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An optimization problem

A generic optimization problem can be written

min
x

L(x)

s.t. g(x) ≤ 0

where

x is the decision variable

L is the objective function

g is the constraint function
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An optimization problem with uncertainty

Adding uncertainty ξ in the mix

min
x

L(x , ξ̃)

s.t. g(x , ξ̃) ≤ 0

Remarks:
ξ̃ is unknown. Two main way of modelling it:

ξ̃ ∈ R with a known uncertainty set R, and a pessimistic
approach. This is the robust optimization approach (RO).
ξ̃ is a random variable with known probability law. This is the
Stochastic Programming approach (SP).

Cost is not well defined.
RO : maxξ∈R L(x , ξ).
SP : E

[
L(x , ξ)

]
.

Constraints are not well defined.
RO : g(x , ξ) ≤ 0, ∀ξ ∈ R.
SP : g(x , ξ) ≤ 0, P− a.s..
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Requirements and limits

Stochastic optimization :

requires a law of the uncertainty ξ
can be hard to solve (generally require discretizing the support
and blowing up the dimension of the problem)
there exists specific methods (like Bender’s decomposition)

Robust optimization :

requires an uncertainty set R
can be overly conservative, even for reasonable R
complexity strongly depend on the choice of R

Distributionally robust optimization :

is a mix between robust and stochastic optimization
consists in solving a stochastic optimization problem where the
law is chosen in a robust way
is a fast growing fields with multiple recent results
but is still hard to implement than other approaches
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Some numerical tests on real-life LPs

From Ben-Tal and Nemirovski

take LP from Netlib library

look at non-integer coefficients, assuming that they are not
known with perfect certainty

What happens if you change them by 0.1% ?

constraints can be violated by up to 450%
P(violation > 0) = 0.5
P(violation > 150%) = 0.18
E[violation] = 125%
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What do you want from robust optimization ?

finding a solution that is less sensible to modified data,
without a great increase of price

choosing an uncertainty set R that:

offer robustness guarantee
yield an easily solved optimization problem
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Solving a robust optimization problem

The robust optimization problem we want to solve is

min
x

L(x)

s.t. g(x , ξ) ≤ 0 ∀ξ ∈ R

Note that, for simplicity reason we dropped w.l.o.g. the
uncertainty in the objective.
Two main approaches are possible:

Constraint generation: replace R by a finite set of ξ, that is we
replace an ”infinite number of contraints” by a finite
number of them.

Reformulation: replace g(x , ξ) ≤ 0 ∀ξ ∈ R, by sup
ξ∈R

g(x , ξ) ≤ 0

and then explicit the sup.
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Constraint generation

Data: Problem parameters, reference uncertainty ξ0

Result: approximate value with gap;
for k ∈ N do

solve ṽ = minx

{
L(x) | g(x , ξκ) ∀κ ≤ k

}
with optimal

solution xk ;
solve s = maxξ∈R g(xk , ξ) with optimal solution ξk+1 ;
if s ≤ 0 then

Robust optimization problem solved, with value ṽ and
optimal solution xk

Algorithm 1: Constraint Generation Algorithm
Note that we are solving a problem similar to the certain problem
with an increasing number of constraints. This is easy to
implement and can be numerically efficient.
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Reformulation principle

We can write the robuste optimization problem as

min
x

L(x)

s.t. sup
ξ∈R

g(x , ξ) ≤ 0

Now there are two way of simplifying this problem :

either we can explicitely compute ḡ(x) = supξ∈R g(x , ξ);

or by duality we can write supξ∈R g(x , ξ) = minζ∈Q h(x , ζ)

minζ∈Q h(x , ζ) ≤ 0 is equivalent to ∃ζ such that h(x , ζ) ≤ 0,
i.e. just add ζ as a variable in your optimization problem
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Robust optimization for linear programm

We consider

min
x≥0

c>x

s.t. Ax ≤ b

sup
ξ∈R

ξ>x ≤ bi ∀i = 1..k

On this example, for specific R, we are going to follow both
reformulation approaches.
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An explicit worst case value

We consider an ellipsoidal uncertainty set

R =
{
ξ =

{
ai + ∆iui

}
i
| ‖ui‖2 ≤ ρ

}
Here we can, for a given x , explicitely compute

sup
ξ∈R

ξ>x = a>i x + sup
‖ui‖2≤ρ

(∆iui )
>x

= a>i x + ρ‖∆ix‖2

Hence, constraint
sup
ξ∈R

ξ>x ≤ bi

can be written
a>i x + ρ‖∆ix‖2 ≤ bi
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SOCP problem

An Second Order Cone Programming constraint is a
constraint of the form

‖a>x + b‖2 ≤ c>x + d

An SOCP problem is a (continuous) optimization problem
with linear cost and linear and SOCP constraints

There exists powerful software to solve SOCP (e.g. CPLEX,
Gurobi, MOSEK...) with dedicated interior points methods

There exist a duality theory akin to the LP duality theory

If a robust optimization problem can be cast as an SOCP the
formulation is deemed efficient
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Linear duality : recalls

Recall that, if finite,

max
ξ

ξ>x

s.t. Dξ ≤ d

as the same value as

min
ζ

ζ>d

s.t. ζ>D = x

ζ ≥ 0

Thus,

sup
ξ:Dξ≤d

ξ>x ≤ b ⇐⇒ min
ζ≥0:ζ>D=x

ζ>d ≤ b

⇐⇒ ∃ζ ≥ 0, ζ>D = x , ζ>d ≤ b
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Polyhedral uncertainty

We consider a polyhedral uncertainty set

R =
{
ξ | Dξ ≤ d

}
Then the robust optimization problem

min
x≥0

c>x

s.t. sup
ξ∈R

ξ>x ≤ h

reads

min
x≥0,ζ≥0

c>x

s.t. ζ>d ≤ h

ζ>d = x
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Soyster model

The problem

min
x

c>x

sup
Ã∈R

Ãx ≤ b

x ≤ x ≤ x̄

where each coefficient ãij ∈ [āij − δij , āij + δij ] can be written

min
x

,y

c>x∑
j

āijx j +
∑
j

δij |xj | ≤ bi ∀i

x ≤ x ≤ x̄

yj ≥ xj , yj ≥ −xj
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āijx j +
∑
j

δijyj ≤ bi ∀i

x ≤ x ≤ x̄

yj ≥ xj , yj ≥ −xj

V. Leclère Robust Optimization : A tutorial May 21, 2019 15 / 28



Introduction Solution approaches Robust LP Robust combinatorial Conclusion

Cardinality constrained LP I

Soyster’s model is over conservative, we want to consider a model
where only Γi coefficient per line have non-zero errors, leading to

min
x ,y

c>x∑
j

āijxj + max
Si :|Si |=Γi

∑
j∈Si

δijyj ≤ bi ∀i

x ≤ x ≤ x̄

yj ≥ xj , yj ≥ −xj
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Cardinality constrained LP II

This means that, for line i we take a margin of

βi (x , Γi ) := max
Si :|Si |=Γi

∑
j∈Si

δij |xj |

which can be obtained as

βi (x , Γi ) = max
z

∑
j

δij |xj |zij∑
j

zij ≤ Γi

0 ≤ zij ≤ 1

This LP can be then dualized to be integrated in the original LP.
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Cardinality constrained LP III

In the end we obtain

min
x ,β,λ,µ

c>x∑
j

āijxj + βi ≤ bi ∀i

λiΓi +
∑
j

µij ≤ βi ∀i

δijxj ≤ λi + µij ∀i , j
− δijxj ≤ λi + µij ∀i , j
λ ≥ 0, µ ≥ 0

x ≤ x ≤ x̄
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A combinatorial optimization problem with cardinality
constraint

We consider a combinatorial optimization problem:

min
x∈{0,1}N

max
c̃∈R

c̃>x

s.t. x ∈ X

where R is such that each c̃i ∈ [c̄i , c̄i + δi ], with at most Γ
coefficient deviating from c̄i .
Thus the problem reads

(P) min
x∈{0,1}N

c̄>x + max
|S |≤Γ

∑
i∈S

δixi

s.t. x ∈ X

wlog we assume that the i are ordered by decreasing cost
uncertainty span : δ1 ≥ δ2 ≥ · · · ≥ δn.
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Solving the robust combinatorial problem I

We can write (P) as

min
x∈{0,1}N

max
u∈[0,1]n

c̄>x +
n∑

i=1

δixiui

s.t. x ∈ X
n∑

i=1

ui ≤ Γ

For a given x ∈ X we dualize the inner maximization LP problem
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Solving the robust combinatorial problem II

Thus we can write (P) as

min
x ,y ,θ

c̄>x + Γθ +
n∑

j=1

yj

s.t. x ∈ X

yj + θ ≥ δjxj
yj , θ ≥ 0

Note that an optimal solution satisfies

yj = (δjxj − θ)+ = (δj − θ)+xj

as xj ∈ {0, 1}, and θ ≥ 0.
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Solving the robust combinatorial problem II
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Solving the robust combinatorial problem III

Thus we can write (P) as

min
x ,θ≥0

c̄>x + Γθ +
n∑

j=1

xj(δj − θ)+

s.t. x ∈ X

We can now decompose the problem for θ ∈ [δ`, δ`−1] where
δn+1 = 0 and δ0 = +∞.
Therefore, we have

val(P) = min
`∈[n]

Z `

where

Z ` = min
x∈X ,θ∈[δ`,δ`−1]

c̄>x + Γθ +
`−1∑
j=1

xj(δj − θ)
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Solving the robust combinatorial problem IV

As the problem is linear in θ we have that

Z ` = min
x∈X ,θ∈[δ`,δ`−1]

c̄>x + Γθ +
`−1∑
j=1

xj(δj − θ)

is attained for θ = δ` or θ = δ`−1.
So in the end, we have

val(P) = min
`∈[n]

G `

where

G ` = Γδ` + min
x∈X

{
c̄>x +

∑̀
i=1

(δi − δ`)︸ ︷︷ ︸
≥0

xj

}
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Algorithm for the robust problem

1 For ` ∈ [n], solve

G ` = Γδ` + min
x∈X

{
c̄>x +

∑̀
i=1

(δi − δ`)xj
}

with optimal solution x`
2 Set `∗ ∈ arg min`∈[n] G

`

3 Return val(P) = G `∗ and x∗ = x`
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Why do robust optimization ?

Because you want to account for some uncertainty

Because you want to have a solution that resists to changes in
data

Because your data is unprecise and robustness yield better
out-of-sample result

Because you do not have the law of the uncertainty

Because you can control the robustness level

Because your problem is ”one-shot”
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Which uncertainty set to choose ?

An uncertainty set that is computationally tractable

An uncertainty set that yields good results

An uncertainty set that have some theoretical soundness

An uncertainty set that take available data into account

Select uncertainty set / level through cross-validation
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Is there some theoretical results ?

Yes: with some assumption over the randomness (e.g.
bounded and symmetric around ā) some uncertainty set (e.g.
ellipsoidal) have a probabilistic guarantee :

∀ξ ∈ Rε, g(x , ξ) ≤ 0 =⇒ P
(
g(x , ξ) ≤ 0

)
≥ 1− ε

Yes: in some cases approximation scheme for nominal problem
can be extended to robust problem (e.g. cardinal uncertainty
in combinatorial problem)

Yes: using relevant data we can use statistical tools to
construct a robust set R that imply a probabilistic guarantee
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