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Within thisworkshop

* Modelisationof (hard) granular materials (as a
graph, generic)

 Changes of scale (Jamming transition is a scaling
phase transition)



Aims

 Model for dry, hardstiffnesgload>> 1)
granular materialggeneric

0 explain

e (Dry) liquid

o (Fragile)solid (held togetheby frustration)
o Jammingransition 6caling 2ndorde




The problem

Hardgranular material Highly nonlinear

But nonlinearityin constraints thaare
either geometrior nave #theory.

Edge Boolean cstlengthif exists
Circuits: oddcircuits are non-trivial

Dynamics reduce® linear algebra of
graph



Granular materiahs agraph

Hard, drygranular(stiffnesgload>> 1)

Force = contactegpulsive(same sigh boolean scalar(o
tangentiafriction). Nonlinearityin geometrical constraints

Graph (n) vertex = grainedge= contactljoolear),
circuitsoddeven Discrete(no defectfreecontinuum
limit).

Linear algebraon graphs normal modestigenvectors
eigenvalueg A}, DOS DQ) (Blochwaves graviton)




Granular matter

|sostatic(neither overconstrainedor floppy when stiffneg®ad>> 1)
1. Dry fluid (ballbearing. No oddcircuits

Fragile,jammed solidstabilizedoy odd circuits (# closepackingin
crystallisation)

3. Oddvorticity form (R-) loops large indisordereagranular solids
4. Scaling jammingtransitionis a (RG fixed point, et¢ truephase
transitionin disorderedgranular solids

Essential importance @fisorderandgrains (ie. (odd) numbers.



Phasadiagramof a haragranular material
DF =dryfluid | =isostatic packing
|E| = #edges ¢ = #oddcircuits

(qp]

- - - - - /H———MEI

DF fragile solid |



Circults

No oddcircuits: dryliguid (ball bearing (non-slip rotation
of grains) (M-B,H,R04)

(c) odd circuits: fragile solid (stability. non-slip rotation
frustrated. No defectfreecontinuum description.

Odd vorticity form loopgR-loop) (R*79). [Order smallR1oops
(O(a)).] Disorder: large Rloops(O(L)). Frustration 0 A, <
4c/n ~ 1L (R'06)

c/4lowestmodes (Bloctwaves. DOS D) ~ L9,
Independenof dim, orL (W,N,W 05, R07)



1. Even circuitonly

 No oddcircuits: dryliguid (ball bearing
(non-slip rotation of grains)

 Puregauge connection



Local frame(t,n,k)

Replace now vertices and edges by spherical grains in contact. The
edge linking grains 1 and i+1 is represented by the vector R;;,, =
(R+R, )t .., with fixed length R+ R, and unitary directional vector
t; i+, With timet, it can rotate at arate @ ;,, aound theaxisKk;;, 1, thus

dRi,i+1/dt = (ﬂ,i+1 (Ri+ I:\)i+1)ni,i+1’
thereby defining alocal orthonormal frame (t,n,k) for each edge (i,i+1),
with (kAt) = n, etc. Thus,
dt/dt = @(k/At) = @n, dn/dt= @(kAn) = —.

(The locd frame is not Frenet’s because it is defined through time
derivative on a discree polygond curve, rather than as denvatve
along the curve).



Closurerelations polygonsin t, n, ork)

e A circuit of sedgesisthe skew polygona curveinthet’s,
ZRi,i+1 = Y(R+ Ri+1)ti,i+1 =0 (1)

(> fromi=1tos(st1=1)). Also,
ZdRi,i+1/dt - Z(ﬂ,i+1 (R|+ I%+1)ni.i+1 = O

IS an orthogond, skew paygon in the n’s Higher time
derivatives contain combinations of t and n.

Thereisathird polygoninthek’s,
2hii1= 2(D'@ (R+Ry Dk, =0 (for seven)



Rolling withoutslip. Connection

* Rolling without slip : the two grains have the same
velocity at the point of contact

Vit A (Rytp) = Vot A (Rt y)),
with the velocities of the centers of the two grains related
by v, =v,;+ dR,/dt. Non-slip condition is a relation

(connection) between the angular rotation velocity vectors
w of the two spheres in contact:

(R +Rytp)Aty,= dRy/dt
In the local frameR,w;+R,0, = -0 ,t1, N1V K1

component = 0,—-y;,= @ (R+R,), buta is an arbitrary
coefficient of connection between andw,.



Circuits (=archeschainof forces)

No oddcircuits: dryliguid (ball bearing (non-slip rotation
of grains)A; =0

(c) odd circuits: fragile solid (stability. non-slip rotation
frustrated. No defectfreecontinuum description.

Odd vorticity formloop (R-loop) (R’ 79). [Order smallR-loops
(O(a).] Disorder: large Rloops(O(L)). Frustration O A; <
4c/in ~ 1L

c/4lowestmodes (Bloctwaves. DOS D) ~ L9,
Independenof dim, orL



Bearing2D

centersof thegrains areat resf{@=0), on a
plane

* In 2D (planar polygon®sf cogwheely R,w, =
—R,w, (a = 0), theaxesof rotation arecollinear
the angular velocitielsave oppositsigns
(different color$ anda necessary and sufficient

condition for non-slip rotatiors thatall circuits
areeven



Bearing3D

* In 3D, where nether are the centers of the grains coplanar nor the axes of
rotation collinear, the same condition holds, but it is only sufficient [2]. The
non-dip condition, R,w, + R,w,= —0,,t,, definesa connection o between two
spheres in contact that gives R,w, interms of R,w,, then R,w,; in terms of R,w,,
etc. Around acircuit with s edges, s+1=1,

Ry, + (F1)PRw; = =3 (1), b g -

* If sis evenoneobtainsa sum ruleontheconnections,
Z(_l)iai,i+1ti,i+1 = 0.
 The connectiom is carried from one sphere to the next, and, around a circulit,
back to the initial sphere. Tipeire gaugeconnection
Gi,i+1 = K(_l)i (Ri+Ri+1)
reduces the sum rute the geometricondition (1) forclosureof the
polygonal circuit.



Puregauge connection

e The pure gauge connection
C(i,i+1 — K(_l)i (R|+ Ri+1)

reduces the sum rule to the geometric condition (1) for closure of the
polygonal circuit. (Mahmoodi-Baram et a. 2004)

It isconsistent (“pure gauge”)
- for an even circuit, regardless of the starting sphere.

- for al contact paths between any two spheres in the absence of odd
circuits.

- Kisaconstant for the whole packing (K = Oimplies that the axes
of rotation of all the grains are collinear).



Dry fluid. Graincenters move

« If grain centers move two grains in non-dlip contact are connected
by therelation
R100+R,00,= 015t 15+ @(Ri+Ry)K 5

and the n-components R,w;.n;, = —Rw,.n;, have opposite signs
(differet odorg). With the vectar h defired as Kh .,
=(-D'@;+1(R*+R, K ;i.q, thethereisa consistency relation that is
asum rule for any even circuit,

Z L+l — Z( 1) (ﬂ |+1(R|+R|+1)k| i+1 =0 (S even)’
aclosure relation on the k’s (R 2005).



Hingesfor evencircult

e Forsphericafgrains,the
non-slip conditiorwith
thepuregauge connection
[R101+R0,)/K + Ry +
h,, = Odefinesa non-
planar tetragonAn even
circuitis a flexible
cylinder withpolygonal
basesy R;;,; = 0and

Z h Ii+1 = 0.




Spherical grains rolling without slip:

The axis of rotation of grain &,
serves as thieingebetween
object 1[grain 1 rolling on grain
2, = non-planatetragon(lines)

{ Rz Riw/K, Rwy/K, hyl]

and object 2 [grain 2 rolling on
grain 3, = non-planaetragon
(dotted lines)

{Ros R /K, R00/K, hygl]




Bichromatic packings dryfluid

(MahmoodiBaram Herrmann(‘04)

e Thisis
a 3D
bearing




2. Algebraic graph theoryAdjacency
matrix and dynamical matrix

e Graphl

 Adjacency matrixA; = 1 if 1, in contact

4 = 70y, z=2;A; valency(degreg of vertex |
* D incidenceamatrix

e Q=DD'=A-A

e adiQ =kJ

o Complexityk(l') = #spanning trees



Woodstocks matrix J

1111
111111
1111

e

11111111
11111111
11111111
1111111111111

1111111111111
1111111111111

1111111111111
1111111111111

1111111111111
1111111111111

matrice de Woodstock
(le copain de Snoopy)



Dynamical matrix

 The matrixQ is thedynamical matrixof a physicalsystem
onthe grapH, where the verticeareparticlesof the same
massand the edgearesprings with the same stiffness
Theinteractionbetween two vertices connecteglanedge
canhaveeither sign

e By contrastithe dynamical matrigf a hardgranular
systemwhere the verticeare grainsvith the same
momentunof inertia and the edgearestruts representing
thenon-slip rotatiorof the grains oreach othernsK =
A+A = 2A-Q. Interaction has onsign



Importance okign constraint

e Because ofhe sign differencecorrespondingo
the sign2of theinteractionsthe spectrunof
eigenvalue®sf Q andK, and theirespective
eigenvectorsareessentially differentand this
difference Is associated wigtndcircuits. If there

areonly evencircuits,K is changed int®@KO-1 =
A-A = Q by anunitarytransformatiorO that

changeghe signof odd rows and columns



Dynamicsof a graph(edges springs

[NB: topological dynamics only
groundstate where frustratingtress liesstrain(= eigenvectar
Recall forceis ascalaf

Potential energgf the graph is
V = (12) k3 5 (% —%)?
(sum over edgé@sTwo vertices connectdaly aspringhaveequalstress-free
translations (xx;) = 0,and theforce canhaveeither sigi.
Euler-Lagrangequationsf motion
[-Al+ (A-A)] x=0,
where the eigenvalués= mwy/k of the dynamical matrix)Q = A-A arerelatedo
the frequencies of thenormal mode®f oscillation.

Lowest evA, =0,]1>=j =(1,1,1,1..,1) (Woodstock).



Why granular matter is different

o Granular matter Is representeg agraph
but its dynamics Is differeriiecause

e () Theforcesbetwengrains in contact are
repulsive(theyhave asign constraintand the
granular packing is isostaticgrainscanroll on
each other withoualip.

e () The stabilityof agranular packing is caused
by the presencef oddcircuits.



Dynamicsof a graph(edges strutg

[NB: topological dynamics only
groundstate where frustratingtress liesstrain(= eigenvector
Recall forceis ascalaf

* Potentialenergyof the graph is
V = (1/2) k3 4 (6+6)-.
Two grains in contact have opposite stress-free rotat@né,{ = 0,and
theforceis always repulsiveBecaus®f the + sign the dynamical matrix
of the granulanetworkis nowK =A+A = 2A-Q, whereQ =A-A is the
usual dynamical matrifor a networkof unit massesonnectedy springs
of unit stiffness



Details No oddcircuits:from K to Q

Consider first a connectdrdchromaticgraph, without odd circuits. Letl) be
the color of vertex I. The adjacency matrix has a non-zero Agtey1 only if

I and j have opposite colors. The unitary transformafipr (—1)i83ij changes
the sign of odd rows and columis,; = (-1)A;(-1) and transforms the
dynamical matriXK = A+A intoK’ = OKO-1 = A-A = Q that is the dynamical

matrix for an elastic network.

Now, the loweseigenvalueof Q is zero with the corresponding Woodstock
eigenvectoy. It isnondegeneratgince (ankQ) = n—1 for aconnectdgraph.
Transforming back, the lowesigenvaluef the dynamical matriK of the
bichromaticpacking is zero, one soft mode with the alternating eigenvactor
=(1/1,11,...y = Oj. A granular material without odd circuit is bearing of
grains rotating without slip on each other.

Lowest evA, =0,]a>=0j = (1,-1,1,-1..,-1)"



Graph with odccircuits

A = A%+A* AP spanningA* sparse matrixoneedge per oddircuit
between two verticesf same colar
UnderunitarytransformatiorD, A =— A°%changesign whereasA*’
= A* remains unchangdmkecausdt connects vertices with the same
color. Thus K = A%+A% + (1*+A*), is transformed into

K’ = (AO _AO) + (1*+A*) — QO +J*’
where(1*+A*) = J* isavery sparsematrix with# 0 entries onlyfor
one pairof separated vertices bwith the same colan every odd

circuit. J* is thedirectsum ovelall oddcircuitsof the matrix whose
entriesJ*; = 1 if I,) = a,b,and zero elsewher&he lowest eigenvalue

of QP is zerg with eigenvectoi.
Thus Rayleigh-Ritz orK’ = Q% +J*, Q%[> =0



Lowest eigenvaluef K

TheRayleigh-Ritzvariational principle yieldanupper boundor the
lowest eigenvaluef K,

0 <A < g K'[j>/<)]j> = @K |a>/<ala>

= |I*1 >/<11> = 2 0qd circuird 4/N) = 4c/n,
wherec is the numbeof oddcircuitsandn the numbebf verticesin
the graph

Thus A, = 4c/nis ameasuref the frustration generatedby the odd
circuits,and diluted into the whole connecteetwork.The granular
material is rigi¢l but fragile (stressoncentrat®n paths— oddcircuits
—that forma sparsenetworkand can be locally disconnecjed

The corresponding eigenvector is alternatmearly homogeneously



3. Oddvorticity forms loops

Theorem[R’ 79] Oddvorticity close as loops (R-loop), or
terminate at the surface of the material, without passing
through any irreducible even circuit.

[Ordered granulasmallR-oops(0O(a))]
Disorder: largestR-oop (O(L)). Scaling
Frustration O A; < 4c/n~ 1L. Area of film =c~ LP-!

Unjamming break contacts on filrattachedo largestR-
loop:

Unjammingtransition ag. ~ oo.




4. Neanamming

Disordered granulatargestR-loop ~ L. Break one
edgeéoddcircuit tounjam Broken edgesn film bounded
by R4oop.

# oddcircuits =c = #broken edges LP-! = (p-1)-areaof
thefilm boundedoy R{oop.

Frustration: 0 A, <4c/n ~ 1L

Largenumber(c/4~LP-1) of low-energymodes (Bloch-
like) (W,N,W 05, R07)

DOS: DQ) = #mode<ry./vol. ~LP-1/ LP/(1/L) ~L°
Independenof dim, or sizeL (W,N,W’ 05, R07)



EigenvectorsBlochwavesof blobs Q°
connectedy broken edges

* Q9% block diagonalwith, onthe diagonal, conventionabl xd,
dynamicalmatrices @, , eachof rankd, —1 and zereeigenvalue
eigenvectolexg—....])J

» Zeroeigenvalue eigenvect@®|e > = 0:

le,> = Eexdi...5],....exdi...L];exdi...4], .., exdi...%];
coexdi...5],....exdi...c )"
with <g,Je>=> d . =n

and<e,|g;> = d, exdi(M,—..x)]= 0, a#f



Construction otheBloch function

Chain of blobs (2D)
one Riine ("..." in 2D) of size ~L

A00

X

A00

)




DOSnear jammingschematiy
Simulations of OHearn,Nagelet al.(2005)

DLoo)
= = -

)



Flat DOSnear jamming

e DOS: DQ\) ~LP-1/LP/(1/L) ~LO

e Universa) plateau (Alexandet98, Nagelet
al’02,03) forA > A; <4c/n~ 1L, indep of size
of materiallL, of space dimD

o Largespecific heat-T in « weakly connected
amorphous solids. No needfor 2LS ortunnelling
modes. Largentropy availabléo decreasé&ee
energy upon jamminghardrepulsion noenergy
sink available



Conclusions keywords

Discrete oddcircuits

Disorder large Rloops

Scaling withL

Interactionrepulsive only®; + 6,)

Apply shear breakoddcircuits:
Dry quicksandLohseet al., R-Suarez et al.)
Silent earthquakésoil liguefaction
Dilatancy
Sliding tectoniglates §an Andreas faylt



