Convergence of Dual Approximate Dynamic Programming

V. Leclère

March 28, 2012

The problem DADP Algorithm

Contents

1 Motivation : A first (informal) example

- The problem
- DADP Algorithm

2 Result of convergence

- General Settings
- Recalls : Epi and Kudo Convergence
- Theoretical result

- Technical lemmas
- Examples

The problem DADP Algorithm

An optimization problem

Let's consider the following dynamic optimization problem

$$\min_{\mathbf{X},\mathbf{U}} \quad \mathbb{E} \sum_{t=0}^{T} L_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_t)$$
$$\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_t)$$
$$\mathbf{X}_0 = x_0$$
$$\theta_t(\mathbf{U}_t) = \sum_{i=1}^{n} \mathbf{U}_t^i - \mathbf{D}_t = 0$$

Where \mathbf{W}_t is a white noise, \mathbf{X}_t is the state process, and \mathbf{U}_t is the control process, both measurable with respect to $(\mathcal{F}_t) = \sigma(\mathbf{W}_0, \mathbf{D}_0, \cdots, \mathbf{W}_t, \mathbf{D}_t)$. For example $\mathbf{U}_t = (\mathbf{U}_t^1, \cdots, \mathbf{U}_t^n)$ is the production of *n* power units and \mathbf{D}_t is the demand.

Leclère

Dualization

If we dualize the constraint on the control \mathbf{U}_t , we obtain

$$\begin{split} \max_{\boldsymbol{\lambda}} & \min_{\boldsymbol{X},\boldsymbol{U}} \quad \mathbb{E} \left(\sum_{t=0}^{T} L_t \big(\boldsymbol{X}_t, \boldsymbol{U}_t, \boldsymbol{W}_t \big) + \boldsymbol{\lambda}_t \theta_t (\boldsymbol{U}_t) \right) \\ & \boldsymbol{X}_{t+1} = f_t (\boldsymbol{X}_t, \boldsymbol{U}_t, \boldsymbol{W}_t) \\ & \boldsymbol{X}_0 = x_0 \end{split}$$

Where we can choose λ_t to be measurable with respect to (\mathcal{F}_t) .

The problem DADP Algorithm

Uzawa algorithm

At step k we want to have a process $\lambda^{(k)}$ and solve

$$\begin{split} \min_{\mathbf{X},\mathbf{U}} \quad & \mathbb{E}\sum_{t=0}^{T} L_t\big(\mathbf{X}_t,\mathbf{U}_t,\mathbf{W}_t\big) + \mathbf{\lambda}_t^{(k)}\theta_t(\mathbf{U}_t) \\ & \mathbf{X}_{t+1} = f_t(\mathbf{X}_t,\mathbf{U}_t,\mathbf{W}_t) \\ & \mathbf{X}_0 = x_0 \end{split}$$

we will then determine $\lambda^{(k+1)}$ by a gradient step. However solving this problem is quite difficult as $\lambda^{(k)}$ is a non-markovian process, thus dynamic programming would have to be done on a state of dimension increasing with T, as we need to keep the whole past of $\lambda^{(k)}$, which is numerically impossible.

The problem DADP Algorithm

Contents

1 Motivation : A first (informal) example

- The problem
- DADP Algorithm
- 2 Result of convergence
 - General Settings
 - Recalls : Epi and Kudo Convergence
 - Theoretical result

- Technical lemmas
- Examples

The problem DADP Algorithm

DADP algorithm : general idea

The main idea of Dual Approximate Dynamic Programming is to replace λ_t by $\mathbb{E}(\lambda_t \mid \mathbf{X}_t)$.

$$\min_{\mathbf{X},\mathbf{U}} \quad \mathbb{E}\sum_{t=0}^{T} L_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_t) + \mathbb{E}(\boldsymbol{\lambda}_t^{(k)} \mid \mathbf{X}_t)\theta_t(\mathbf{U}_t) \\ \mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_t) \\ \mathbf{X}_0 = x_0$$

And solving this problem by Dynamic Programming, with the same state, is possible as $\mathbb{E}(\lambda_t^{(k)} | \mathbf{X}_t)$ is a function of \mathbf{X}_t .

Generaly speaking we can introduce a "short memory" information process \mathbf{Y}_t , defining $\mathcal{B}_t = \sigma(\mathbf{Y}_t)$ and replace λ_t by $\mathbb{E}(\lambda_t \mid \mathcal{B}_t)$.

The problem DADP Algorithm

DADP algorithm : as an approximation

It has been shown that this method is equivalent to solve

$$\min_{\mathbf{X},\mathbf{U}} \quad \mathbb{E} \sum_{t=0}^{T} L_t (\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_t) \\ \mathbf{X}_{t+1} = f_t (\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_t) \\ \mathbf{X}_0 = x_0 \\ \mathbb{E}(\theta_t(\mathbf{U}_t) \mid \mathcal{B}_t) = 0$$

General Settings Recalls : Epi and Kudo Convergence Theoretical result

Contents

Motivation : A first (informal) example

- The problem
- DADP Algorithm

2 Result of convergenceGeneral Settings

- Recalls : Epi and Kudo Convergence
- Theoretical result

- Technical lemmas
- Examples

General Settings Recalls : Epi and Kudo Convergence Theoretical result

General Problem

We consider a stochastic optimization problem for a probability space $\big(\Omega,\mathcal{F},\mathbb{P}\big).$

$$(\mathcal{P}) \qquad \min_{\Theta(\mathbf{U})\in -C} J(\mathbf{U}) ,$$

where the control is a random variable $\mathbf{U} \in \mathcal{U}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ with value in a Banach \mathbb{U} , the criterion $J : \mathcal{U} \to \mathbb{R} \cup \{+\infty\}$ is an operator, and $\Theta : \mathcal{U} \to \mathcal{V}$ is the operator of constraints, with C a closed convex cone of \mathcal{V} .

Usual choice of criterion are :

- $J(\mathbf{U}) := \mathbb{E}(j(\mathbf{U}))$
- risk measures
- Worst-case scenario
- Θ can take into account :
 - almost sure constraints : $\Theta(\mathbf{U})(\omega) := \theta(\mathbf{U}(\omega))$, with $C = \{0\}$ and $\theta(\mathbf{U}) = 0$ is realized almost surely.
 - measurability constraints : $\Theta(\mathbf{U}) := \mathbb{E}(\mathbf{U} \mid B) \mathbf{U}$, with $C = \{0\}$,
 - risk constraint : Θ(U) := ρ(U) − a, where ρ is a risk measure, and C = ℝ⁺
 - or probability constraint : $\Theta(\mathbf{U}) := \mathbb{P}(\mathbf{U} \in A) p$, with $C = \mathbb{R}^+$, that is $\mathbb{P}(\mathbf{U} \in A) \le p$.

We will consider a problem,

$$(\mathcal{P}) \qquad \min_{\mathbf{U}\in\mathcal{U}} \quad \underbrace{J(\mathbf{U}) + \chi_{\mathbf{U}\in\mathcal{U}^{ad}}}_{:=\tilde{J}(\mathbf{U})},$$

with

 $\mathcal{U}^{ad} := \{ \mathbf{U} \in \mathcal{U} | \Theta(\mathbf{U}) \in -C \}$

and its approximation (for a subfield \mathcal{F}_n of \mathcal{F}).

$$(\mathcal{P}_n) \qquad \min_{\mathbf{U}\in\mathcal{U}} \quad \underbrace{J(\mathbf{U}) + \chi_{\mathbf{U}\in\mathcal{U}_n^{ad}}}_{:=\tilde{J}_n(\mathbf{U})},$$

with

$$\mathcal{U}_n^{ad} := \{ \mathbf{U} \in \mathcal{U} | \mathbb{E} \big(\Theta(\mathbf{U}) \mid \mathcal{F}_n \big) \in -C \}$$

Motivation : A first (informal) example Result of convergence Some examples Theoretical result

Contents

Motivation : A first (informal) example

- The problem
- DADP Algorithm

2 Result of convergence

General Settings

• Recalls : Epi and Kudo Convergence

Theoretical result

- Technical lemmas
- Examples

Epi-convergence

Let (A_n) a sequence of subset of a topological space (E, τ) . We define

$$\limsup_{n} A_{n} = \{x \in E | \exists (x_{n_{k}}) \to_{\tau} x, \text{ with } \forall k, x_{n_{k}} \in A_{n_{k}} \}$$
$$\liminf_{n} A_{n} = \{x \in E | \exists (x_{n}) \to_{\tau} x, \text{ with } \forall n, x_{n} \in A_{n} \}$$

And we say that (A_n) converges to A, iff

$$\limsup_n A_n = \liminf_n A_n = A .$$

We say that a sequence of function (f_n) epi-converges to f, iff

 $\lim \operatorname{epi} f_n = \operatorname{epi} f \; .$

Kudo-convergence

If \mathcal{F} is a σ -algebra, and (\mathcal{F}_n) a sequence of complete sub- σ -algebra of \mathcal{F} we say that (\mathcal{F}_n) Kudo converges to \mathcal{F}_{∞} if

 $\forall A \in \mathcal{F}, \quad \mathbb{P}(A|\mathcal{F}_n) \rightarrow_{\mathbb{P}} \mathbb{P}(A|\mathcal{F}_\infty)$

or equivalently

 $\forall \mathbf{X} \in \mathcal{L}^{\infty}(\mathcal{F}), \quad \mathbb{E}|\mathbb{E}(\mathbf{X} \mid \mathcal{F}_n)| \to \mathbb{E}|\mathbb{E}(\mathbf{X} \mid \mathcal{F}_{\infty})|$

Motivation : A first (informal) example Result of convergence Some examples Theoretical result

We begin by a lemma from Piccinini.

Theorem

Let (\mathcal{F}_n) be a sequence of σ -algebra. The following statements are equivalent :

$$\begin{array}{l} \bullet \quad \mathcal{F}_n \to \mathcal{F}_{\infty}. \\ \bullet \quad \forall \mathbf{X} \in \mathcal{L}_E^p(\mathcal{F}), \quad \mathbb{E}(\mathbf{X} \mid \mathcal{F}_n) \to_{\mathcal{L}^p} \mathbb{E}(\mathbf{X} \mid \mathcal{F}_{\infty}) \\ \bullet \quad \forall \mathbf{X} \in \mathcal{L}_E^p(\mathcal{F}), \quad \mathbb{E}(\mathbf{X} \mid \mathcal{F}_n) \rightharpoonup_{\mathcal{L}^p} \mathbb{E}(\mathbf{X} \mid \mathcal{F}_{\infty}) \end{array}$$

And we have the following corollary

Theorem

Let
$$(\mathcal{F}_n)$$
 be a sequence of σ -algebra, and $1 \leq p < \infty$. If $\mathcal{F}_n \to \mathcal{F}_\infty$, and $\mathbf{X}_n \to_{\mathcal{L}^p} \mathbf{X}$ (resp. $\mathbf{X}_n \rightharpoonup_{\mathcal{L}^p} \mathbf{X}$) then $\mathbb{E}(\mathbf{X}_n \mid \mathcal{F}_n) \to_{\mathcal{L}^p} \mathbb{E}(\mathbf{X} \mid \mathcal{F}_\infty)$ (resp. $\mathbb{E}(\mathbf{X}_n \mid \mathcal{F}_n) \rightharpoonup_{\mathcal{L}^p} \mathbb{E}(\mathbf{X} \mid \mathcal{F}_\infty)$).

Motivation : A first (informal) example Result of convergence Some examples Theoretical result

Contents

Motivation : A first (informal) example

- The problem
- DADP Algorithm

2 Result of convergence

- General Settings
- Recalls : Epi and Kudo Convergence

Theoretical result

- Technical lemmas
- Examples

Convergence result

Theorem

If \mathcal{U} is endowed with a topology τ , and $\mathcal{V} = \mathcal{L}^{p}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{V})$ endowed with the strong or weak topology (p being in $[1, \infty)$), and C is stable by $\mathbb{E}(\cdot | \mathcal{F}_{n})$. If Θ and J are continuous, and (\mathcal{F}_{n}) Kudo-converges to \mathcal{F} , then \tilde{J}_{n} epi-converges to \tilde{J} .

Proof:

- It is sufficient to show that $\mathcal{U}_n^{ad} \to_{PK} \mathcal{U}^{ad}$, as it will imply that $\chi_{\mathcal{U}_n^{ad}} \to_e \chi_{\mathcal{U}^{ad}}$, and J being continuous we will have epi-convergence of \tilde{J}_n to \tilde{J} .
- Stability of C imply that $\mathcal{U}^{ad} \subset \liminf_n \mathcal{U}^{ad}_n$.
- If $\mathbf{U} \in \limsup_n \mathcal{U}_n^{ad}$, we have $(\mathbf{U}_{n_k})_k \to_{\tau} \mathbf{U}$, such that for all $k \in \mathbb{N}$, $\mathbb{E}(\Theta(\mathbf{U}_{n_k})|\mathcal{F}_{n_k}) \in -C$.
- Continuity of Θ , convergence of \mathcal{F}_{n_k} , preceding corollary, and closedness of -C achieve the proof.

Convergence result

Theorem

If $(\mathcal{F}_n) \to \mathcal{F}$, J and Θ are continuous, then we have $(\mathcal{P}_n) \to (\mathcal{P})$ in the following sense : If (\mathbf{U}_n) is a sequence of control such that for all $n \in \mathbb{N}$,

$$\widetilde{J}_n(\mathbf{U}_n) < \inf_{\mathbf{U}\in\mathcal{U}} \widetilde{J}_n(\mathbf{U}) + \epsilon_n, \ \text{where} \ \lim_n \epsilon_n = 0,$$

then, for every converging sub-sequence \mathbf{U}_{n_k} , we have

$$\tilde{J}(\lim_{k} \mathbf{U}_{n_{k}}) = \inf_{\mathbf{U} \in \mathcal{U}} \tilde{J}(\mathbf{U}) = \lim_{k} \tilde{J}_{n_{k}}(\mathbf{U}_{n_{k}})$$

Moreover if (\mathcal{F}_n) is a filtration, then the convergence is monotonous.

Contents

Motivation : A first (informal) example

- The problem
- DADP Algorithm

2 Result of convergence

- General Settings
- Recalls : Epi and Kudo Convergence
- Theoretical result

- Technical lemmas
- Examples

Theorem

Let (x_n) be a sequence in a topological space. If from any subsequence (x_{n_k}) we can extract a sub-subsequence $(x_{\sigma(n_k)})$ converging to x^* , then (x_n) converges to x^* .

Let's note that (\mathbf{U}_n) is such that from any subsequence there is a further subsequence converging almost surely to \mathbf{U} is equivalent to $(\mathbf{U}_n) \rightarrow_{\mathbb{P}} \mathbf{U}$.

Theorem

Let $\Theta : \mathcal{U} \to \mathcal{V}$, where \mathcal{U} is a set of random variable endowed with the topology of convergence in probability, and (\mathcal{V}, τ) is a topological space. If $\mathbf{U}_n \to \mathbf{U}$ almost surely imply $\Theta(\mathbf{U}_n) \to_{\tau} \Theta(\mathbf{U})$, then Θ is continuous.

Contents

Motivation : A first (informal) example

- The problem
- DADP Algorithm

2 Result of convergence

- General Settings
- Recalls : Epi and Kudo Convergence
- Theoretical result

- Technical lemmas
- Examples

Technical lemmas Examples

Almost sure constraint

Theorem

If \mathcal{U} is the set of random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, with the topology of convergence in probability, and if θ is continuous and bounded, then $\Theta(\mathbf{U})(\omega) := \theta(\mathbf{U}(\omega))$ is continuous.

Proof: Suppose that $\mathbf{U}_n \to_{a.s} \mathbf{U}$, then by boundeness of θ we have that $\left(||\theta(\mathbf{U}_{\sigma(n_k)}) - \theta(\mathbf{U})||^p\right)_k$ is bounded, and thus by dominated convergence theorem we have that $\theta(\mathbf{U}_n) \to_{\mathcal{L}^p} \theta(\mathbf{U})$.

Technical lemmas Examples

Measurability constraint

Theorem

We set $\mathcal{U} = \mathcal{L}^{p}(\Omega, \mathcal{F}, \mathbb{P})$, if \mathcal{B} is a sub- σ -algebra of \mathcal{F} , then $\Theta(\mathbf{U})(\omega) := \mathbb{E}(\mathbf{U} \mid \mathcal{B})(\omega) - \mathbf{U}(\omega)$, is continuous.

Proof: We have

$$\begin{split} ||\Theta(\mathbf{U}_n) - \Theta(\mathbf{U})||_p &\leq ||\mathbf{U}_n - \mathbf{U}||_p + ||\mathbb{E}(\mathbf{U}_n - \mathbf{U} \mid \mathcal{B})||_p \\ &\leq 2||\mathbf{U}_n - \mathbf{U}||_p \to 0 \end{split}$$

Risk constraints

Roughly speaking a convex risk measure is defined as

$$\rho(\mathbf{X}) = \max_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}_{\mathbb{Q}} \mathbf{X} - \rho^*(\mathbb{Q}) ,$$

where Q is a closed convex set of distributions. We will here consider real valued control.

Theorem

If ρ is a convex risk function, such that $\mathcal{U} \subset int(dom(\rho))$, and $a \in \mathbb{R}$, then $\Theta(\mathbf{U})(\omega) := \rho(\mathbf{U}) - a$ is continuous.

Proof: We define $\Theta : \mathcal{U} \to \mathbb{R}$ as $\Theta(\mathbf{U})(\omega) := \rho(\mathbf{U}) - a$. This function is convex, and thus continuous on the interior of it's domain.

Technical lemmas Examples

VaR constraint

Another risk measure that is widely used even if it has some serious drawback is the Value-at-Risk. If X is a real random variable its value at risk of level α can be defined as $VaR_{\alpha}(\mathbf{X}) := \inf\{F_{\mathbf{X}}^{-1}(\alpha)\}$ where $F_{\mathbf{X}}(x) := \mathbb{P}(\mathbf{X} \leq x)$.

Theorem

If \mathcal{U} is such that every $\mathbf{U} \in \mathcal{U}$ have a positive density, then $\Theta(\mathbf{U}) := VaR_{\alpha}(\mathbf{U})$ is continuous if we have endowed \mathcal{U} with the topology of convergence in law.

Proof: By definition of convergence in law, if $\mathbf{U}_n \to \mathbf{U}$ in law, we have $\forall x \in \mathbb{R}$ $F_{\mathbf{U}_n}(x) \to F_{\mathbf{U}}(x)$, and $F_{\mathbf{U}}^{-1}$ is continuous which means that $\Theta(\mathbf{U}_n) \to \Theta(\mathbf{U})$.

Аттоисн, Н. (1984).

Variational convergence for functions and operators. Pitman Advanced Pub. Program

PICCININI, L. (1998). A new version of the multivalued Fatou lemma.

Journal of Applied Analysis

KUDO, H. (1974).

A Note on the Strong Convergence of σ -Algebras. The Annals of Probability

BARTY, K., CARPENTIER, P. AND GIRARDEAU, P. (2010) Decomposition of large-scale stochastic optimal control problems. *RAIRO Operations Research, 2010, 44, 167-183.*

BARTY, K., CARPENTIER, P., COHEN, G. AND GIRARDEAU, P. (2010) Price decomposition in large-scale stochastic optimal control. *arXiv*, 2010, math.OC, 1012.2092.

Technical lemmas Examples

The end

Thank you for your attention !