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Model presentation

Parameters :

the storage level x it ,

the hydroturbine outflows
uit ,

the external inflows w i
t ,

the selling prices pit .

Objective function :

E
[ N∑

i=1

T−1∑
t=0

−pt uit + ε(uit)
2︸ ︷︷ ︸

=Lit(x
i
t ,u

i
t ,w

i
t ,z

i
t )

+Ki (xT )

]
Figure: The river chain model
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Formal problem presentation

Thus the stochastic optimization problem we are solving reads

min
(X,U,Z)

E
( N∑

i=1

( T−1∑
t=0

Lit
(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

)
+ K i

(
x iT
)))

, (1a)

subject to:

∀i , ∀t Xi
t+1 = f it (Xi

t ,U
i
t ,W

i
t ,Z

i
t) , (1b)

∀i , ∀t Zi+1
t = g i

t (Xi
t ,U

i
t ,W

i
t ,Z

i
t) , (1c)

as well as measurability constraints:

∀i , ∀t Ui
t � Ft . (1d)
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Decomposition Principle
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We aim at dualizing the coupling Constraint and at solving the
Problem (1) by using the Uzawa algorithm: at iteration k , the
associated multiplier is a fixed Ft-measurable random

variable
(
λi+1
t

)(k)
, and the term (under the expectation) induced

by duality in the cost function is(
λi+1
t

)(k)
.
(

Zi+1
t − g i

t

(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

))
.

It can be decomposed as(
λi+1
t

)(k)
.Zi+1

t : term pertaining to dam i + 1.

−
(
λi+1
t

)(k)
.g i

t

(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

)
: term pertaining to dam i .

Consequently the algorithm is done as follow :

1 we fix multipliers
(
λi
t

)(k)
for all i and t,

2 we have to solve N problems with only one dam,
3 we update the multiplier by a gradient step.
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One dam problem

Consequently optimization problem associated to dam i at
iteration k of the Uzawa algorithm is:

min
(Xi ,Ui ,Zi )

E
( T−1∑

t=0

(
Lit
(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

)
+
(
λi
t

)(k)
.Zi

t

−
(
λi+1
t

)(k)
.g i

t

(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

))
+ K i

(
x iT
))
, (2a)

Xi
t+1 = f it (Xi

t ,U
i
t ,W

i
t ,Z

i
t) , ∀t , (2b)

Ui
t � Ft and Zi

t � Ft , ∀t . (2c)

This problem is a one dimensional dam problem and can be solved
by DP or by any other method.
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DADP principle(
λi
t

)(k)

t=0,...,T−1
prevents us to use DP.

The idea of DADP is to replace
(
λi
t

)(k)
by E

((
λi
t

)(k) ∣∣ Yi
t

)
,

or equivalently replace the constraint
Zi
t = g i−1

t

(
Xi−1

t ,Ui−1
t ,Wi−1

t ,Zi−1
t

)
by

E
(

Zi
t − g i−1

t

(
Xi−1

t ,Ui−1
t ,Wi−1

t ,Zi−1
t

) ∣∣∣ Yi
t

)
. (3)

In practice, the information variable Yi
t is a short-memory process

that will enter the state variables of the subproblems. Possible
choices for Yi

t are:

1 Yi
t ≡ const: we deal with the constraint in expectation,

2 Yi
t = Wi−1

t : we incorporate the noise Wi−1
t in Subproblem i ,

3 Yi
t = f̃ i−1

t

(
Yi

t−1,W
i−1
t

)
: we mimic the dynamics of Xi−1

t .
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Detailed Algorithm 1/4

We give here a formal presentation of the algorithm. First the
initialization of the algorithm should be done as follow

We fix some random particles (that is some trajectories of the
noise) (W l

t )t∈[0,T ] that will be used throughout the algorithm.

We initialize
(
λi
t

)(0)
as deterministic well chosen constants

(zero by default), and
(
ϕi
t

)(0)
as constant functions.

Then at the beginning of iteration k we should have defined

A variable of information
(
Yi

t

)(k)
which should be an

(uncontrolled process)

Yi
t = f̃ it

(
Yi

t−1, ξ
i
t

)
.

A function
(
ϕi
t

)(k)
such that(

ϕi
t

)(k)
(y) ≈ E

((
λi
t

)(k) ∣∣ (Yi
t

)(k)
= y

)
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Detailed Algorithm 2/4

For each i we solve

min
Xi ,Ui ,Zi

E
[ T∑

t=0

Lit
(
Xi

t ,U
i
t ,W

i
t

)
+
(
ϕi
t

)(k)(
Yi

t

)
.Zi

t

−
(
ϕi+1
t

)(k)(
Yi+1

t

)
.g(Xi

t ,U
i
t ,W

i
t ,Z

i
t)

]
Xi

t+1 = f it
(
Xi

t ,U
i
t ,Z

i
t ,W

i
t

)
Yi

t+1 =
(
f̃ i
)(k)

t

(
Yi

t , ξ
i
t

)
Yi+1

t+1 =
(
f̃ i+1

)(k)

t

(
Yi+1

t , ξi+1
t

)
Ui

t � Ft

Zi
t � Ft
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Detailed Algorithm 3/4

This gives us some optimal feedback laws

(γ it)
(k)
(

Xi
t ,Y

i
t ,Y

i+1
t ,Wi

t , ξ
i
t , ξ

i+1
t

)
 Ui

t

(ηit)
(k)
(

Xi
t ,Y

i
t ,Y

i+1
t ,Wi

t , ξ
i
t , ξ

i+1
t

)
 Zi

t

that are used with(
Xi ,l

t

)(k)
,
(
Ui ,l

t

)(k)
,
(
Zi ,l
t

)(k)
,
(
Yi ,l

t

)(k)
,
(
Yi+1,l

t

)(k)
, to compute

(
Ui ,l

t

)(k)
= (γ it)

(k)
((

Xi
t

)(k)
,
(
Yi

t

)(k)
,
(
Yi+1

t

)(k)
,Wi ,l

t , ξ
i ,l
t , ξ

i+1,l
t

)
(
Zi ,l
t

)(k)
= (ηit)

(k)
((

Xi
t

)(k)
,
(
Yi

t

)(k)
,
(
Yi+1

t

)(k)
,Wi ,l

t , ξ
i ,l
t , ξ

i+1,l
t

)
and (

Xi ,l
t+1

)(k)
= f it

((
Xi ,l

t

)(k)
,
(
Ui ,l

t

)(k)
,
(
Zi ,l
t

)(k)
,Wi ,l

t

)
(
Yi ,l

t+1

)(k)
=
(
f̃ i
)(k)

t

((
Yi ,l

t

)(k)
, ξi ,lt

)
(
Yi+1,l

t+1

)(k)
=
(
f̃ i+1

)(k)

t

((
Yi+1,l

t

)(k)
, ξi+1,l

t

)
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Detailed Algorithm 4/4

And finally we can

Update of the prices trajectories:(
λi+1,l
t

)(k+1)
:=
(
λi+1,l
t

)(k)
+ ρ(k)

(
∆i ,l

t

)(k)
,

with
(
∆i ,l

t

)(k)
:=(

Zi+1,l
t

)(k) − g i
t

((
Xi ,l

t

)(k)
,
(
Ui ,l

t

)(k)
,Wi ,l

t ,
(
Zi ,l
t

)(k))
.

Define a new information dynamics
(
f̃ i
)(k+1)

t
.

Simulate
(
Yi ,l

t

)(k+1)
.

Make a regression of
(
λi ,l
t

)(k+1)
on
(
Yi ,l

t

)(k+1)
to obtain(

ϕi
t

)(k+1)
(y) ≈ E

((
λi
t

)(k+1)
∣∣∣ (Yi

t

)(k+1)
= y

)
.

which terminate step k .
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Back to admissibility

Once the algorithm has converged we have some feedbacks
laws that must verify the relaxed coupling constraint.

Consequently we need an heuristic to obtain an admissible
solution of the original problem.

We suggest to approximate Bellman’s value function for the
global problem as the sum of the Bellman’s value function of
each subproblem where Yi

t is replaced by Xi
t .

Consequently we obtain a global admissible strategy by doing
a one time step optimization of the global problem.
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Parameters and results

The characteristics of the study are:

{min, max} bounds on Xi
t = {0, 80} hm3, ∀(i , t);

time steps number T = 12 (one step a month over a year);

{min, max} bounds on Ui
t = {0, 40} hm3month−1, ∀(i , t).

The stochastic universe is finite. The noise processes are white and
uniformly distributed and the inflows at the three dams reservoirs
are correlated. The simulation is based on 500 inflows scenarios.
We choose a constant information variable, thus we turn an almost
sure constraint into a expected constraint.
We need about 3000 iterations to converges. The approximation
that we make by estimating the multipliers as their expected values
leads to a loss of about 1%. This is all the more promising that we
use the simplest information variable.
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Figure: Six storage level trajectories
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Figure: Differences in stock and controls on the 500 simulation scenarios
ω
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Conclusion

Price decomposition in a stochastic setting is unpracticable.

However we can solve a relaxed version of the original
problem.

In order to do that we have to choose an information variable,
and replace the lagrange multiplier by its conditionnal
expectation.

Numerical results are promising, but there is still a lot of
difficulties to use smart information variable.
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The end

Thank you for your attention !
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