

(
u(k)

))
.

until Θ(u(k)) ∈ −C ;
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Convergence of Uzawa Algorithm in Hilbert Spaces

proposition

Assume that,

1 the function J : U → R̄ is strongly convex of modulus a, and
Gâteaux-differentiable;

2 the function Θ : U → V is C -convex, and κ-Lipschitz;

3 Uad 6= ∅ is a closed convex subset of the Hilbert space U ;

4 C is a non empty, closed convex cone of the Hilbert space V;

5 the Lagrangian L admits a saddle-point (u], λ]) on Uad × C ?;

6 the step size is small enough (0 < ρ < 2a/κ2).

Then, the Uzawa algorithm is well defined and, the
sequence {u(k)}k∈N converges toward u] in norm.

Leclère, Carpentier Uzawa in L∞ March 2014 9 / 31



Problem Statement and Hilbert Case Uzawa Algorithm in L∞(
Ω,F, P; Rn) Application to a Multistage Problem Conclusion

Convergence of Uzawa Algorithm in Hilbert Spaces

proposition

Assume that,

1 the function J : U → R̄ is strongly convex of modulus a, and
Gâteaux-differentiable;

2 the function Θ : U → V is C -convex, and κ-Lipschitz;

3 Uad 6= ∅ is a closed convex subset of the Hilbert space U ;

4 C is a non empty, closed convex cone of the Hilbert space V;

5 the Lagrangian L admits a saddle-point (u], λ]) on Uad × C ?;

6 the step size is small enough (0 < ρ < 2a/κ2).

Then, the Uzawa algorithm is well defined and, the
sequence {u(k)}k∈N converges toward u] in norm.

Leclère, Carpentier Uzawa in L∞ March 2014 10 / 31



Problem Statement and Hilbert Case Uzawa Algorithm in L∞(
Ω,F, P; Rn) Application to a Multistage Problem Conclusion

Contents

1 Problem Statement and Hilbert Case
Problem Statement
Uzawa Algorithm in Hilbert Spaces
L2 not Adapted for Almost Sure Constraint

2 Uzawa Algorithm in L∞
(
Ω,F ,P;Rn

)
Differences Between L∞

(
Ω,F ,P;Rn

)
and an Hilbert space

Uzawa in L∞
(
Ω,F ,P;Rn

)
Existence of L1-multiplier

3 Application to a Multistage Problem
Multistage setup
Convergence Result and Remarks

4 Conclusion

Leclère, Carpentier Uzawa in L∞ March 2014 10 / 31



Problem Statement and Hilbert Case Uzawa Algorithm in L∞(
Ω,F, P; Rn) Application to a Multistage Problem Conclusion

Stochastic Optimization Setting

In a stochastic optimization setting the most natural Hilbert space
is L2

(
Ω,F ,P

)
. A natural optimization problem is thus

min
U∈Uad⊂L2

:=J
(
U
)︷ ︸︸ ︷

E
[
j
(
U
)]

=

∫
Ω
j
(
U(ω), ω

)
dP(ω) ,

s.t. Θ
(
U
)
∈ −C

where j : Rn × Ω→ R̄ is a convex normal integrand (for example a
Carathéodory integrand, that is continuous in u for almost all ω,
and measurable in ω for all u).
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Sufficient Condition of Qualification

Proposition

Under the following assumption

0 ∈ ri
(

Θ
(
Uad ∩ dom(J)

)
+ C

)
,

The primal problem admits an optimal solution and constraint
Θ
(
U
)
∈ −C is qualified.

Proposition

If the σ-algebra F is not finite, then for any set Uad ( Rn, that is
not a linear space, the set

Uad =
{
U ∈ Lp

(
Ω,F ,P;Rn

)
| U ∈ Uad P− a.s.

}
,

has an empty (relative) interior in Lp, for p < +∞.
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L∞ setting

From now on we consider that

U = L∞
(
Ω,F ,P;Rn

)
,

V = L∞
(
Ω,F ,P;Rm

)
,

C = {0}.

Where the σ-algebra is not finite (modulo P). Hence, U and V are
non-reflexive, non-separable, Banach spaces.
If the σ-algebra is finite modulo P, U and V are finite dimensional
spaces, and the usual result applies.
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Perks of an Hilbert Space

Fact

In an Hilbert space H we know that

i) the weak and weak? topologies are identical,

ii) the space H and its topological dual can be identified.

Point i) allows to formulate existence of minimizer results:

weakly closed bounded =⇒ weakly compact;

for a convex set : weakly closed ⇐⇒ closed;

for a convex function: weakly l.s.c ⇐⇒ l.s.c.

Hence, a strongly-convex, lower semicontinuous function J admits
an infimum.
Point ii) allows to write gradient-like algorithm: at any iteration k ,
we have a point u(k) ∈ H, and the gradient g (k) = ∇f

(
u(k)

)
∈ H.

Hence, linear combination of λ(k) and g (k) make sense.
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Difficulties Appearing in a Banach Space

In a reflexive Banach space E , i) still holds true, and thus the
existence of a minimizer remains easy to show. However ii)
does not hold anymore. Indeed g now belongs to the
topological dual of E . Thus a combination of u(k) ∈ E and
g (k) ∈ E ? does not have any sense.

In a non-reflexive Banach space E , neither i) nor ii) holds
true.

However if E is the topological dual of a Banach space, then
a weakly? closed bounded subset of E is weak? compact.
Thus, weak? lower semicontinuity and coercivity of a function
J gives the existence of minimizers of J.
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Specificities of L∞
(
Ω,F ,P;Rn

)
L∞
(
Ω,F ,P;Rn

)
is the topological dual of the Banach space

L1
(
Ω,F ,P;Rn

)
. Hence, if J is weak? l.s.c and coercive, then

J admits a minimizer.

L∞ can be identified with a subset of its topological dual(
L∞
)?

. Thus, the update step

λ(k+1) = λ(k) + ρ Θ
(
U(k)

)
,

make sense: it is a linear combination of elements of
(
L∞
)?

.

Moreover, if λ(0) is chosen in L∞, then the sequence
{λ(k)}k∈N remains in L∞.
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Uzawa Algorithm

Data: Initial multiplier λ(0) ∈ L∞, step ρ > 0 ;
Result: Optimal solution U] and multiplier λ] ;
repeat

U(k) ∈ arg min
U∈Uad

{
J(U) +

〈
λ(k) ,Θ(U)

〉}
,

λ(k+1) = λ(k) + ρ Θ
(
U(k)

)
.

until Θ(U(k)) = 0 ;

Remark: numerically, other update rules (e.g. quasi-Newton) can
be used, convergence being proven when we find a multiplier λ(k)

such that Θ
(
U(k)

)
= 0.
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Existence of Solution

Theorem

Assume that:

1 the constraint set Uad is weakly? closed;

2 Θ : U → V is affine, weakly? continuous;

3 the objective function J : U → R̄ is weak? lower
semicontinuous and coercive on Uad;

4 there exists an admissible control.

Then the primal problem admits at least one solution.
Moreover for any λ ∈ L∞

(
Ω,F ,P;Rm

)
arg min
U∈Uad

{
J
(
U
)

+
〈
λ ,Θ

(
U
)〉}
6= ∅ .
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Convergence Result

Theorem

Assume that:

1 J : U → R̄ is a proper, weak? lower semicontinuous,
Gâteaux-differentiable, a-convex function;

2 Θ : U → V is affine, weak? continuous and κ-Lipschitz;

3 there exists an admissible control;

4 Uad is weak? closed convex;

5 there is an optimal L1-multiplier to the constraint Θ
(
U
)

= 0;

6 the step ρ is such that 0 < ρ < 2a
κ .

Then, Uzawa algorithm is well defined and there exists a
subsequence

(
U(nk )

)
k∈N converging in L∞ toward the optimal

solution U] of the primal problem.
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Some Topologies on L∞

The topology τ‖ ‖ is the norm topology of L∞.

The weak topology σ
(
L∞,

(
L∞
)?)

is the coarsest topology

such that all norm-continuous linear form on L∞ remains
continuous.

The weak? topology σ
(
L∞,L1

)
is the coarsest topology such

that all the L1-linear form are continuous.

The Mackey-topology τ
(
L∞,L1

)
is the finest topology such

that the only continuous linear form are the L1-linear form.

We have

σ
(
L∞, (L∞)?

)
⊂ τ

(
L∞,L1

)
⊂ σ

(
L∞,L1

)
⊂ τ‖‖ .

Coarser topology =⇒ more compact.

Finer topology =⇒ more continuous real valued function.
Leclère, Carpentier Uzawa in L∞ March 2014 21 / 31
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A Theoretical Condition

Proposition

Assume that:

j : Rd × Ω→ R̄ is a convex normal integrand, such that

∃ ε > 0, ∃U0 ∈ U
ad , ∀u ∈ Rd ,

‖u‖Rd ≤ ε =⇒ j(U0 + u, ·) < +∞ P− a.s.

J = E
[
j(·)
]

is τ
(
L∞,L1

)
-(upper-semi)continuous at some

point U0 ∈ Uad ∩ dom(J);

Uad is a weak? closed linear subspace of L∞
(
Ω,F ,P;Rd

)
;

Then, the constraint Θ
(
U
)

= 0 admit a multiplier in L1.

Remark : J is weak? l.s.c.
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A Practical Condition

Proposition

Assume that j is a convex integrand and that and that J is finite
everywhere on L∞

(
Ω,F ,P;Rd

)
. Then, J is τ

(
L∞,L1

)
-continuous.

Proposition

Consider a convex normal integrand j : Rn × Ω→ R̄, Consider a
set Uad ( Rm and define the set of random variable

Ua.s. :=
{
U ∈ L∞

(
Ω,F ,P;Rd

) ∣∣ U ∈ Uad P− a.s.
}
.

Then,
J̃ : U 7→ J(U) + χU∈Ua.s. ,

is not Mackey continuous on its domain.
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Other Conditions with Relatively Complete Recourse
Assumptions

This Mackey-continuity assumption forbid the use of almost
sure bounds.

In order to deal with almost sure bounds, we can turn towards
the work of R.T.Rockafellar and R.J-B.Wets. In a first series
of 4 papers (stochastic convex programming) they detailed
the duality on a two stage problem; which was extended to
multistage problems in 3 other papers (with a specific focus
on non-anticipativity constraints).

These papers require:

a strict feasability assumption,
a relatively complete recourse assumption.
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Problem Statement

min
X,D

E
[ T−1∑

t=0

Lt
(
Xt ,Dt ,Wt

)
+ K (XT )

]
s.t. X0 = x0

Xt+1 = ft
(
Xt ,Dt ,Wt

)
, dynamic

Dt � σ
(
W0, . . . ,Wt

)
, non-anticipativity

Dt ∈ D
ad
t , P− a.s. bound constraint

Xt ∈ X
ad
t , P− a.s. bound constraint

θt(Xt ,Dt) = Bt P− a.s. affine constraint
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Uzawa algorithm

Data: Initial multiplier process λ(0) ∈ L∞, step ρ > 0 ;
Result: Optimal solution D] and multiplier process λ] ;
repeat

(
D(k),X(k)

)
∈ arg min

D,X

{
E
[ T−1∑

t=0

Lt
(
Xt ,Dt ,Wt

)
+ λ

(k)
t · θt

(
Xt ,Dt

)]}
λ

(k+1)
t = λ

(k)
t + ρt

(
θt
(
X

(k)
t ,D(k)

)
− Bt

)
.

where
(
D,X

)
satisfies all constraint except the dualized one.

until ∀t ∈ [[0,T ]], θt
(
X

(k+1)
t ,D(k+1)

)
= Bt ;
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Convergence Result

Proposition

Assume that,

1 the cost functions Lt are Gâteaux-differentiable (in (x , u)),
strongly-convex (in (x , u)) functions and continuous in w ;

2 the constraint functions θt : Rnx+nd → Rnc are affine;

3 the evolution functions ft : Rnx+nd+nw → Rnx are affine;

4 the constraint sets X ad
t and Uad

t are weak? closed, convex;

5 there exist a process
(
X,D

)
satisfying all constraints;

6 there exist an optimal multiplier process in L1 to the almost
sure affine constraint.

Then Uzawa algorithm is well defined, and there exists a
subsequence

(
D(nk )

)
k∈N converging in L∞ toward the optimal

control of the multistage problem.
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Remarks

If there is no bound constraint, then there exist a
L1-multiplier.
A multiplier λ = {λ0, . . . ,λT} is a stochastic process that
can be chosen adapted with respect to F = {F0, . . . ,FT}
where Ft := σ

(
W0, . . . ,Wt

)
.

However, if we want to use this algorithm as the master
programm of a decomposition algorithm (by price) we have to
solve, for a given adapted process λ(k)

min
D,X

{
E
[ T−1∑

t=0

Lt
(
Xt ,Dt ,Wt

)
+ λ

(k)
t · θt

(
Xt ,Dt

)]}
,

where
(
D,X

)
satisfies all constraint except the dualized one.

If we approximate the multiplier process λ by E[λt | Yt ],
where Yt is a Markov chain, then we can solve this
minimization problem by DP (with the state

(
Xt ,Yt

)
.
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In a nutshell

Uzawa algorithm is a gradient algorithm for the dual problem,
that naturally take place in Hilbert space, like L2.

Convergence result of Uzawa algorithm require the existence
of an optimal multiplier of the dualized constraint.

Sufficient conditions of existence of an optimal multiplier in
L2 are not adapted to almost sure constraint. L∞ is better
suited to this purpose.

Consequently we have seen that Uzawa algorithm make sense
in L∞ and given a result of convergence (of a subsequence)
that require a L1 multiplier...

and we have given conditions of existence of a L1 multiplier.
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The next steps

Finally we have applied this algorithm to a multistage
problem, and given conditions of convergence.

However, there is two difficulties:
solving the minimization problem for a given λ(k) is difficult;
the space of stochastic process in which we apply the gradient
algorithm is very large.

Hence, we propose to search the multiplier λ(k) in a smaller
space: λt is assumed to be measurable with respect to an
information process Yt .

Thus this algorithm can be used as the master problem of a
(spatial) decomposition method in stochastic optimization.

This is the Dual Approximate Dynamique Programming
(DADP) algorithm. More ar SPO on 15th of April by
P.Carpentier.
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The end

Thank you for your attention !
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