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An optimization problem

A generic optimization problem can be written
min  L(x)
X
s.it. g(x) <0
where
@ x is the decision variable

@ L is the objective function

@ g is the constraint function
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An optimization problem with uncertainty

Adding uncertainty £ in the mix
min L(x,f)

X

st g(x,§) <0
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optimization problem with uncertainty

Adding uncertainty £ in the mix
min L(x,f)

X

3

s.t. g(x,£) <0

Remarks:
° fis unknown. Two main way of modelling it:
o £ € R with a known uncertainty set R, and a pessimistic
approach. This is the robust optimization approach (RO).
° f is a random variable with known probability law. This is the
Stochastic Programming approach (SP).
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An optimization problem with uncertainty

Adding uncertainty £ in the mix
min L(x,f)

st g(x,§) <0

Remarks:
e ¢ is unknown. Two main way of modelling it:
o £ € R with a known uncertainty set R, and a pessimistic
approach. This is the robust optimization approach (RO).
° f is a random variable with known probability law. This is the
Stochastic Programming approach (SP).
o Cost is not well defined.
o RO : maxecr L(x,§).
o SP:E[L(x,£)].
@ Constraints are not well defined.
e RO : g(x,§) <0, Vé € R.
e SP: g(x,€) <0, P—as..
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Requirements and limits

@ Stochastic optimization :
e requires a law of the uncertainty &
e can be hard to solve (generally require discretizing the support
and blowing up the dimension of the problem)
o there exists specific methods (like Bender's decomposition)
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@ Stochastic optimization :
e requires a law of the uncertainty &
e can be hard to solve (generally require discretizing the support
and blowing up the dimension of the problem)
o there exists specific methods (like Bender's decomposition)

@ Robust optimization :

e requires an uncertainty set R
e can be overly conservative, even for reasonable R
e complexity strongly depend on the choice of R
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Requirements and limits

@ Stochastic optimization :
e requires a law of the uncertainty &
e can be hard to solve (generally require discretizing the support
and blowing up the dimension of the problem)
o there exists specific methods (like Bender's decomposition)

@ Robust optimization :

e requires an uncertainty set R
e can be overly conservative, even for reasonable R
e complexity strongly depend on the choice of R

@ Distributionally robust optimization :

@ is a mix between robust and stochastic optimization

e consists in solving a stochastic optimization problem where the
law is chosen in a robust way

e is a fast growing fields with multiple recent results

e but is still hard to implement than other approaches
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Some numerical tests on real-life LPs

From Ben-Tal and Nemirovski
o take LP from Netlib library

@ look at non-integer coefficients, assuming that they are not
known with perfect certainty
e What happens if you change them by 0.1% ?

constraints can be violated by up to 450%
P(violation > 0) = 0.5

P(violation > 150%) = 0.18

E[violation] = 125%
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What do you want from robust optimization ?

o finding a solution that is less sensible to modified data,
without a great increase of price
@ choosing an uncertainty set R that:

o offer robustness guarantee
e yield an easily solved optimization problem
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Solution approaches
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Solving a robust optimization problem

The robust optimization problem we want to solve is

min  L(x)

X

s.t. g(x,8) <0 V¢ e R

Note that, for simplicity reason we dropped w.l.o.g. the
uncertainty in the objective.
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Solving a robust optimization problem

The robust optimization problem we want to solve is

min  L(x)

X

s.t. g(x,8) <0 V¢ e R

Note that, for simplicity reason we dropped w.l.o.g. the

uncertainty in the objective.

Two main approaches are possible:

Constraint generation: replace R by a finite set of &, that is we
replace an "infinite number of contraints” by a finite
number of them.

Reformulation: replace g(x,£) <0 V¢ € R, by supg(x,£) <0
¢ER

and then explicit the sup.
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Constraint generation

Data: Problem parameters, reference uncertainty &g
Result: approximate value with gap;

for k € N do
solve ¥ = min, {L(x) | g(x, &) V& < k} with optimal
solution xg;
solve s = max¢cr g(xk, &) with optimal solution 1 ;
if s <0 then
Robust optimization problem solved, with value Vv and
optimal solution x

Algorithm 1: Constraint Generation Algorithm
Note that we are solving a problem similar to the certain problem
with an increasing number of constraints. This is easy to
implement and can be numerically efficient.
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Reformulation principle

We can write the robuste optimization problem as
min  L(x)
X

s.t. supg(x,£) <0
£ER

Now there are two way of simplifying this problem :
o either we can explicitely compute g(x) = sup.cg g(x,§);
@ or by duality we can write sup¢cg g(x, &) = minceq h(x, ()

@ mingeq h(x, () < 0 is equivalent to 3¢ such that h(x,() <0,
i.e. just add ( as a variable in your optimization problem
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Robust optimization for linear programm

We consider
min ¢! x
x>0
s.t. Ax<b
sup&'x < b; Vi=1.k
£ER

On this example, for specific R, we are going to follow both
reformulation approaches.
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An explicit worst case value

@ We consider an ellipsoidal uncertainty set

R={e={ar+ B}, | lulo<p)
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An explicit worst case value

@ We consider an ellipsoidal uncertainty set

R={e={ar+ B}, | lulo<p)

@ Here we can, for a given x, explicitely compute

sup&'x =aj x+ sup (Aju)'x
§ER luill2<p

= a; x + p||Aix||2
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An explicit worst case value

@ We consider an ellipsoidal uncertainty set

R={e={ar+ B}, | lulo<p)

@ Here we can, for a given x, explicitely compute
sup&'x =aj x+ sup (Aju)'x
§ER luill2<p

= a; x + p||Aix||2

@ Hence, constraint

suprx < b;
(ER

can be written
a,-TX + pl|Aix||2 < b;
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SOCP problem

@ An Second Order Cone Programming constraint is a
constraint of the form

la"x+blla <c'x+d

@ An SOCP problem is a (continuous) optimization problem
with linear cost and linear and SOCP constraints

@ There exists powerful software to solve SOCP (e.g. CPLEX,
Gurobi, MOSEK...) with dedicated interior points methods

@ There exist a duality theory akin to the LP duality theory

o If a robust optimization problem can be cast as an SOCP the
formulation is deemed efficient
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Linear duality : recalls

@ Recall that, if finite,

mé'ax £Tx
s.t. DE<d
as the same value as
m(ln ¢'d
sit. ('D=x
¢>0
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Linear duality : recalls

@ Recall that, if finite,

-
max X
; 3
s.t. DE<d
as the same value as
- T
min d
) ¢
sit. ('D=x
(>0
@ Thus,
sup £'x<b — min ('d<b
&:De<d (>0:{ T D=x

— 3(>0, ('D=x, ('d<b
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Polyhedral uncertainty

@ We consider a polyhedral uncertainty set

R={¢ | pe<d}

@ Then the robust optimization problem

min ¢ x
x>0

s.t. sup{Tx <h
¢ER

reads
min c'x
x>0,(>0
sit. (Td<h

¢Td=x
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Soyster model

The problem
min ¢! x
X
sup Ax < b
AER
X< x <X

where each coefficient & € [3;; — Jjj, 3j; + Jjj] can be written

min ¢ x
X
25UXJ+25U|XJ‘ < b; Vi
J J
x<x <X
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Soyster model

The problem
min ¢! x
X
sup Ax < b
AER
x<x<X

where each coefficient & € [3;; — Jjj, 3j; + Jjj] can be written

min ¢! x
X7.y
ZéUXj+26U)/j§bi Vi
J J
x<x <X
Yi 2 X Yji 2 =X
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Cardinality constrained LP

Soyster's model is over conservative, we want to consider a model
where only I'; coefficient per line have non-zero errors, leading to

min c'x
X?.y
a;;x; + max 0iivi < b; Vi
Z v 5/‘1\5[\:'—;.2 57 = o
J JES
x<x <X
Vi Z X5 YjZ =X
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Cardinality constrained LP

This means that, for line / we take a margin of

which can be obtained as
Bilx. i) = max  » djlxjlz;
J
ZZ/] <T;
J
0 S Z,'j S 1

This LP can be then dualized to be integrated in the original LP.
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Cardinality constrained LP

In the end we obtain

min c'x

X850, 1

Z ajx; + B; < b; Vi
J
AiTi+ D 1 < i Vi
J

5UXJ <\ + [hij Vi, Jj
—(5,'J'XJ' S)\,-—i-u,-j Vi, Jj
A>0, >0
X< x <X
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A combinatorial optimization problem with cardinality

constraint

We consider a combinatorial optimization problem:

min max &' x
xe{0,1}V  ¢eR
s.t. xeX

where R is such that each & € [G, & + ¢;], with at most '
coefficient deviating from ¢;.
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A combinatorial optimization problem with cardinality

constraint

We consider a combinatorial optimization problem:

min max &' x

xe{0,1}V  ¢eR
s.t. xeX

where R is such that each & € [G, & + ¢;], with at most '
coefficient deviating from ¢;.
Thus the problem reads

P min ¢’ x + max 0iX;
(P min, kIR

s.it. xe X

wlog we assume that the / are ordered by decreasing cost
uncertainty span : 61 > 2 > -+ > Jp.
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Solving the robust combinatorial problem

We can write (P) as

n
min  max ¢ x+ Z Oix;uj
x€{0,1}N uel0,1]" P
s.t. x e X
n
D u<T

i=1

For a given x € X we dualize the inner maximization LP problem
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Solving the robust combinatorial problem

Thus we can write (P) as

n
min ETx+I_9+Zyj

x,y,0 4

s.t. xeX
Yj+020;x
yj,0>0

V. Leclere Robust Optimization : A tutorial May 21, 2019



Robust combinatorial
[eIeTeY Tolele}

Solving the robust combinatorial problem

Thus we can write (P) as

n
min ETx+I_9+Zyj

x,y,0 4

s.t. xeX
Yj+020;x
yj,0>0

Note that an optimal solution satisfies
yj = (85— 0)" = (5; — 0) "

as x; € {0,1}, and 6 > 0.
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Solving the robust combinatorial problem

Thus we can write (P) as

R (85— o)V
min, € x+r9+zng(5j 0)
J:

s.t. xeX

We can now decompose the problem for 6 € [dy, dy—1] where
0p+1 =0 and &g = +o0.
Therefore, we have

val(P) = min Z*

¢e(n]
where
—1
Zt = min elx+T0+ (05 =0
xex,ee[lée,ézz—ll : JZ]_ XJ( ' )
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Solving the robust combinatorial problem

As the problem is linear in 6 we have that

-1
7! = i cTx+T0+ (5, —0
xex,erg[lg,&g,l] x ;XJ( i =)
is attained for 0 = dp or 6 = §,_1.
So in the end, we have

val(P) = fmfn] G*
€ln

where
¢

Ge = r5g —+ )r(nel)rg {ETX =+ ; (5, >055)XJ}

V. Leclere Robust Optimization : A tutorial May 21, 2019



Robust combinatorial
[eIelelolote] }

Algorithm for the robust problem

@ For 7 € [n], solve

¢
l_ : =T . .
G =Td +Ln6|)rg {c X+ ;(5, 55)XJ}
with optimal solution x,
© Set (* € argminycy G*
© Return val(P) = G* and x* = x,
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Why do robust optimization 7

@ Because you want to account for some uncertainty

@ Because you want to have a solution that resists to changes in
data

@ Because your data is unprecise and robustness yield better
out-of-sample result

@ Because you do not have the law of the uncertainty
@ Because you can control the robustness level

@ Because your problem is "one-shot”
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Which uncertainty set to choose ?

@ An uncertainty set that is computationally tractable

@ An uncertainty set that yields good results

@ An uncertainty set that have some theoretical soundness
@ An uncertainty set that take available data into account

@ Select uncertainty set / level through cross-validation
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Is there some theoretical results ?

@ Yes: with some assumption over the randomness (e.g.
bounded and symmetric around 3) some uncertainty set (e.g.
ellipsoidal) have a probabilistic guarantee :

VEER, g(x<0 =  Pg(x€<0)>1-¢

@ Yes: in some cases approximation scheme for nominal problem
can be extended to robust problem (e.g. cardinal uncertainty
in combinatorial problem)

@ Yes: using relevant data we can use statistical tools to
construct a robust set R that imply a probabilistic guarantee

V. Leclere Robust Optimization : A tutorial May 21, 2019 27 / 28



Conclusion
@ D. Bertsimas, D. Brown, C. Caramais

Theory and applications of robust optimization
Siam Review, 2011.

[@ BL Gorissen, |. Yanikoglu and D. den Hertog
A practical guide to robust optimization
Omega, 2015.

[[ D. Bertsimas and M. Sim
The price of robustness
Operations research, 2004.

[[ D. Bertsimas and M. Sim
Robust discrete optimization and network flows
Mathematical Programming, 2003.

@ A. Ben Tal, L El Ghaoui, A. Nemirovski
Robust optimization
Springer, 2009.

V. Leclere Robust Optimization : A tutorial May 21, 2019



	Introduction and motivations
	How to add uncertainty in an optimization problem
	Why shall you do Robust Optimization ?

	Solving the robust optimization problem
	Robust optimization for Linear Programm
	Ellipsoidal uncertainty set
	Polyhedral uncertainty set
	Cardinality constrained LP

	Robust Combinatorial Problem
	Conclusion

