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Objectives and Motivations

Goal: Development of a numerical two-phase shallow flow model for
mixtures of solid grains and fluidover variable basal surface.

Ultimate objective:Numerical simulation of geophysical flows such as
avalanchesanddebris flowsover natural terrain.(Project DMA-ENS & IPGP.)

• Gravitational geophysical flows typically involve bothsolid granular material
andinterstitial fluid.

• Inter-phase forces influence flow mechanics: flow deformation, mobility,
run-out, deposit.

Source: USGS
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Thin Layer Granular Flow Models – State of the Art in brief

Thin layer (shallow flow) models:H/L≪ 1. H, L = characteristic flow depth and length.

Continuum flow equations arescaledanddepth-averaged.

• First 1D single-phase dry granular flow model: Savage and Hutter, 1989.

Extensive work on dry granular flows: 2D models, complex topography.
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Thin Layer Granular Flow Models – State of the Art in brief

Thin layer (shallow flow) models:H/L≪ 1. H, L = characteristic flow depth and length.

Continuum flow equations arescaledanddepth-averaged.

• First 1D single-phase dry granular flow model: Savage and Hutter, 1989.

Extensive work on dry granular flows: 2D models, complex topography.

• Solid-Fluid Mixture Model (Iverson, 1997; Iverson and Denlinger, 2001)
(Similar mixture theory approach: Pudasaini–Wang–Hutter, 2005).

Hp: 1) constant fluid volume fraction;2) fluid velocity = solid velocity.

System:mass and momentum equations for the mixture.

No inherent pore fluid motion description⇒ needs supplementary
specification of pore fluid pressure evolution

⋆ 2D model, treats irregular topography; Numerical simulation of many
laboratory experiments and debris-flow-flume tests.
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Thin Layer Granular Flow Models – State of the Art in brief

Thin layer (shallow flow) models:H/L≪ 1. H, L = characteristic flow depth and length.

Continuum flow equations arescaledanddepth-averaged.

• First 1D single-phase dry granular flow model: Savage and Hutter, 1989.

Extensive work on dry granular flows: 2D models, complex topography.

• Solid-Fluid Mixture Model (Iverson, 1997; Iverson and Denlinger, 2001)
(Similar mixture theory approach: Pudasaini–Wang–Hutter, 2005).

Hp: 1) constant fluid volume fraction;2) fluid velocity = solid velocity.

System:mass and momentum equations for the mixture.

No inherent pore fluid motion description⇒ needs supplementary
specification of pore fluid pressure evolution

⋆ 2D model, treats irregular topography; Numerical simulation of many
laboratory experiments and debris-flow-flume tests.

• A Two-Phase Model: Pitman and Le, 2005.

⋆ Retainsmass and momentum equations for both solid and fluid phases.

However: non-conservative mixture momentum eq.; no generaltopography.
Numerical method only for reduced model that ignores fluid inertial terms.
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Two-Phase Shallow Granular Flow

Physical and Mathematical Model

Pitman–Le approach (2005)

Consider thin layer of a mixture ofsolid grainsandfluid flowing over
a smooth basal surface.

Two-phase flow equations [Anderson and Jackson, 1967]

∂t(ρsϕ) + ∇ · (ρsϕVs) = 0 ,

ρsϕ(∂tVs + (Vs · ∇)Vs) = ∇ · Ts + ϕ∇ · Tf + I + ρsϕg ,

∂t(ρf (1 − ϕ)) + ∇ · (ρf (1 − ϕ)Vf ) = 0 ,

ρf (1 − ϕ)(∂tVf + (Vf · ∇)Vf ) = (1 − ϕ)∇ · Tf − I + ρf (1 − ϕ)g .

ρs, ρf = solid and fluid specific densities;ϕ = solid volume fraction;
Vs, Vf = velocities;Ts, Tf = stress tensors;g = gravity vector;
I = non-buoyancy interaction forces (e.g. drag).
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Two-Phase Shallow Granular Flow Model

Material Constitutive Behaviour

• Solid and fluid are incompressible: material densitiesρs, ρf = constant.

• Fluid is inviscid; only fluid stress is a pressure.

• Solid modeled as Coulomb material (as Savage–Hutter).

Coulomb friction law for solid shear stresses:T xz
s = −sgn(Vs)νT

zz
s ,

ν ≥ 0 , Vs = solid sliding velocity.

Earth-pressure relation for lateral normal stresses:T xx
s = KT zz

s . (K = 1)

Boundary Conditions

• Free upper surface stress-free, and material surface for both phases.

• Both solid and fluid motion tangent to the basal surface (no-slip condition).

Moreover: Only non-buoyancy interaction forceI is drag: I = D(Vf − Vs).

Under the shallow flow hypothesisH/L≪ 1 :

Scale and depth-average the governing two-phase flow equations.
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Model Equations(1D and hp. small topography slopes)

Depth-Averaged Solid and Fluid Mass and Momentum Equations

∂

∂t
(ϕh) +

∂

∂x
(ϕhvs) = 0 ,

∂

∂t
(ϕhvs) +

∂

∂x

(

ϕhv2
s + g

1−γ
2

ϕh2

)

+ γϕ
g

2

∂h2

∂x
= −gϕh ∂b

∂x

− sgn(vs)ν
b g(1 − γ)ϕh+ γDh(vf − vs) ,

∂

∂t
((1 − ϕ)h) +

∂

∂x
((1 − ϕ)hvf ) = 0 ,

∂

∂t
((1 − ϕ)hvf ) +

∂

∂x

(

(1 − ϕ)hv2
f

)

+ (1 − ϕ)
g

2

∂h2

∂x
= −g(1 − ϕ)h

∂b

∂x

−Dh(vf − vs) .

h = flow depth;ϕ = depth-averaged solid volume fraction;vs, vf = averaged solid and fluid velocities;

γ =
ρf

ρs
< 1, ρs, ρf = material specific densities (constant);b(x) = bottom topography;

g = gravity constant;νb = tan δbed, δbed = basal friction angle;D = average drag function (=̄D/ρf ).
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Presented model vs. original Pitman–Le model

Presented model: variant of the original Pitman–Le model.

Different averaging approximation of fluid motion equation

⇒ Different fluid momentum balance:

Pitman–Le: ∂
∂t (hvf ) + ∂

∂x

(

hv2
f

)

+ g
2

∂h2

∂x = 0.

Here: ∂
∂t ((1 − ϕ)hvf ) + ∂

∂x

(

(1 − ϕ)hv2
f

)

+ (1 − ϕ) g
2

∂h2

∂x = 0.

Difference:

τ ≡ hvf (∂t(1 − ϕ) + vf∂x(1 − ϕ)) = (1 − ϕ)vf∂x(ϕh(vs − vf )).

⇒ Different mixture momentum balance.

Here:conservative equationfor the momentum of the mixture

∂

∂t

`

(ϕvs + γ(1 − ϕ)vf )h
´

+
∂

∂x

“

`

ϕv2
s + γ(1 − ϕ)v2

f

´

h +
g

2
(ϕ + γ(1 − ϕ))h2

”

= 0 .

Consistent with conservative mixture momentum equation oftwo-phase flow
system before averaging and expected physical behaviour.
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Two-Phase Shallow Granular Flow Equations. Formulation(hs, hsvs, hf , hfvf ).

Set hs = ϕh, hf = (1 − ϕ)h, ϕ = solid volume fraction.
(Here no friction.)

∂hs

∂t
+

∂

∂x
(hsvs) = 0 ,

∂

∂t
(hsvs) +

∂

∂x

(

hsv
2
s +

g

2
h2

s + g
1−γ

2
hshf

)

+ γghs
∂hf

∂x
= −ghs

∂b

∂x
+ γF D,

∂hf

∂t
+

∂

∂x
(hf vf ) = 0 ,

∂

∂t
(hfvf ) +

∂

∂x

(

hfv
2
f +

g

2
h2

f

)

+ g hf
∂hs

∂x
= −ghf

∂b

∂x
− F D.

Drag forceF D = D(hs + hf )(vf − vs); γ = ρf /ρs .

Note: Similar totwo-layer shallow flowmodel, except additional cross term
∂
∂x

(

g 1−γ
2 hshf

)

in the solid momentum balance.
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Eigenvalues Analysis

Consider ∂tq +A(q)∂xq = 0 , q ∈ R
4 , A ∈ R

4×4 .

In general:eigenvaluesλk , k = 1, . . . , 4, cannot be expressed explicitly.

Define: a =
√
gh and β =

√

1
2 (1 − ϕ)(1 − γ) < 1 .

If vf = vs ≡ v thenA has real distinct eigenvalues (ϕ 6= 1)

λ1,4 = v ∓ a and λ2,3 = v ∓ aβ .

We can show that:
There are alwaystwo real external eigenvaluesλ1,4 , and, moreover

min(vf , vs) − a ≤ λ1 < Re(λ2) ≤ Re(λ3) < λ4 ≤ max(vf , vs) + a .

Furthermore:

• If |vs − vf | < 2aβ or |vs − vf | > 2a then all the eigenvalues are real and
distinct (ϕ 6= 1) ⇒ the system is strictly hyperbolic.

• If 2aβ < |vs − vf | < 2a then the internal eigenvalues may be complex.

Hyperbolicity at least when the velocity difference|vs − vf | is sufficiently small.
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Eigenvectors

Right Eigenvectors

q = (hs, hsvs, hf , hfvf )T. Assumehs, hf 6= 0. Fork = 1, . . . , 4 :

rk =







1
λk

ξk
ξkλk






, ξk =

(λk − vs)
2 − g

(

hs + 1−γ
2 hf

)

g 1+γ
2 hs

=
ghf

(λk − vf )2 − ghf
.

Note: Can show that1st and4th fields are genuinely nonlinear:∇λk · rk 6= 0, ∀q.

Left Eigenvectors,L = R−1

lk =
nk

P ′(λk)
, nk = (ϑs,k(λk − 2vs), ϑs,k, ϑf (λk − 2vf ), ϑf ) ,

P (λ) = characteristic polynomial,

ϑs,k = (λk − vf )2 − ghf = g
hf

ξk
and ϑf = g

1 + γ

2
hs .
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Numerical Solution

• Assume|vs − vf | small enough so that the system is strictly hyperbolic.

Class of methods used:Godunov-type Finite Volume Schemes

(Schemes based onRiemann Solvers)

Difficulties:

• Non-conservative system.Many well-established efficient finite volume
schemes: only for conservation laws.
(New difficulty with respect to dry granular flow models and mixture models.)

• Topography source terms need to be discretized so that the method is

well-balanced = it preserves steady states and captures accurately perturbations.

Well-known difficulty for systems with sources.

• Positivity preservation: computed values of flow depth and phase volume
fractions must be positive.
Important to handle interfaces between flow fronts anddry bed zones(h = 0).

→ still to be addressed. Here we will consider regimes withoutdry bed areas.
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Godunov-Type Schemes

Riemann problem:∂tq +A(q)∂xq = 0 with I.C. q(x, 0) =

{

qℓ if x ≤ x̄ ,
qr if x > x̄ .

tn

tn+1

Qn
i

Qn+1

i

Qn
i → approximate solution on cell(xi−1/2, xi+1/2).

Discontinuities at cell interfaces⇒ Riemann problems.

1) At each cell interfacexi+1/2 betweenQn
i andQn

i+1 → solve Riemann
problem with dataQn

i andQn
i+1.

2) Use solution of local Riemann problems to update solutionQn
i → Qn+1

i .

Riemann Solver:→ Set ofwavesWk and speedssk representing the
(approximate) Riemann solution structure.

• ∆q ≡ Qi+1−Qi =
∑

k Wk

• For conservative systems∂tq + ∂xF(q) = 0: F(Qi+1)−F(Qi) =
∑

k s
kWk

Wave-Propagation Algorithm:Qn+1
i = Qn

i − ∆t
∆x (A+∆Qi−1/2 +A−∆Qi+1/2),

fluctuations:A±∆Qi+1/2 =
∑

k(sk
i+1/2)

±Wk
i+1/2 , s+=max(s, 0), s−=min(s, 0).
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Numerical Solution

Homogeneous System(b(x) = 0, D = 0)

∂tq + ∂xf(q) + w(q, ∂xq) = 0 , q = (hs, hsvs, hf , hfvf )T ,

f(q) =
(

hsvs, hs v
2
s + g

2 h
2
s + g 1−γ

2 hs hf , hf vf , hf v
2
f + g

2 h
2
f

)T
,

w(q, ∂xq) = (0, γghs ∂xhf , 0, ghf ∂xhs)
T
.

⋆ Solid and fluid mass equations are conservative.

⋆ Mixture momentum equation is conservative:∂tm+ ∂xfm(q) = 0 ,

m = hsvs + γ hfvf , fm(q) = f (2)(q) + γ f (4)(q) + γ g hshf .

⋆ Non-conservative productsγghs
∂hf

∂x , ghf
∂hs

∂x in the momentum balances
couple sets of equations of the two phases⇒ avoid uncoupled schemes that
may generate instabilities.

We employ aRoe-typeRiemann Solver.
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Roe-type Riemann Solver

Consider the quasi-linear form of the system∂tq +A(q)∂xq = 0 .

At each local cell interfacexi+1/2 between solution valuesQi andQi+1 solve a
Riemann problem for alinearized system

∂tq + Â(Qi, Qi+1)∂xq = 0
with initial dataQi andQi+1.

TheRoe matrixÂ(Qi, Qi+1) is defined so as to guaranteeconservationfor the
mass of each phase and for the momentum of the mixture:

f (p)(Qi+1) − f (p)(Qi) = Â(p,:) (Qi+1 −Qi) , p = 1, 3 ,

fm(Qi+1) − fm(Qi) = (Â(2,:) + γÂ(4,:))(Qi+1 −Qi) .

We takeÂ = A(ĥs, ĥf , v̂s, v̂f ), with the choice

ĥθ =
hθ,i + hθ,i+1

2
and v̂θ =

√

hθ,i vθ,i +
√

hθ,i+1 vθ,i+1
√

hθ,i +
√

hθ,i+1

, θ = s, f .

Then: wavesWk = αk r̂k ,∆q =
∑4

k=1 αk r̂k , and speedssk = λ̂k , k = 1, . . . , 4.

{r̂k , λ̂k} = eigenpairs ofÂ.
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Wave Propagation Algorithms (LeVeque, 1997) – F-Wave Formulation

Basic software:CLAWPACK.

1) Classical Riemann solver:∆q =
∑

k Wk ; Roe:Wk =αkr̂k , s
k = λ̂k

2) F-wave Approach:For a conservative system∂tq + ∂xF(q) = 0 ,

decompose flux jump∆F ≡ F(Qi+1) −F(Qi) =
∑

k Zk .

Local Riemann solution approximated byf-wavesZk and associatedspeedssk.

Roe:Zk = ζk r̂k , s
k = λ̂k , {r̂k , λ̂k} = eigenpairs of Roe matrix forF ′(q).

Fluctuations

A−∆Qi+1/2 =
∑

k:sk
i+1/2

<0

Zk
i+1/2 , A+∆Qi+1/2 =

∑

k:sk
i+1/2

>0

Zk
i+1/2 .

Algorithm

Qn+1
i = Qn

i − ∆t
∆x (A+∆Qi−1/2 + A−∆Qi+1/2)

(2) can be equivalent to(1), but useful framework to includesource terms.
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Wave Propagation Algorithms (LeVeque, 1997) – F-Wave Formulation

Basic software:CLAWPACK.

1) Classical Riemann solver:∆q =
∑

k Wk ; Roe:Wk =αkr̂k , s
k = λ̂k

2) F-wave Approach:For a conservative system∂tq + ∂xF(q) = 0 ,

decompose flux jump∆F ≡ F(Qi+1) −F(Qi) =
∑

k Zk .

Local Riemann solution approximated byf-wavesZk and associatedspeedssk.

Roe:Zk = ζk r̂k , s
k = λ̂k , {r̂k , λ̂k} = eigenpairs of Roe matrix forF ′(q).

Fluctuations

A−∆Qi+1/2 =
∑

k:sk
i+1/2

<0

Zk
i+1/2 , A+∆Qi+1/2 =

∑

k:sk
i+1/2

>0

Zk
i+1/2 .

Algorithm (high-resolution)

Qn+1
i = Qn

i − ∆t
∆x (A+∆Qi−1/2 + A−∆Qi+1/2)− ∆t

∆x (F c
i+1/2 − F c

i−1/2)

F c
i+1/2 = correction fluxes for second order accuracy

(2) can be equivalent to(1), but useful framework to includesource terms.
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The Roe-Type Solver in the F-Wave Framework

Difficulty: Here non-conservative system∂tq + ∂xf(q) + w(q, ∂xq) = 0 ,

w(q, ∂xq) = (0, γghs ∂xhf , 0, ghf ∂xhs)
T
.

We lack a flux functionF to be used for f-wave decomposition.
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The Roe-Type Solver in the F-Wave Framework

Difficulty: Here non-conservative system∂tq + ∂xf(q) + w(q, ∂xq) = 0 ,

w(q, ∂xq) = (0, γghs ∂xhf , 0, ghf ∂xhs)
T
.

We lack a flux functionF to be used for f-wave decomposition.

Nonetheless can still formulate our Roe-type method into the f-wave framework:

Take local linearization ofw(q, ∂xq) consistent with Roe linearization and define
approximate flux difference

∆F̃ = ∆f + (0, γ g ĥs∆hf , 0, g ĥf ∆hs)
T .

Then decompose
∆F̃ =

∑4
k=1 ζk r̂k ,

and set Zk = ζk r̂k , sk = λ̂k , k = 1, . . . , 4 .

{r̂k , λ̂k} = eigenpairs ofÂ.

Note: ∆F̃ = Â∆q (classical Roe property).
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Topography Source Terms

Consider system with topography terms:

∂tq +A(q)∂xq = ψ b(q) , q = (hs, hsvs, hf , hfvf )T ,

ψ b(q) = − (0, ghs∂xb, 0, ghf ∂xb)
T
, b = b(x) .

Needwell-balancing: efficient modeling of equilibrium and

quasi-equilibrium states→ A(q)∂xq ≈ ψ b(q) .

Steady states at rest (vs = vf = 0):

hs + hf + b = const. and
hf

hs
= const.

That is
h+ b = const. and ϕ = const.
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Well-Balancing Topography Terms - F-Wave Method

(Bale–LeVeque–Mitran–Rossmanith, 2002)

Idea:Concentrate source term at interfaces→ Ψ b
i+1/2 and incorporate topography

contributionΨ b
i+1/2∆x into the Riemann solution. Now we decompose:

∆F̃−Ψ b
i+1/2∆x =

∑4
k=1 ζk r̂k .

Then, same algorithm with f-wavesZk = ζk r̂k and speedssk = λ̂k.

The interface source termΨ b
i+1/2 must satisfy thediscrete steady state condition

∆F̃/∆x = Ψ b
i+1/2 ,

whenever initial data correspond to equilibrium at rest.

We take Ψ b
i+1/2∆x = −(0, g ĥs∆b, 0, g ĥf ∆b)

T , ∆b = bi+1 − bi .

Then, if initially steady state⇒ Zk ≡ 0 ⇒ updating formula givesQn+1
i = Qn

i

⇒ equilibrium is maintained.

If solution close to a steady state, it is the deviation from equilibrium that is
decomposed⇒ perturbations are well modeled.
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Interphase Drag Terms

Consider system withdrag source terms:

∂tq +A(q)∂xq = ψ b(q) + ψD(q) ,

ψD(q) = (0, γ F D, 0, −F D)
T
, F D = D(hs + hf )(vf − vs) .

Drag function:D = D/ρf , D = S1(ϕ;σ) + S2(ϕ;σ)|vf − vs|.
σ = parameters, e.g.ρs, ρf , ds (grain diameter).

Note: At restψD(q) = 0 ⇒ no influence on balance conditions at rest.

Fractional Step Method

1. Solve over∆t the system∂tq +A(q)∂xq − ψb(q) = 0, as described.

2. Solve exactly over∆t the system of ODEs∂tq = ψD(q).

→ Efficient modeling of both fast and slow velocity relaxationprocesses.
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Eigenvalues Computation

Explicit expression of the eigenvalues not available: neednumerical computation.

0
 λ1  λ2  λ3  λ4

 min(vf,vs) − a  max(vf,vs) + a

 a = sqrt(g h)

P(λ)

External eigenvaluesλ1,4

computed throughNewton
iterationwith starting guess
min(vf , vs) − a for λ1 and
max(vf , vs) + a for λ4.

For λ ∈ [min(vf , vs) − a, λ1] :

P ′(λ) < 0, P ′′(λ) > 0,

For λ ∈ [λ4, max(vf , vs) + a] :

P ′(λ) > 0, P ′′(λ) > 0.

• Knownλ1,4: Vieta’s formulas to obtain the internal eigenvaluesλ2,3.

• Explicit expressions of right eigenvectorsrk and left eigenvectorslk in
terms ofλk, k = 1, . . . , 4.
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Initial flow hump with higher fluid content
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Grid cells =1000, 2nd order (MC limiter), CFL =0.9.
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Initial flow hump with higher fluid content
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Initial flow hump with higher fluid content
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Initial flow hump with higher fluid content
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Initial flow hump with higher fluid content
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Only initial variation ofh Only initial variation ofϕ
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Numerical Test: Perturbation of a steady state at rest

Extension of LeVeque’s classical test [JCP, vol. 146, 1998]

b(x) =

{

0.25(cos(π(x− 0.5)/0.1) + 1) if |x− 0.5| < 0.1 ,
0 otherwise.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

 h + b at t = 0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.6

 φ at t = 0

For −0.6 < x < −0.5 :

h(x, 0) = h0 + h̃ and

ϕ(x, 0) = ϕ0 − ϕ̃ .

h0 = 1 , ϕ0 = 0.6 ,

h̃ = ϕ̃ = 10−3 .

Grid cells =100, 2nd order, CFL =0.9.
Reference curve: Grid cells =1000.
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Numerical Test: Perturbation of a steady flow moving over a bump

Steady state conditions for a moving flow withvs = vf ≡ v:

ϕ = const. , hv = const. , g(h+ b) +
1

2
v2 = const.

Test 1: Convergence to a steady subcritical flow over a bump(as single-phase s.w.)

b(x)=

8

<

:

0.2−0.05(x−10)2 if 8<x<12,

0 otherwise.

I.C. h = 2 , ϕ = const., vs =vf =0.

B.C. (hv)in = 4.42, hout = 2 .

100 grid cells; solution att = 50. −5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
 h + b

 

 

 computed
 exact

Now: take initial disturbance ofϕ.

ϕ(x, 0) = ϕ0 + ϕ̃ , ϕ0 = 0.6 , ϕ̃ = 10−3 , for − 3.5 ≤ x ≤ −2.5 .

Grid cells =150, Reference curve:1500 cells.2nd order; CFL =0.9.
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Perturbation of a steady flow in motion
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Numerical experiments with drag

Flow hump with higher fluid content
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Numerical Experiment: Dam-Break Problem

Initially: discontinuity between two constant states with flow at rest (vs =vf =0).

Left: hℓ = 3, ϕℓ = 0.7 ; Right: hr = 2, ϕr = 0.4 .
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1. Solution of two-phase model with no drag.
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Left: hℓ = 3, ϕℓ = 0.7 ; Right: hr = 2, ϕr = 0.4 .

Compare:

1. Solution of two-phase model with no drag.

2. Solution of two-phase model with drag effects.

3. Solution of reduced modelderived theoretically from two-phase model by
assumingdrag strong enough to drive instantaneously phase velocities to
equilibrium. ⇒ Hyperbolic system of three equations:

⋆ Mass and momentum conservation for the mixture + advection forϕ.

Riemann problems can be solvedexactly.
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Numerical Experiment: Dam-Break Problem

Initially: discontinuity between two constant states with flow at rest (vs =vf =0).

Left: hℓ = 3, ϕℓ = 0.7 ; Right: hr = 2, ϕr = 0.4 .

Compare:

1. Solution of two-phase model with no drag.

2. Solution of two-phase model with drag effects.

3. Solution of reduced modelderived theoretically from two-phase model by
assumingdrag strong enough to drive instantaneously phase velocities to
equilibrium. ⇒ Hyperbolic system of three equations:

⋆ Mass and momentum conservation for the mixture + advection forϕ.

Riemann problems can be solvedexactly.

4. Solution of two-phase model in thelimit of infinitely large drag:
Impose numerically instantaneous velocity equilibrium bysetting
vs = vf = veq in fractional step.

veq =
hsvs+γhf vf

hs+γhf

∣

∣

∣

t0
= limit for t→ ∞ of solution of ∂tq = ψD(q).
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Dam-Break Problem

hℓ = 3, ϕℓ = 0.7 ; hr = 2, ϕr = 0.4 .

1. No drag contribution
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2. Drag effects included
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Dam-Break Problem

hℓ = 3, ϕℓ = 0.7 ; hr = 2, ϕr = 0.4 .

2. Drag effects included Infinitely large drag

Grid cells =1000 vs = vf = veq in fractional step
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veq =
hsvs+γhf vf

hs+γhf
= equilibrium velocity.
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Summary

A mathematical and numericaltwo-phase shallow flow modelhas
been presented forgrain/fluid mixturesover variable topography.

Numerical solution technique:Finite Volume Method based on a
Roe-type Riemann Solver, which includes treatment oftopography
andinter-phase dragterms.

This is only a very first step towards the modeling of realistic
geophysical flows.
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geophysical flows.

Current Work

Major issue:positivity preservationof flow depth and phase volume
fractions, to handledry bed states(h = 0) and/or vanishing of one
phase (ϕ = 0, ϕ = 1).

Need to guaranteehs, hf ≥ 0 ⇔ h ≥ 0, ϕ ∈ [0, 1].

Further work: friction terms, 2D model, complex topography...
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Summary

A mathematical and numericaltwo-phase shallow flow modelhas
been presented forgrain/fluid mixturesover variable topography.

Numerical solution technique:Finite Volume Method based on a
Roe-type Riemann Solver, which includes treatment oftopography
andinter-phase dragterms.

This is only a very first step towards the modeling of realistic
geophysical flows.

Current Work

Major issue:positivity preservationof flow depth and phase volume
fractions, to handledry bed states(h = 0) and/or vanishing of one
phase (ϕ = 0, ϕ = 1).

Need to guaranteehs, hf ≥ 0 ⇔ h ≥ 0, ϕ ∈ [0, 1].

Further work: friction terms, 2D model, complex topography...

...Thank you for your attention!
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