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Within this workshop

• Modelisation of (hard) granular materials (as a
graph, generic)

• Changes of scale (jamming transition is a scaling
phase transition)



Aims

• Model for dry, hard (stiffness/load >> 1)
granular materials, generic

To explain

• (Dry) liquid

•  (Fragile) solid (held together by frustration)

• Jamming transition (scaling, 2nd order)



The problem

• Hard granular  material: Highly nonlinear

• But nonlinearity in constraints that are
either geometric or naïve # theory:

• Edge: Boolean, cst.length if exists

• Circuits : odd circuits are non-trivial

• Dynamics reduces to linear algebra of
graph



Granular material as a graph

• Hard, dry granular (stiffness/load >> 1)
• Force = contact, repulsive (same sign), boolean, scalar (∞

tangential friction). Nonlinearity in geometrical constraints
• Graph: (n) vertex = grain, edge =  contact (boolean),

circuits odd/even. Discrete (no defect-free continuum
limit).

•  Linear algebra on graphs: normal modes. Eigenvectors,
eigenvalues { λ}, DOS D(λ) (Bloch waves, graviton)



Granular matter

• Isostatic (neither overconstrained, nor floppy when stiffness/load >> 1)
• 1. Dry fluid  (ball-bearing). No odd circuits
• Fragile, jammed solid stabilized by odd circuits (≠ close packing in

crystallisation)
• 3. Odd vorticity form (R-) loops, large in disordered granular solids
• 4. Scaling: jamming transition is a (RG, fixed point, etc) true phase

transition in disordered granular solids

• Essential importance of disorder and grains (ie. (odd) numbers).



Phase diagram of a hard granular material
DF = dry fluid I = isostatic packing
|E| = # edges c = # odd circuits

fragile solid
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Circuits

• No odd circuits: dry liquid (ball bearing) (non-slip rotation
of grains) (M-B,H,R‘04)

• (c) odd circuits: fragile solid (stability: non-slip rotation
frustrated). No defect-free continuum description.

• Odd vorticity form loop (R-loop) (R‘79). [Order: small R-loops
(O(a)).] Disorder: large R-loops (O(L)). Frustration 0 < λ1 <
4c/n ~ 1/L (R’06)

• c/4 lowest modes (Bloch waves). DOS D(λ) ~ L0,
independent of dim, or L (W,N,W’05, R’07)



1. Even circuits only

• No odd circuits: dry liquid (ball bearing)
(non-slip rotation of grains)

• Pure gauge connection



Local frame (t,n,k)

• Replace now vertices and edges by spherical grains in contact. The
edge linking grains i and i+1 is represented by the vector Ri ,i+1 =
(Ri+Ri+1)ti .i+1, with fixed length Ri+Ri+1 and unitary directional vector
t i,i+1. With time t, it can rotate at a rate φi,i+1 around the axis k i,i+1, thus

 dRi,i+1/dt = φi,i+1(Ri+Ri+1)n i,i+1,

thereby defining a local orthonormal frame (t,n,k) for each edge (i ,i+1),
with (kΛt) = n, etc. Thus,

dt/dt = φ(kΛt) = φn, dn/dt =  φ(kΛn) = –φt.

(The local frame is not Frenet’s because it is defined through time
derivative on a discrete polygonal curve, rather than as derivative
along the curve).



Closure relations (polygons in t, n, or k)

• A circuit of  s edges is the skew polygonal curve in the t’ s,
∑Ri,i+1 = ∑(Ri+Ri+1)t i,i+1  = 0 (1)

(∑ from i = 1 to s (s+1 ≡ 1)). Also,

∑dRi,i+1/dt = ∑φi,i+1(Ri+ Ri+1)ni.i+1 = 0

is an orthogonal, skew polygon in the n’s. Higher time
derivatives contain combinations of  t and n.

There is a third polygon in the k ’ s,

∑h i,i+ 1 =  ∑(–1)iφi,i+ 1(Ri+Ri+1)ki .i+ 1  = 0 (f or s even)



Rolling without slip. Connection

• Rolling without slip : the two grains have the same
velocity at the point of contact

v1+ω1Λ(R1t12) = v2+ω2Λ(–R2t12),

with the velocities of the centers of the two grains related
by v2 = v1+ dR12/dt. Non-slip condition is a relation
(connection) between the angular rotation velocity vectors
ω of the two spheres in contact:

(R1ω1+R2ω2)Λt12 =  dR12/dt.

In the local frame, R1ω1+R2ω2 = –α12t12 –β12n12 –γ12k12,
components β = 0, –γ12 = φ12(R1+R2), but α is an arbitrary
coefficient of connection between ω1 and ω2.



Circuits (=arches, chain of forces)

• No odd circuits: dry liquid (ball bearing) (non-slip rotation
of grains) λ1 = 0

• (c) odd circuits: fragile solid (stability: non-slip rotation
frustrated). No defect-free continuum description.

• Odd vorticity form loop (R-loop) (R’79). [Order: small R-loops
(O(a).] Disorder: large R-loops (O(L)). Frustration 0 < λ1 <
4c/n ~ 1/L

• c/4 lowest modes (Bloch waves). DOS D(λ) ~ L0,
independent of dim, or L



Bearing 2D
centers of the grains are at rest (φ = 0), on a

plane

• In 2D (planar polygons of cogwheels), R1ω1 =
–R2ω2 (α = 0), the axes of rotation are collinear,
the angular velocities have opposite signs
(different colors) and a necessary and sufficient
condition for non-slip rotation is that all circuits
are even.



Bearing 3D

• In 3D, where neither are the centers of the grains coplanar nor the axes of
rotation col l inear, the same condi tion holds, but i t is only sufficient [2]. The
non-sl ip condi tion, R1ω1 + R2ω2 = –α12t12 defines a connection α  between two
spheres in contact that gives R2ω2 in terms of R1ω1, then R3ω3 in terms of R2ω2,
etc. Around a ci rcui t wi th s edges, s+1≡1,

–R1ω1 + (–1)sR1ω1 = –∑(–1)iαi,i+1 t i,i+1 .

• If s is even, one obtains a sum rule on the connections,
∑(–1)iαi,i+1 t i,i+1 = 0. 

• The connection α  is carried from one sphere to the next, and, around a circuit,
back to the initial sphere. The pure gauge connection

αi,i+1 = K(–1)i (Ri+Ri+1) 
reduces the sum rule to the geometric condition (1) for closure of the
polygonal circuit.



Pure gauge connection

• The pure gauge connection

αi,i+1 = K(–1)i (Ri+Ri+1) 

reduces the sum rule to the geometric condition (1) for closure of the
polygonal circuit. (Mahmoodi-Baram et al. 2004)

It is consistent (“pure gauge”)

- for an even circuit, regardless of the starting sphere.

- for all contact paths between any two spheres in the absence of odd
circuits.

- K is a constant for the whole packing (K = 0 implies that the axes
of rotation of all the grains are collinear).



Dry fluid. Grain centers move

• If grain centers move, two grains in non-slip contact are connected
by the relation

R1ω1+R2ω2 = –α12t12 + φ12(R1+R2)k12;

and the n-components R1ω1.n12 = –R2ω2.n12 have opposite signs
(different colors). With the vector h defined as Kh i,i+1

=(–1)iφi,i+1(Ri+Ri+1)k  i,i+1,  the there is a  consistency relation that is
a sum rule for any even circuit,

∑h i,i+1 = ∑(–1)i φi,i+1(Ri+Ri+1)ki.i+1 = 0 (s even),

a closure relation on the k’s (R 2005).



Hinges for even circuit
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• For spherical grains, the
non-slip condition with
the pure gauge connection
[R1ω1+R2ω2]/K +  R12 +
h12 = 0 defines a non-
planar tetragon. An even
circuit is a flexible
cylinder with polygonal
bases ∑ R i,i+1  = 0 and

 ∑ h i,i+1 = 0.



Spherical grains rolling without slip:
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The axis of rotation of grain 2, ω2

serves as the hinge between
object 1[grain 1 rolling on grain
2, = non-planar tetragon (lines)

{ R12, R1ω1/K, R2ω2/K, h12}]

and object 2 [grain 2 rolling on
grain 3, = non-planar tetragon
(dotted lines)

{ R23, –R2ω2/K, –R3ω3/K, h23}]



Bichromatic packing = dry fluid
(Mahmoodi-Baram, Herrmann (‘04)

• This is
a 3D
bearing



2. Algebraic graph theory: Adjacency
matrix and dynamical matrix

• Graph Γ
• Adjacency matrix Aij = 1  if  i,j in contact
∀ ∆ij = ziδij , zi = ΣjA ij valency (degree) of vertex i
• D incidence matrix
• Q = DDt = ∆–A
• adjQ = κ J
• Complexity κ(Γ) = # spanning trees



Woodstock’s matrix J
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

matrice de Woodstock 
(le copain de Snoopy)



Dynamical matrix

• The matrix Q is the dynamical matrix of a physical system
on the graph Γ, where the vertices are particles of the same
mass, and the edges are springs with the same stiffness.
The interaction between two vertices connected by an edge
can have either sign.

• By contrast, the dynamical matrix of a hard granular
system, where the vertices are grains with the same
momentum of inertia, and the edges are struts, representing
the non-slip rotation of the grains on each other, is K  =
∆+A = 2∆–Q. Interaction has one sign.



Importance of sign constraint

• Because of the sign difference, corresponding to
the signs of the interactions, the spectrum of
eigenvalues of Q and K , and their respective
eigenvectors, are essentially different, and this
difference is associated with odd circuits. If there
are only even circuits, K  is changed into OKO -1 =
∆–A = Q by an unitary transformation O that
changes the sign of odd rows and columns.



Dynamics of a graph (edges = springs)

[NB: topological dynamics only:
ground state, where frustrating stress lies, strain (= eigenvector)
Recall: force is a scalar]

Potential energy of the graph is
V = (1/2) k ∑(ij ) (xi – xj)2

(sum over edges). Two vertices connected by a spring have equal stress-free
translations (xi–xj) = 0, and the force can have either sign].

Euler-Lagrange equations of motion
 [–λ1 + (∆–A)] x = 0,
where the eigenvalues λ = mω2/k of the dynamical matrix Q = ∆–A are related to
the frequencies ω of the normal modes of oscillation.

Lowest ev. λ1 = 0, |1> = j = (1,1,1,1…,1)t (Woodstock).



Why granular matter is different

• Granular matter is represented by a graph,
but its dynamics is different because :

• (i) The forces betwen grains in contact are
repulsive (they have a sign constraint) and the
granular packing is isostatic if grains can roll on
each other without slip.

• (ii ) The stability of a granular packing is caused
by the presence of odd circuits.



Dynamics of a graph (edges = struts)

[NB: topological dynamics only:
ground state, where frustrating stress lies, strain (= eigenvector)
Recall: force is a scalar]

• Potential energy of the graph is
V = (1/2) k ∑(ij ) (θi+θj)

2.
Two grains in contact have opposite stress-free rotations (θi+θj) = 0, and
the force is always repulsive. Because of the + sign, the dynamical matrix
of the granular network is now K  = ∆+A = 2∆–Q,  where Q = ∆–A is the
usual dynamical matrix for a network of unit masses connected by springs
of unit stiffness.



Details: No odd circuits: from K to Q

• Consider first a connected bichromatic graph, without odd circuits. Let (–1)i be
the color of vertex i. The adjacency matrix has a non-zero entry A ij = 1 only if
i and j have opposite colors. The unitary transformation Oij  = (–1)iδij  changes
the sign of odd rows and columns, A’ ij  = (–1)iA ij(–1)j and transforms the
dynamical matrix K  = ∆+A into K’  = OKO -1 = ∆–A = Q that is the dynamical
matrix for an elastic network.

• Now, the lowest eigenvalue of Q is zero with the corresponding Woodstock
eigenvector j . It is nondegenerate since (rankQ) = n–1 for a connectd graph.
Transforming back, the lowest eigenvalue of the dynamical matrix K  of the
bichromatic packing is zero, one soft mode with the alternating eigenvector a
= (1,–1,1,–1,...)t = Oj . A granular material without odd circuit is bearing of
grains rotating without slip on each other.

Lowest ev. λ1 = 0, |a> = Oj = (1,-1,1,-1…,-1)t.



Graph with odd circuits

• A = A0+A* . A0 spanning. A*  sparse matrix, one edge per odd circuit
between two vertices of same color.

• Under unitary transformation O, A0’  = – A0 changes sign, whereas A* ’
= A*  remains unchanged because it connects vertices with the same
color. Thus, K  = (∆0 +A0) + (1*+A* ), is transformed into

K’ = (∆0  – A0) + (1*+A* ) = Q0 + J*,

where (1*+A* ) = J*  is a very sparse matrix with ≠ 0 entries  only for
one pair of separated vertices a, b with the same color in every odd
circuit. J*  is the direct sum over all odd circuits of the matrix whose
entries J*ij = 1 if i,j = a,b, and zero elsewhere. The lowest eigenvalue
of Q0 is zero, with eigenvector j .
Thus: Rayleigh-Ritz on K’  = Q0 + J*, Q0 |j> = 0



Lowest eigenvalue of K

• The Rayleigh-Ritz variational principle yields an upper bound for the
lowest eigenvalue of K,

0 < λ1 ≤ <j |K’ |j>/<j |j> = <a|K |a>/<a|a>

= <j|J*|j >/<j|j > = ∑odd circuits(4/n) = 4c/n,

where c is the number of odd circuits and n the number of vertices in
the graph.

Thus, λ1 ≈ 4c/n is a measure of the frustration  generated by the odd
circuits, and diluted into the whole connected network. The granular
material is rigid, but fragile (stress concentrate on paths – odd circuits
– that form a sparse network and can be locally disconnected).

The corresponding eigenvector is alternating, nearly homogeneously.



3. Odd vorticity forms loops

• Theorem [R’79] Odd vorticity close as loops (R-loop), or
terminate at the surface of the material, without passing
through any irreducible even circuit.

• [Ordered granular: small R-loops (O(a))]
• Disorder: largest R-loop (O(L)). Scaling.
• Frustration 0 < λ1 < 4c/n ~ 1/L. Area of film = c ~ LD-1

• Unjamming: break contacts on film attached to largest R-
loop:

• Unjamming transition as L ~ ∞.



4. Near jamming

• Disordered granular: largest R-loop ~ L. Break one
edge/odd circuit to unjam. Broken edges on film bounded
by R-loop.

• # odd circuits = c = # broken edges ~ LD-1 = (D–1)-area of
the film bounded by R-loop.

• Frustration: 0 < λ1 < 4c/n ~ 1/L
• Large number (c/4~ LD-1 ) of low-energy modes (Bloch-

like) (W,N,W’05, R’07)
• DOS: D(λ) = #modes/eny./vol. ~ LD-1 / LD /(1/L) ~ L0

independent of dim, or size L (W,N,W’05, R’07)



Eigenvectors: Bloch waves of blobs Q00

connected by broken edges

• Q00  block diagonal, with, on the diagonal, c conventional dkxdk

dynamical matrices Q00
k , each of rank dk –1 and zero-eigenvalue

eigenvector (exp[–i…k]) jk

• Zero-eigenvalue eigenvector Q00|eα > = 0:

|eα> = (exp[i…1
α],…,exp[i…1

α];exp[i …2
α],…, exp[i…2

α];

…;exp[i …c
α],…,exp[i…c

α])+

with <eα|eα> = ∑ dk = n

and <eα|eβ> = ∑ dk exp[i(µk
α–…k

β)]= 0,    α ≠ β



Construction of the Bloch function.
Chain of blobs (2D)

one R-line (˚…˚ in 2D) of size ~L

A00

A00

A*

R

R

A*• •

A00



DOS near jamming (schematic)
Simulations of O’Hearn, Nagel et al.(2005)

D(ω)

ω
λ1



Flat DOS near jamming

• DOS: D(λ) ~ LD-1 /LD /(1/L) ~ L0

• Universal, plateau (Alexander‘98, Nagel et
al.’ 02,’03) for λ > λ1 < 4c/n ~ 1/L, indep. of size
of material L, of space dim. D

• Large specific heat ~T in « weakly connected
amorphous solids ». No need for 2LS or tunnelling
modes. Large entropy available to decrease free
energy upon jamming (hard repulsion: no energy
sink available)



Conclusions = keywords

• Discrete: odd circuits
• Disorder: large R-loops
• Scaling with L
• Interaction repulsive only (θi + θj)
• Apply shear: break odd circuits:

Dry quicksand (Lohse et al., R-Suarez et al.)
Silent earthquakes/soil liquefaction
Dilatancy
Sliding tectonic plates (San Andreas fault)


