EDP et modélisation

Frédéric Legoll

École Nationale des Ponts et Chaussées et Inria Paris, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France frederic.legoll@enpc.fr

5 novembre 2024

L'objectif de ce cours est de passer en revue un certain nombre de modèles importants issus des sciences de l'ingénieur, et de comprendre comment modéliser ces phénomènes grâce à des EDP. Il s'agit donc de faire le lien entre des phénomènes physiques fréquents dans les applications (diffusion, transport, ...) et la manière dont ceux-ci sont pris en compte dans un modèle mathématique. Nous présenterons donc les grandes classes de modèles (en s'en tenant à des exemples simples et concrets), et nous renvoyons à d'autres cours pour l'introduction du cadre mathématique nécessaire à leur analyse.

Le cours se compose de trois grandes parties.

La première partie (cf. le chapitre 1) est consacrée aux problèmes de diffusion, transport et réaction. Nous commencerons par l'origine microscopique (via le mouvement brownien) des phénomènes de diffusion (cf. la section 1.1). Ceci permettra d'obtenir l'équation de la chaleur, que nous étudierons en Section 1.2). Ecrire le noyau de Green de cette équation permettra en particulier de comprendre ses effets dissipatifs et l'existence d'une "flèche du temps". Les aspects régularisants de l'opérateur Laplacien seront aussi mis en lumière. Nous verrons ensuite des problèmes de transport (ou d'advection, cf. la section 1.3), puis des problèmes mélant diffusion et transport (avec le cas particulier où le terme de transport domine) en Section 1.4. Cette première partie se terminera avec des exemples d'équations des ondes (en Section 1.5), et la mise en exergue des différences qualitatives entre ces modèles et les équations paraboliques telles que l'équation de la chaleur.

La seconde partie du cours est consacrée à la physique du continuum (cf. le chapitre 3), en commençant par la notion de bilan physique (lois de conservation, dans le chapitre 2). On présentera les formalismes eulérien et lagrangien, et on s'intéressera à la conservation de quantités physiques telles que la masse, la quantité de mouvement ou l'énergie (Section 3.2).

En utilisant le formalisme eulérien, on s'intéressera à divers éléments de mécanique des fluides : lois constitutives (avec en particulier l'exemple des fluides Newtoniens en Section 3.4), adimensionalisation et régimes (nombre de Mach, nombre de Reynolds, système de Stokes), conditions aux limites (lois de paroi, ...).

En utilisant le formalisme lagrangien, on s'intéressera à divers éléments de mécanique des solides (en Section 3.7) : élasticité, modèles avec coefficients aléatoires (pourquoi, comment?).

Dans la troisième partie (cf. le chapitre 4), on abordera les modèles à l'échelle atomique, qui s'écrivent, dans un premier temps, sous la forme d'équations différentielles ordinaires, les équations de Newton. Nous verrons plusieurs formalismes (lagrangien, hamiltonien, ...) pour décrire ces équations. Nous montrerons comment l'introduction du formalisme de Liouville permet de prendre en compte les effets extérieurs, ce qui nous permettra d'aller vers les équations différentielles stochastiques (équations de Langevin) et les modèles cinétiques.

Plusieurs aspects de modélisation seront discutés tout au long du cours, en fonction des exemples considérés :

- signification physique des conditions aux limites
- réduction de modèle, passage d'un modèle à un autre dans certains régimes : en mécanique des fluides (équations de Saint-Venant, du système de Stokes à l'équation de Darcy en Section 3.4.2 –, lois de paroi effectives, ...), en mécanique des solides (passage d'une modélisation atomistique à une modélisation de continuum), ...
- modélisation multi-physique, couplant différents modèles pouvant éventuellement être écrits dans des langages différents (interaction fluidestructure, ...)

Tout au long du cours, on montrera des simulations numériques pour illustrer le comportement des différents modèles.

Les séances de cours seront complétées par des interventions extérieures, au cours desquelles des spécialistes de domaines particuliers (mécanique quantique, modélisation du sous-sol, modèles cinétiques et application à la fusion nucléaire, . . .) non abordés dans le coeur du cours viendront présenter les aspects de modélisation pertinents de leur discipline.

Pour toute la suite, d désigne la dimension d'espace. Dans la plupart des problèmes issus des sciences de l'ingénieur, notamment en mécanique et en thermique, le cas pertinent est d=3 (ou d=2 ou d=1 si le modèle suppose certaines simplifications géométriques), mais on rencontre également des problèmes formulés en grande dimension, par exemple en mécanique quantique, en physique statistique ou en finance. Ces domaines ne seront pas abordés ici.

Ces notes de cours sont inspirées de diverses notes de cours écrites par plusieurs collègues, Eric Cancès, Virginie Ehrlacher, Alexandre Ern et Mathieu Lewin. Je leur dois beaucoup. Je remercie aussi Simon Ruget pour sa relecture attentive de ces notes.

Table des matières

1	Phé	nomè	nes de diffusion	9
	1.1	Origin	ne de la diffusion - Mouvement brownien	9
		1.1.1	Marche aléatoire en 1D	9
		1.1.2	Passage à la limite	0
		1.1.3	Expressions exactes	2
			1.1.3.1 Expression pour P	2
			1.1.3.2 Expression pour u	3
			1.1.3.3 Consistance avec les résultats précédents 1	7
		1.1.4	Propagation à vitesse infinie	8
		1.1.5	Le cas multi-dimensionnel	9
	1.2	Equat	ion de la chaleur	21
		1.2.1	Equation de la chaleur dans tout l'espace 2	2
			1.2.1.1 Solution fondamentale 2	23
			1.2.1.2 Solution homogène	26
			1.2.1.3 Solution avec second membre 2	9
		1.2.2	Equation de la chaleur en domaine borné	0
			1.2.2.1 Modélisation pour la condition aux limites 3	0
			1.2.2.2 Propriétés qualitatives	2
			1.2.2.3 Approche spectrale	5
			1.2.2.4 Schémas numériques	7
	1.3	Equat	ion de transport	1
		1.3.1	Problème continu	2
		1.3.2	1	3
	1.4	Trans	port advectif–diffusif d'une espèce chimique 4	6
	1.5	Equat	ion des ondes	7
		1.5.1	Equation des ondes dans tout l'espace 4	8
			1.5.1.1 Le cas mono-dimensionnel 4	8
			1.5.1.2 Le cas multi-dimensionnel 5	2
		1.5.2	L'équation des ondes dans un ouvert borné 5	2
			1.5.2.1 Approche spectrale 5	3
			1.5.2.2 Propriétés qualitatives 5	4
			1593 Illustration numérique	

2	Lois		onservation	57					
	2.1	Lois d	e conservation scalaires	57					
		2.1.1	Transport de soluté	58					
		2.1.2	Trafic routier	60					
	2.2	Systèn	nes de lois de conservation	61					
	2.3	Ondes		62					
		2.3.1	Ondes dans un milieu linéaire non dispersif	62					
		2.3.2	Ondes dans un milieu linéaire dispersif	63					
		2.3.3	Ondes dans un milieu non linéaire	63					
3	Mé	Mécanique des milieux continus 6							
	3.1	Forma	dismes lagrangien et eulérien	65					
	3.2	Conse	rvation de la masse, de la quantité de mouvement et de						
			gie	66					
		3.2.1	Formalisme lagrangien	66					
		3.2.2	Formalisme eulérien	66					
			3.2.2.1 Conservation de la masse	66					
			3.2.2.2 Conservation de la quantité de mouvement	67					
			3.2.2.3 Conservation de l'énergie	70					
			3.2.2.4 Récapitulatif	71					
	3.3	Lois co	onstitutives	72					
	3.4	Fluide	es newtoniens	73					
		3.4.1	Fluides newtoniens incompressibles	74					
		3.4.2	De Stokes à Darcy	76					
		3.4.3	Fluides parfaits compressibles	79					
	3.5	Ecoule	ements réactifs	80					
	3.6 Ecoulements dans les milieux poreux								
		3.6.1	Milieux poreux saturés	80					
		3.6.2	Milieux poreux non-saturés	81					
	3.7	Elastic	cité linéaire	81					
		3.7.1	Elastodynamique	81					
		3.7.2	Equilibre élastique	83					
		3.7.3	Module d'Young et coefficient de Poisson (et leur inter-						
			prétation)	85					
	3.8	Modèl	es de cordes et de membranes	86					
	3.9	Nouveaux enjeux							
4	Système de particules en interaction 8								
	4.1	Princi	pe de moindre action	89					
	4.2								
	4.3								
	4.4	Système de particules							
5	Mé	caniqu	e quantique	95					
6	Ele	rtroma	gnétisme	97					

TA	LE DES MATIÈRES	7			
7	V1 8	99 99 99			
8	P'autres choses 1	.01			
9	Impléments mathématiques 10 Equation de transport				
10	1 Transformée de Fourier				
11	Pour aller plus loin : autres modèles, passage d'un modèle à un utre, couplage de modèles 1	.13			

Chapitre 1

Phénomènes de diffusion

Les phénomènes de diffusion présentent une importance considérable dans de nombreuses applications des sciences de l'ingénieur. L'objectif de ce chapitre est d'une part d'éclairer l'origine microscopique de la diffusion à travers la notion de mouvement brownien et d'autre part de présenter deux exemples prototypes d'équations aux dérivées partielles où interviennent les phénomènes de diffusion : l'équation de la chaleur et l'équation d'advection-diffusion.

1.1 Origine de la diffusion - Mouvement brownien

1.1.1 Marche aléatoire en 1D

Considérons pour commencer un exemple simple. Fixons deux réels strictement positifs Δt et Δx et considérons une particule évoluant sur la droite réelle selon la règle suivante : à t=0, la particule est en x=0, et à chaque instant (n+1/2) Δt la particule fait un saut de Δx à gauche ou à droite, avec probabilité 1/2 d'aller à gauche et 1/2 d'aller à droite. Dans le langage des probabilités, une telle dynamique est appelée une chaîne de Markov.

On note X_n la position au temps $n \Delta t$ de la particule (pour les paramètres Δt et Δx choisis). On a donc

$$X_{n+1} = X_n + \xi_n \, \Delta x, \qquad X_0 = 0,$$
 (1.1)

où ξ_n est une variable aléatoire prenant les valeurs ± 1 avec la même probabilité 1/2: les variables aléatoires ξ_n sont indépendantes, identiquement distribuées et $\mathbb{P}(\xi_n=1)=\mathbb{P}(\xi_n=-1)=1/2$.

Il est facile de calculer l'espérance de X_n : en utilisant que $\mathbb{E}[\xi_n] = 0$, on a

$$\mathbb{E}[X_{n+1}] = \mathbb{E}[X_n] + \mathbb{E}[\xi_n] \, \Delta x = \mathbb{E}[X_n].$$

Par ailleurs, on a bien sûr $\mathbb{E}[X_0] = 0$. On obtient donc que $\mathbb{E}[X_n] = 0$: en moyenne, à tous les instants, la particule est à l'origine.

On peut aussi facilement calculer la variance de X_n :

$$V[X_{n+1}] = \mathbb{E}[(X_{n+1} - \mathbb{E}[X_{n+1}])^2] = \mathbb{E}[X_{n+1}^2] = \mathbb{E}[(X_n + \xi_n \, \Delta x)^2]$$
$$= \mathbb{E}[(X_n)^2] + 2 \, \Delta x \, \mathbb{E}[X_n \, \xi_n] + (\Delta x)^2 \mathbb{E}[\xi_n^2],$$

où on a utilisé à la deuxième égalité le résultat précédent, à savoir que $\mathbb{E}[X_{n+1}] = 0$. On a systématiquement $\xi_n^2 = 1$, donc

$$\mathbb{V}[X_{n+1}] = \mathbb{V}[X_n] + 2\Delta x \,\mathbb{E}[X_n \,\xi_n] + (\Delta x)^2.$$

Par ailleurs, la variable aléatoire ξ_n , utilisée dans (1.1) pour passer de l'itération n à l'itération n+1, est indépendante de X_n . Donc $\mathbb{E}[X_n \xi_n] = \mathbb{E}[X_n] \mathbb{E}[\xi_n] = 0$, et donc

$$\mathbb{V}[X_{n+1}] = \mathbb{V}[X_n] + (\Delta x)^2,$$

ce qui donne

$$V[X_n] = n \, (\Delta x)^2. \tag{1.2}$$

Au bout de n itérations (i.e. au temps $n \Delta t$), en moyenne, la particule s'est donc écartée de sa position initiale de la distance $\sqrt{n} \Delta x$. C'est un comportement complètement différent de celui d'une particule se déplaçant à vitesse constante : dans cette situation, au bout de n itérations, la particule s'est écartée de sa position initiale d'une distance proportionnelle à n, et non pas à \sqrt{n} .

1.1.2 Passage à la limite

Dans la suite, on va considérer la limite où les paramètres Δt et Δx tendent vers 0. Considérons un temps t fixé : à cet instant, au vu de (1.2), l'excursion moyenne de la particule est

$$\sqrt{\mathbb{V}[X_{t/\Delta t}]} = \Delta x \sqrt{\frac{t}{\Delta t}}.$$
(1.3)

Pour obtenir une limite non triviale, il va donc être nécessaire d'imposer que le rapport $(\Delta x)^2/\Delta t$ garde une valeur constante (on pourrait bien sûr se contenter de faire tendre ce rapport vers une certaine limite non nulle, mais on se place délibérement ici dans le cas le plus simple). On choisira donc dans la suite de travailler sous l'hypothèse que Δx et Δt sont reliés par

$$\frac{(\Delta x)^2}{\Delta t} = \alpha \tag{1.4}$$

pour une certaine constante $\alpha > 0$.

Remarque 1. Ce scaling est dit scaling diffusif. On pourra remarquer qu'il est fondamentalement différent du scaling dit hyperbolique, qui consiste à prendre

 Δt et Δx proportionnels (et qui est motivé par l'idée que, pendant le temps Δt , la particule parcourt une distance proportionnelle à Δt).

Ici, Δx est proportionnel à $\sqrt{\Delta t} \gg \Delta t$. Pendant le temps Δt , et sous l'hypothèse que la particule aille à droite, la particule parcourt une grande distance. Ceci s'explique par le fait que la particule peut aller à droite ou à gauche : dans chaque direction, il faut que le déplacement soit relativement important pour aboutir, en moyenne, à un déplacement non nul.

Pour la suite, notons P(n,k) la probabilité de présence de la particule à l'instant $n \Delta t$ au point $k \Delta x$ (cette fonction P est bien sûr paramétrée par Δt et Δx , paramétrisation que nous ne notons pas explicitement pour ne pas alourdir les notations). Il est facile de voir que

$$P(n+1,k) = \frac{1}{2}(P(n,k-1) + P(n,k+1)), \tag{1.5}$$

puisque la particule ne peut être en $k \Delta x$ à l'instant $(n+1)\Delta t$ que

- si elle était en $(k-1) \Delta x$ à l'instant $n \Delta t$ (ce qui arrive avec la probabilité P(n, k-1)) et qu'elle a fait un saut à droite (ce qui arrive avec une probabilité 1/2),
- ou bien qu'elle était en (k+1) Δx à l'instant n Δt (évènement de probabilité P(n, k+1)) et qu'elle a fait un saut à gauche (ce qui arrive aussi avec une probabilité 1/2).

On a donc

$$\frac{P(n+1,k) - P(n,k)}{\Delta t} = \frac{1}{2} \frac{P(n,k-1) + P(n,k+1) - 2P(n,k)}{\Delta t}
= \frac{\alpha}{2} \frac{P(n,k-1) + P(n,k+1) - 2P(n,k)}{(\Delta x)^2},$$
(1.6)

où la dernière égalité est obtenue en utilisant le scaling diffusif (1.4).

On souhaite maintenant introduire la notion de densité de probabilité u(t,x) de présence de la particule. On rappelle que, par définition, la probabilité de trouver à l'instant t la particule dans l'ouvert B est $\int_B u(t,x)\,dx$ (pour tout instant t et pour tout ouvert B de \mathbb{R}). Pour le modèle discret en temps et en espace qu'on vient de présenter, on choisit de définir, à l'instant $t=n\,\Delta t$, la fonction $u(t,\cdot)$ comme une fonction constante par morceaux sur les intervalles $((k-1/2)\,\Delta x,(k+1/2)\,\Delta x)$, avec

$$\forall x \in \left((k - 1/2) \,\Delta x, (k + 1/2) \,\Delta x \right), \quad \Delta x \, u(t, x) = P\left(\frac{t}{\Delta t}, k \right) = P(n, k). \tag{1.7}$$

On peut donc écrire de manière approchée

$$\Delta x u(t, x) \approx P\left(\frac{t}{\Delta t}, \frac{x}{\Delta x}\right).$$

La fonction u, comme la fonction P, est paramétrée par Δt et Δx , paramétrisation que nous ne notons pas explicitement pour ne pas alourdir les notations.

On déduit de (1.6) et de (1.7) que

$$\frac{u(t + \Delta t, x) - u(t, x)}{\Delta t} = \frac{P\left(\frac{t}{\Delta t} + 1, \frac{x}{\Delta x}\right) - P\left(\frac{t}{\Delta t}, \frac{x}{\Delta x}\right)}{\Delta t \Delta x}$$

$$= \frac{\alpha}{2} \frac{P\left(\frac{t}{\Delta t}, \frac{x}{\Delta x} - 1\right) + P\left(\frac{t}{\Delta t}, \frac{x}{\Delta x} + 1\right) - 2P\left(\frac{t}{\Delta t}, \frac{x}{\Delta x}\right)}{(\Delta x)^2 \Delta x}$$

$$= \frac{\alpha}{2} \frac{u(t, x - \Delta x) + u(t, x + \Delta x) - 2u(t, x)}{(\Delta x)^2}.$$
(1.8)

On peut maintenant (formellement) passer à la limite Δt et Δx vers 0 dans le schéma aux différences finies (1.8), et on obtient que u (ou plus précisément la limite de la fonction $u_{\Delta t,\Delta x}$ lorsque Δt et Δx tendent vers 0 en satisfaisant (1.4)) satisfait l'équation

$$\partial_t u = \frac{\alpha}{2} \, \partial_{xx} u,\tag{1.9}$$

qui est la version mono-dimensionnelle de l'équation de la chaleur.

1.1.3 Expressions exactes

1.1.3.1 Expression pour P

On peut en fait obtenir une expression exacte pour P(n,k). Par symétrie, on a P(n,k) = P(n,-k). On peut donc ne s'intéresser qu'aux valeurs $k \ge 0$.

On suppose que n est pair. Après n itérations, la position maximale qui puisse être atteinte est $n \Delta x$ (en ayant systématiquement fait un saut vers la droite). De plus, seules les positions k paires peuvent être atteintes. Soit donc $k \in [0,n]$ avec k pair. Pour atteindre cette position k, il faut que la particule se soit déplacée n/2+k/2 fois vers la droite et n/2-k/2 fois vers la gauche (ce qui fait bien n déplacements en tout, et k fois plus de tirages vers la droite que vers la gauche, d'où une arrivée en $k \Delta x$). Sur les n tirages faits, il faut donc avoir tiré n/2+k/2 fois la valeur $\xi=1$ (et donc n/2-k/2 fois la valeur $\xi=-1$). Il v a

$$\left(\begin{array}{c} n \\ n/2 + k/2 \end{array} \right) = \frac{n!}{(n/2 + k/2)! (n/2 - k/2)!}$$

tels tirages. Chaque tirage a la probabilité $1/2^n$ d'apparaître, donc

$$P(n,k) = \frac{1}{2^n} \frac{n!}{(n/2 + k/2)! (n/2 - k/2)!}.$$
 (1.10)

Cette expression vérifie bien la symétrie P(n, k) = P(n, -k), elle est donc valable pour tout k pair dans [-n, n]. Par ailleurs, pour k impair, P(n, k) = 0.

Pour tout n, on peut vérifier que $P(n,\cdot)$ est bien une probabilité discrète, au sens où $P(n,k)\geq 0$ pour tout $k\in\mathbb{Z}$ et $\sum_{k\in\mathbb{Z}}P(n,k)=1$ (ce qui correspond au

fait que, au temps n, la particule est quelque part). Pour faire ce calcul, posons n=2n' et k=2k'. En introduisant q=k'+n', on calcule

$$\sum_{k \in \mathbb{Z}} P(n,k) = \sum_{k'=-n'}^{n'} P(2n', 2k')$$

$$= \sum_{k'=-n'}^{n'} \left(\frac{1}{2}\right)^{n'+k'} \left(\frac{1}{2}\right)^{n'-k'} \left(\begin{array}{c} 2n' \\ n'+k' \end{array}\right)$$

$$= \sum_{q=0}^{2n'} \left(\frac{1}{2}\right)^q \left(\frac{1}{2}\right)^{2n'-q} \left(\begin{array}{c} 2n' \\ q \end{array}\right)$$

$$= \left(\frac{1}{2} + \frac{1}{2}\right)^{2n'}$$

$$= 1, \tag{1.11}$$

ce qui est la normalisation attendue pour $P(n,\cdot)$.

Remarque 2. On pourrait faire un calcul similaire pour n impair. Seules les positions k impaires peuvent être atteintes, et on a, comme dans (1.10),

$$P(n,k) = \frac{1}{2^n} \frac{n!}{((n+k)/2)! ((n-k)/2)!}$$

si k est impair et P(n,k) = 0 si k est pair.

1.1.3.2 Expression pour u

Avec l'expression exacte (1.10) pour P, on va pouvoir obtenir une expression pour u, description continue (et non plus discrète) de la probabilité de présence de la particule.

Pour faire cela, on se donne une série de maillages $\{k \Delta x_s, k \in \mathbb{Z}\}$ de la droite réelle. Chacun de ces maillages a pour taille de grille Δx_s , et on suppose que ces tailles sont de plus en plus petites : $\lim_{s\to\infty} \Delta x_s = 0$. A chacun de ces maillages est associé un pas de temps Δt_s par (1.4).

On note P_s la fonction P associée à ces paramètres Δt_s et Δx_s . On introduit maintenant la fonction u_s , définie pour tout $(t,x) \in (0,\infty) \times \mathbb{R}$ de la manière suivante :

— $u_s(t,x)$ est une fonction constante par morceaux, sur les pavés

$$((n-1/2) \Delta t_s, (n+1/2) \Delta t_s) \times ((k-1/2) \Delta x_s, (k+1/2) \Delta x_s)$$

centrés en
$$(n \Delta t_s, k \Delta x_s)$$

— guidé par (1.7), on pose $\Delta x_s u_s(n \Delta t_s, k \Delta x_s) = P_s(n, k)$.

On se donne un instant t, et on suppose que $t/\Delta t_s$ est un entier pair. On notera dans la suite $n=t/\Delta t_s$. On se donne aussi un point $x\in\mathbb{R}$ tel que $x/\Delta x_s$ est un entier pair. On notera dans la suite $k=x/\Delta x_s$.

On va considérer le régime où Δt et Δx sont très petits (i.e. s très grand), donc n et k sont tous les deux très grands. On voit donc que n+k est grand, tandis que $n-k=\frac{t}{\Delta t}-\frac{x}{\Delta x}=\alpha\frac{t}{(\Delta x)^2}-\frac{x}{\Delta x}$ est lui aussi grand. Grâce à la formule de Stirling

$$\lim_{p \to \infty} \frac{p!}{\sqrt{2\pi p} (p/e)^p} = 1,$$

on déduit de (1.10) (expression valable pour n et k pairs) que

$$\Delta x \, u_s(t,x) = P_s(n,k)$$

$$\approx \frac{1}{2^n} \frac{\sqrt{2\pi n} \, (n/e)^n}{\sqrt{\pi (n+k)} \, ((n+k)/2e)^{(n+k)/2}} \sqrt{\pi (n-k)} \, ((n-k)/2e)^{(n-k)/2}}$$

$$= \frac{\sqrt{2\pi n} \, n^n}{\sqrt{\pi (n+k)} \, (n+k)^{(n+k)/2}} \sqrt{\pi (n-k)} \, (n-k)^{(n-k)/2}}$$

$$= \sqrt{\frac{2}{\pi n}} \, \frac{n^{n+1}}{(n+k)^{(n+k+1)/2} \, (n-k)^{(n-k+1)/2}}$$

$$= \sqrt{\frac{2}{\pi n}} \, \frac{1}{(1+k/n)^{(n+k+1)/2} \, (1-k/n)^{(n-k+1)/2}}.$$
(1.12)

En utilisant l'expression de n et k en fonction de t et x, et en utilisant le scaling diffusif (1.4), on voit que $\frac{k}{n} = \frac{x}{\alpha t} \Delta x$ est petit. On a donc

$$\ln\left[(1+k/n)^{(n+k+1)/2} \right] = \frac{n+k+1}{2} \ln\left(1+\frac{k}{n}\right)$$

$$= \frac{n}{2} \left(1+\frac{k}{n}+\frac{1}{n}\right) \left(\frac{k}{n}-\frac{k^2}{2n^2}+O(\Delta x^3)\right)$$

$$= \frac{n}{2} \left(\frac{k}{n}+\frac{k^2}{2n^2}+O(\Delta x^3)\right),$$

et de même

$$\ln\left[(1-k/n)^{(n-k+1)/2}\right] = \frac{n}{2}\left(-\frac{k}{n} + \frac{k^2}{2n^2} + O(\Delta x^3)\right).$$

On a donc

$$\ln\left[(1+k/n)^{(n+k+1)/2} (1-k/n)^{(n-k+1)/2}\right] = \frac{n}{2} \left(\frac{k^2}{n^2} + O(\Delta x^3)\right) = \frac{x^2}{2\alpha t} + O(\Delta x).$$

En insérant ceci dans (1.12), on obtient que

$$u_s(t,x) \approx \sqrt{\frac{2}{\pi \alpha t}} \exp\left(-\frac{x^2}{2 \alpha t}\right) = 2 p_{\alpha t}(x),$$
 (1.13)

οù

$$p_{\sigma^2}(x) = \frac{1}{\sqrt{2\pi\,\sigma^2}}\,\exp\left(-\frac{x^2}{2\,\sigma^2}\right)$$

est la densité de probabilité d'une variable aléatoire gaussienne centrée et de variance σ^2 .

Pour $t = n \Delta t$ avec n pair, on vient donc d'obtenir que la fonction $x \mapsto u_s(t,x)$, qui est constante par morceaux (par définition), vaut $2 p_{\alpha t}(x)$ au voisinage de $x = k \Delta x_s$ avec k pair, et 0 au voisinage de $x = k \Delta x_s$ avec k impair.

On peut vérifier la normalisation de u_s , mais ce calcul doit être fait avec soin. On peut écrire

$$\int_{\mathbb{R}} u_s(t,x) dx = \Delta x_s \sum_{k \in \mathbb{Z}} u_s(t,k\Delta x_s) \qquad [u_s(t,\cdot) \text{ constant par morceaux}]$$

$$= \sum_{k \in \mathbb{Z}} P_s \left(\frac{t}{\Delta t_s},k\right) \qquad [\text{définition de } u_s \text{ à partir de } P_s]$$

$$= 1. \qquad [\text{normalisation (1.11) de } P_s]$$

Dans ce calcul, on a utilisé le lien entre u_s et P_s et la normalisation de P_s .

On peut aussi utiliser la formule (1.13). On commence par utiliser le fait que $u_s(t,\cdot)$ est constant par morceaux pour écrire

$$\int_{\mathbb{R}} u_s(t, x) dx = \Delta x_s \sum_{k \in \mathbb{Z}} u_s(t, k\Delta x_s)$$
$$= \Delta x_s \sum_{k \text{ pair}} u_s(t, k\Delta x_s) + \Delta x_s \sum_{k \text{ impair}} u_s(t, k\Delta x_s).$$

On a choisi une valeur de t tel que $t/\Delta t_s$ est pair. Pour les valeurs paires de k, on a la relation (1.13). Pour les valeurs impaires de k, on a $u_s(t,k\Delta x_s)=\frac{1}{\Delta x_s}\,P_s\left(\frac{t}{\Delta t_s},k\right)=0$. On obtient donc

$$\int_{\mathbb{R}} u_s(t, x) dx = 2\Delta x_s \sum_{k \text{ pair}} p_{\alpha t}(k\Delta x_s).$$
 (1.14)

Pour k pair, on écrit

$$p_{\alpha t}((k+1)\Delta x_s) \approx p_{\alpha t}(k\Delta x_s) + \Delta x_s p'_{\alpha t}(k\Delta x_s)$$

donc

$$\begin{split} \Delta x_s \sum_{k \in \mathbb{Z}} p_{\alpha\,t}(k\Delta x_s) &= \Delta x_s \sum_{k \text{ pair}} p_{\alpha\,t}(k\Delta x_s) + \Delta x_s \sum_{k \text{ impair}} p_{\alpha\,t}(k\Delta x_s) \\ &\approx 2\Delta x_s \sum_{k \text{ pair}} p_{\alpha\,t}(k\Delta x_s) + (\Delta x_s)^2 \sum_{k \text{ pair}} p'_{\alpha\,t}(k\Delta x_s), \end{split}$$

et on peut majorer le dernier terme par

$$\left| (\Delta x_s)^2 \sum_{k \text{ pair}} p'_{\alpha t}(k \Delta x_s) \right| \le (\Delta x_s)^2 \sum_{k \text{ pair}} |p'_{\alpha t}(k \Delta x_s)|$$

$$\le (\Delta x_s)^2 \sum_{k \in \mathbb{Z}} |p'_{\alpha t}(k \Delta x_s)|$$

$$\approx \Delta x_s \int_{\mathbb{R}} |p'_{\alpha t}(x)| \ dx.$$

A des termes négligeables près, on a donc $2\Delta x_s \sum_{k \text{ pair}} p_{\alpha t}(k\Delta x_s) \approx \Delta x_s \sum_{k \in \mathbb{Z}} p_{\alpha t}(k\Delta x_s)$, ce qui donne, en insérant ceci dans (1.14), que

$$\int_{\mathbb{R}} u_s(t, x) \, dx \approx \Delta x_s \sum_{k \in \mathbb{Z}} p_{\alpha t}(k \Delta x_s) \approx \int_{\mathbb{R}} p_{\alpha t}(x) \, dx = 1,$$

en utilisant le fait que $p_{\alpha t}$ est une densité de probabilité. On retrouve donc bien le même résultat que dans le premier calcul.

On note finalement que, si on avait utilisé la formule (1.13) pour toutes les valeurs de x, on aurait obtenu le résultat $\int_{\mathbb{R}} u_s(t,x) dx = 2$, incohérent avec le premier calcul.

De manière plus générale, on peut en fait montrer le résultat suivant :

Lemme 3. La fonction $u_s(t,\cdot)$ identifiée ci-dessus converge (lorsque $s \to \infty$, et au sens des distributions) vers la fonction u définie par

$$u(t,x) = p_{\alpha t}(x), \tag{1.15}$$

où on rappelle que $p_{\sigma^2}(x) = \frac{1}{\sqrt{2\pi\,\sigma^2}} \exp\left(-\frac{x^2}{2\,\sigma^2}\right)$ est la densité de probabilité d'une variable aléatoire qaussienne centrée et de variance σ^2 .

Démonstration. Soit $\varphi \in C_c^{\infty}(\mathbb{R})$. En utilisant le fait que $u_s(t,\cdot)$ est constant par morceaux, on écrit

$$\int_{\mathbb{R}} u_s(t, x) \, \varphi(x) \, dx = \sum_{k \in \mathbb{Z}} u_s(t, k\Delta x_s) \int_{I_k} \varphi(x) \, dx$$
$$= \sum_{k \text{ pair}} u_s(t, k\Delta x_s) \, \varphi_k + \sum_{k \text{ impair}} u_s(t, k\Delta x_s) \, \varphi_k,$$

où I_k est l'intervalle de longueur Δx_s centré en $k \Delta x_s$ et où $\varphi_k = \int_{I_k} \varphi(x) dx$. A des termes négligeables près, $\varphi_k \approx \Delta x_s \varphi(k \Delta x_s)$. On a choisi une valeur de t tel que $t/\Delta t_s$ est pair. Pour les valeurs paires de k, on a la relation (1.13). Pour les valeurs impaires de k, on a $u_s(t, k\Delta x_s) = 0$. On obtient donc

$$\int_{\mathbb{R}} u_s(t, x) \,\varphi(x) \, dx = 2\Delta x_s \sum_{k \text{ pair}} p_{\alpha \, t}(k\Delta x_s) \,\varphi(k\,\Delta x_s). \tag{1.16}$$

Pour k pair et en introduisant la fonction $g(x) = p_{\alpha t}(x) \varphi(x)$, on écrit

$$g((k+1)\Delta x_s) \approx g(k\Delta x_s) + \Delta x_s g'(k\Delta x_s)$$

donc

$$\begin{split} & \Delta x_s \sum_{k \in \mathbb{Z}} p_{\alpha\,t}(k\Delta x_s)\,\varphi(k\Delta x_s) \\ & = \Delta x_s \sum_{k \text{ pair}} p_{\alpha\,t}(k\Delta x_s)\,\varphi(k\Delta x_s) + \Delta x_s \sum_{k \text{ impair}} p_{\alpha\,t}(k\Delta x_s)\,\varphi(k\Delta x_s) \\ & \approx 2\Delta x_s \sum_{k \text{ pair}} p_{\alpha\,t}(k\Delta x_s)\,\varphi(k\Delta x_s) + (\Delta x_s)^2 \sum_{k \text{ pair}} g'(k\Delta x_s), \end{split}$$

et on peut majorer le dernier terme par

$$\left| (\Delta x_s)^2 \sum_{k \text{ pair}} g'(k \Delta x_s) \right| \le (\Delta x_s)^2 \sum_{k \text{ pair}} |g'(k \Delta x_s)|$$
$$\le (\Delta x_s)^2 \sum_{k \in \mathbb{Z}} |g'(k \Delta x_s)|$$
$$\approx \Delta x_s \int_{\mathbb{R}} |g'(x)| \ dx.$$

A des termes négligeables près, on a donc

$$2\Delta x_s \sum_{k \text{ pair}} p_{\alpha t}(k\Delta x_s) \, \varphi(k\Delta x_s) \approx \Delta x_s \sum_{k \in \mathbb{Z}} p_{\alpha t}(k\Delta x_s) \, \varphi(k\Delta x_s),$$

ce qui donne, en insérant ceci dans (1.16), que

$$\int_{\mathbb{R}} u_s(t,x) \, \varphi(x) \, dx \approx \Delta x_s \sum_{k \in \mathbb{Z}} p_{\alpha \, t}(k \Delta x_s) \, \varphi(k \Delta x_s) \approx \int_{\mathbb{R}} p_{\alpha \, t} \, \varphi,$$

ce qui montre bien la convergence de u_s vers $p_{\alpha\,t}$ au sens des distributions. \square

1.1.3.3 Consistance avec les résultats précédents

On a le résultat suivant :

Lemme 4. La fonction u définie par (1.15) est bien solution de (1.9).

Démonstration. On remarque déjà que u définie par (1.15) est $C^{\infty}(]0, \infty[\times \mathbb{R}^d)$, donc on peut dériver au sens des distributions en dérivant simplement de manière usuelle. On calcule donc

$$\partial_t u = -\frac{1}{2t^{3/2}} \sqrt{\frac{1}{2\pi \alpha}} \exp\left(-\frac{x^2}{2\alpha t}\right) + \sqrt{\frac{1}{2\pi \alpha t}} \frac{x^2}{2\alpha t^2} \exp\left(-\frac{x^2}{2\alpha t}\right)$$
$$= \sqrt{\frac{1}{2\pi \alpha t}} \left(\frac{x^2}{2\alpha t^2} - \frac{1}{2t}\right) \exp\left(-\frac{x^2}{2\alpha t}\right).$$

Par ailleurs, on calcule

$$\partial_x u = -\sqrt{\frac{1}{2\pi \alpha t}} \frac{x}{\alpha t} \exp\left(-\frac{x^2}{2\alpha t}\right),$$

et donc

$$\partial_{xx} u = \sqrt{\frac{1}{2\pi \alpha t}} \left(\frac{x^2}{\alpha^2 t^2} - \frac{1}{\alpha t} \right) \exp\left(-\frac{x^2}{2 \alpha t} \right),$$

ce qui montre bien que (1.9) est satisfaite.

On peut aussi vérifier la consistance avec les premiers calculs. Par définition de P, on a

$$\mathbb{E}[X_n] = \sum_{k=-n}^{n} (k\Delta x) P(n, k) = 0,$$

où la dernière relation vient de la parité de $P(n,\cdot)$. Ceci est consistant avec le résultat obtenu plus haut. De même,

$$\mathbb{V}[X_n] = \mathbb{E}[X_n^2] = \sum_{k=-n}^n (k\Delta x)^2 P(n,k) = \Delta x \sum_{k=-n}^n (k\Delta x)^2 u(n\Delta t, k\Delta x)$$

et par conséquent

$$\mathbb{V}[X_{t/\Delta t}] \approx \int_{\mathbb{D}} x^2 u(t, x) \, dx = \int_{\mathbb{D}} x^2 \, p_{\alpha \, t}(x) \, dx = \alpha t.$$

Grâce au lemme 3, on a confondu, dans l'intégrale, la fonction u_s (obtenue avec les paramètres Δx_s et Δt_s) avec la fonction u (en toute rigueur, on ne peut pas appliquer le lemme 3 tel quel, car la fonction $\varphi(x) = x^2$ n'est pas $C_c^{\infty}(\mathbb{R})$; il faudrait donc généraliser ce lemme, exercice qu'on laisse en dehors de ces notes de cours). On retrouve bien le résultat (1.3) disant que $\mathbb{V}[X_{t/\Delta t}] \approx \alpha t$.

1.1.4 Propagation à vitesse infinie

Dans notre modèle, à l'instant initial, la particule est en $X_0=0$. On a ainsi P(n=0,k)=1 si k=0 et P(n=0,k)=0 sinon. Pour ce qui est de la densité de probabilité u définie par (1.15), on peut voir que $u(t,\cdot)$ converge (au sens des distributions) vers la masse de Dirac δ_0 lorsque $t\to 0$.

Pour tout t>0, on constate que u(t,x)>0 pour tout $x\in\mathbb{R}$: la densité u charge tout \mathbb{R} , ce qui donne à penser que, pour tout instant t>0, la particule peut occuper n'importe quel point de la droite réelle.

Ceci est consistant avec la modélisation initiale. On a vu que, au temps $n \Delta t$, la particule pouvait atteindre toutes les positions $k \Delta x$ avec $k \in [-n, n]$. Par définition de u, pour tout t > 0 et $x \in \mathbb{R}$,

$$\Delta x u(t,x) \approx P\left(\frac{t}{\Delta t}, \frac{x}{\Delta x}\right) = P\left(\frac{\alpha t}{(\Delta x)^2}, \frac{x}{\Delta x}\right),$$

où on a utilisé le scaling diffusif (1.4) dans la dernière égalité. Dans le régime Δx petit (et avec x et t fixés), on voit donc que $n:=\frac{\alpha t}{(\Delta x)^2}\gg \frac{|x|}{\Delta x}=:k$. On est bien dans la région $k\in[-n,n]$, et même en fait dans la région $|k|\ll n$. On a donc bien P(n,k)>0. Pour poursuivre le raisonnement, il faudrait vérifier que, dans la limite $\Delta x\to 0$, cette quantité reste strictement positive (et ne converge pas vers 0). Le calcul mené à la section 1.1.3 permet en fait de répondre à cette question.

Dans le cadre de la modélisation par équations aux dérivées partielles, on reviendra à cette propriété ci-dessous (cf. le théorème 15).

1.1.5 Le cas multi-dimensionnel

On peut généraliser les calculs précédents au cas multi-dimensionnel, en considérant une particule sur le réseau $\Delta x \mathbb{Z}^d$. En se plaçant pour simplifier en dimension d=2 (l'important est de comprendre comment passer de d=1 à d=2, le passage de d=2 à $d\geq 3$ étant plus simple), on suppose donc que la particule se déplace de Δx vers la droite, vers la gauche, vers le haut ou vers le bas, les 4 mouvements étant équiprobables (et donc de probabilité 1/4).

Il est facile de voir (par la même raisonnement que pour aboutir à (1.5)) que

$$P(n+1,k_1,k_2) = \frac{P(n,k_1-1,k_2) + P(n,k_1+1,k_2) + P(n,k_1,k_2-1) + P(n,k_1,k_2+1)}{4}.$$

On a donc

$$P(n+1,k_1,k_2) - P(n,k_1,k_2)$$

$$= \frac{P(n,k_1-1,k_2) + P(n,k_1+1,k_2) - 2P(n,k_1,k_2)}{4} + \frac{P(n,k_1,k_2-1) + P(n,k_1,k_2+1) - 2P(n,k_1,k_2)}{4}.$$
(1.17)

On introduit la densité de probabilité de présence $u(t, x_1, x_2)$ de la particule à l'instant t > 0 au point (x_1, x_2) de \mathbb{R}^2 : comme dans le cas mono-dimensionnel,

c'est une fonction constante par morceaux en temps et en espace, et qui est reliée à la fonction P par

$$(\Delta x)^2 u(t, x_1, x_2) = P(n, k_1, k_2)$$

dans le pavé $(t, x_1, x_2) \in ((n - 1/2) \Delta t, (n + 1/2) \Delta t) \times ((k_1 - 1/2) \Delta x, (k_1 + 1/2) \Delta x) \times ((k_2 - 1/2) \Delta x, (k_2 + 1/2) \Delta x)$. On a donc à nouveau

$$(\Delta x)^2 u(t, x_1, x_2) \approx P\left(\frac{t}{\Delta t}, \frac{x_1}{\Delta x}, \frac{x_2}{\Delta x}\right).$$

On approche le schéma discret (1.17) par

$$\Delta t \,\partial_t u = \frac{(\Delta x)^2 \partial_{x_1 x_1} u}{4} + \frac{(\Delta x)^2 \partial_{x_2 x_2} u}{4} = \frac{(\Delta x)^2}{4} \,\Delta u,$$

où Δu est bien sûr le laplacien de u, qu'on ne confondra pas avec la notation Δx du pas d'espace. Avec à nouveau un scaling diffusif qu'on choisit (comparer avec (1.4)) sous la forme $(\Delta x)^2/(2\Delta t) = \alpha$, on obtient

$$\partial_t u = \frac{\alpha}{2} \, \Delta u,\tag{1.18}$$

équation qui est bien sûr la version multi-dimensionnelle de (1.9).

Remarque 5. La discussion menée ici possède une origine historique ¹.Le savant néerlandais Anthony van Leeuwenhoek (1632-1723) a été le premier à observer, à l'aide d'un microscope, le mouvement irrégulier et désordonné de petits grains en suspension dans l'eau. En 1785, Jan Ingenhousz (1730-1799), médecin, botaniste et chimiste britannique d'origine néerlandaise, a décrit le mouvement irrégulier de la poussière de charbon à la surface de l'alcool. On peut postuler qu'il fut l'un des premiers à découvrir ce qu'on appelle aujourd'hui le mouvement brownien.

En 1827, le botaniste écossais Robert Brown (1773-1858), en immergeant dans un liquide au repos des grains de pollen, remarqua le même comportement désordonné. Il observa au microscope de minuscules particules de quelques micromètres décrivant à la surface du liquide des trajectoires apparemment erratiques. Il utilisa les grains de pollen car ils contenaient des particules oblongues ayant une forme allongée plus longue que large. Brown était particulièrement passionné par les pollens et il croyait pouvoir suivre leur progression durant la fertilisation. Il pensait que ce mouvement était causé par un fluide vital provenant de l'intérieur des grains de pollen. En apprenant qu'Ingenkousz avait observé le même comportement pour la poussière de charbon, Brown renonça à son hypothèse du fluide vital et il réussit à montrer que ce mouvement chaotique se produisait également avec des grains de matière inerte. En 1828, Brown publia ses résultats dans un article de la revue "The Edinburgh Journal of Science".

 $^{1.\} cf.\ le\ site\ https://accromath.uqam.ca/2023/01/le-mouvement-brownien-du-pollen-de-brown-a-lorigine-de-la-finance-moderne/$

Le résultat suivant généralise le lemme 4 :

Lemme 6. La fonction u définie par

$$u(t,x) = p_{\alpha t}(x_1) \times \dots \times p_{\alpha t}(x_d) = \frac{1}{(2\pi \alpha t)^{d/2}} \exp\left(-\frac{x \cdot x}{2 \alpha t}\right)$$
(1.19)

est bien solution de (1.18).

Démonstration. On a en effet

$$\begin{split} \partial_t u &= -\frac{d}{2\,t^{1+d/2}}\frac{1}{(2\pi\,\alpha)^{d/2}}\,\,\exp\left(-\frac{x\cdot x}{2\,\alpha\,t}\right) + \frac{1}{(2\pi\,\alpha\,t)^{d/2}}\,\,\frac{x\cdot x}{2\,\alpha\,t^2}\,\,\exp\left(-\frac{x\cdot x}{2\,\alpha\,t}\right) \\ &= \frac{1}{(2\pi\,\alpha\,t)^{d/2}}\,\left(\frac{x\cdot x}{2\,\alpha\,t^2} - \frac{d}{2t}\right)\,\,\exp\left(-\frac{x\cdot x}{2\,\alpha\,t}\right). \end{split}$$

Par ailleurs, on calcule, pour tout $1 \le j \le d$,

$$\partial_{x_j} u = -\frac{1}{(2\pi \alpha t)^{d/2}} \, \frac{x_j}{\alpha t} \, \exp\left(-\frac{x \cdot x}{2 \alpha t}\right),\,$$

et donc

$$\partial_{x_j x_j} u = \frac{1}{(2\pi \alpha t)^{d/2}} \left(\frac{x_j^2}{\alpha^2 t^2} - \frac{1}{\alpha t} \right) \exp\left(-\frac{x \cdot x}{2 \alpha t} \right),$$

ce qui entraine, en sommant sur les j, que

$$\Delta u = \frac{1}{(2\pi \alpha t)^{d/2}} \left(\frac{x \cdot x}{\alpha^2 t^2} - \frac{d}{\alpha t} \right) \exp\left(-\frac{x \cdot x}{2 \alpha t} \right).$$

Ceci montre bien que (1.18) est satisfaite.

1.2 Equation de la chaleur

Motivé en particulier par le raisonnement ayant abouti à l'équation (1.18), on considère ici le problème suivant. Etant donné une fonction $f:[0,+\infty[\times\mathbb{R}^d\to\mathbb{R}])$, on cherche une fonction du temps et de l'espace, $u:[0,+\infty[\times\mathbb{R}^d\to\mathbb{R}])$, telle que

$$\partial_t u - \Delta u = f. \tag{1.20}$$

L'équation (1.20) intervient par exemple dans la modélisation des transferts thermiques : l'inconnue u représente une température et la donnée f une puissance volumique fournie au système (ou absorbée si f < 0). Cette interprétation physique a conféré son nom à l'équation (1.20), qui est communément appelée équation de la chaleur.

On complètera ci-dessous l'équation (1.20) par des conditions aux limites. Imposer u=0 sur le bord du domaine (condition de Dirichlet homogène) exprime le fait que la température est maintenue égale à zero sur ce bord. Imposer $n \cdot \nabla u = 0$ sur le bord du domaine (condition de Neumann homogène) exprime

le fait que le flux thermique est nul sur le bord du domaine (ce qui revient à dire que la paroi du domaine est isolante).

Dans la section 1.1, on a obtenu (1.20) dans un autre contexte. A l'échelle continue, $u(t,\cdot)$ représente la densité de probabilité de la particule à l'instant t. On peut comprendre le problème comme la modélisation d'une unique particule, ou bien comme la modélisation d'un ensemble constitué d'un grand nombre de particules indépendantes les unes des autres. On peut alors comprendre u(t,x) comme la concentration (notion physique proche de celle de distribution statistique) des particules à l'instant t et au point macroscopique x. Cet exemple est à rapprocher du problème consistant à modéliser comment un polluant peut diffuser dans son environnement (ou comment une goutte d'encre peut diffuser dans de l'eau ou sur du papier).

L'équation de la chaleur intervient dans la modélisation de nombreux phénomènes physiques (au delà de ceux évoqués ci-dessus) car elle résulte de la combinaison

 — d'une loi de conservation (cette notion sera largement revue au chapitre 2, dont elle formera la notion principale!) sous la forme

$$\partial_t u + \operatorname{div} q(\nabla u) = f,$$

où $q: \mathbb{R}^d \to \mathbb{R}^d$ est le flux de la variable conservative u (on pourra par exemple penser au flux de chaleur);

— et d'une loi phénoménologique de la forme

$$q(\nabla u) = -k\nabla u,$$

où k>0 est un réel donné; on pourra par exemple penser à la loi de Fourier (reliant le flux thermique à la température) où k représente la conductivité thermique et u la température, à la loi de Fick (reliant le flux de particules à la concentration), . . .

En combinant ces deux équations et en supposant que k=1 (quitte à changer l'échelle de longueur ou l'échelle de temps), on récupère l'équation (1.20).

Nous allons poursuivre notre étude en commençant par le cas simple où l'équation est posée dans tout l'espace, avant de traiter le cas d'une équation posée sur un domaine borné (nous n'aborderons pas le cas de l'équation de la chaleur posé sur un domaine non borné différent de \mathbb{R}^d).

1.2.1 Equation de la chaleur dans tout l'espace

L'avantage de travailler dans tout l'espace est de ne pas avoir à satisfaire de conditions aux limites (qui sont en fait encodées dans l'espace fonctionnel dans lequel on travaille), et de pouvoir utiliser la transformée de Fourier (quelques rappels à ce sujet sont rassemblés au chapitre 10).

1.2.1.1 Solution fondamentale

On a déjà identifié une solution particulière de l'équation de la chaleur (1.20) en l'absence de second membre. En effet, le lemme 6 indique que la fonction

$$G(t,x) = \frac{1}{(4\pi t)^{d/2}} \exp\left(-\frac{x \cdot x}{4t}\right)$$
 (1.21)

est bien solution de l'équation homogène associée à (1.20), au sens où $\partial_t G - \Delta G = 0$.

On peut en fait retrouver ce résultat en utilisant la transformée de Fourier, qui est définie, pour toute fonction $f \in L^1(\mathbb{R}^d)$, par

$$\mathcal{F}(f)(k) = \widehat{f}(k) = \int_{\mathbb{R}^d} f(x) e^{-ik \cdot x} dx.$$
 (1.22)

On rappelle que la notion de transformée de Fourier s'étend aux fonctions $f \in L^2(\mathbb{R}^d)$ (attention, dans ce cas, \widehat{f} est définie de manière "abstraite", par dualité, et la formule (1.22) ci-dessus n'est pas valable). On rappelle une propriété fondamentale de la transformée de Fourier :

$$\forall 1 \leq j \leq d, \qquad \widehat{\partial_{x_j} f}(k) = i k_j \widehat{f}(k).$$

Soit maintenant G solution de $\partial_t G - \Delta G = 0$. On note $\widehat{G}(t,\cdot)$ la transformée de Fourier (en espace) de $G(t,\cdot)$. On trouve donc que \widehat{G} doit résoudre l'équation

$$\partial_t \widehat{G}(t,k) + |k|^2 \widehat{G}(t,k) = 0, \tag{1.23}$$

équation qui se résout analytiquement et dont la solution est

$$\hat{G}(t,k) = C e^{-t|k|^2}.$$
 (1.24)

Remarque 7. A ce stade, on pourrait considérer l'expression $\widehat{G}(t,k) = C_k e^{-t|k|^2}$ pour une "constante" C_k dépendant de k. Seule la condition initiale permet en fait de fixer cette constante d'intégration. On choisit C constant (i.e. indépendant de k) car cela conduit à une solution particulièrement utile pour la suite.

On peut revenir dans les variables d'espace, en invoquant la transformée de Fourier inverse et le fait que, pour les fonctions f telles que $f \in L^1(\mathbb{R}^d)$ et $\widehat{f} \in L^1(\mathbb{R}^d)$, on a

$$f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{f}(k) e^{ik \cdot x} dk.$$

Le calcul d'une transformée de Fourier est particulièrement simple dans le cas de fonctions gaussiennes : pour tout $\beta > 0$,

si
$$f(x) = \exp(-\beta |x|^2)$$
, alors $\hat{f}(k) = (\pi/\beta)^{d/2} e^{-|k|^2/(4\beta)}$. (1.25)

Exercice 8. Prouver le résultat (1.25). Indication : une bonne manière est de se placer en dimension un d'espace, d'identifier l'équation différentielle ordinaire dont $k \mapsto \widehat{f}(k)$ est solution (en dérivant sous l'intégrale) et de résoudre cette équation.

On voit donc que les fonctions gaussiennes sont des fonctions dans $L^1(\mathbb{R}^d)$ et telles que leur transformée de Fourier est aussi dans $L^1(\mathbb{R}^d)$ (l'ensemble mentionné ci-dessus n'est donc pas vide!). Puisque la fonction $k\mapsto \widehat{G}(t,k)$ est gaussienne, on déduit facilement que

$$G(t,x) = \frac{1}{(2\pi)^d} \mathcal{F}\Big(\widehat{G}(t,\cdot)\Big)(-x) = \frac{C}{(2\pi)^d} (\pi/t)^{d/2} e^{-|x|^2/(4t)}.$$

En prenant C=1, on obtient

$$G(t,x) = \frac{1}{(4\pi t)^{d/2}} \exp\left(-\frac{|x|^2}{4t}\right),$$

et on retrouve bien la formule (1.21) précédente. La constante C a été choisie de telle manière à ce que

$$\forall t > 0, \qquad \int_{\mathbb{R}^d} G(t, x) \, dx = 1,$$

en utilisant la normalisation de la densité Gaussienne. On peut aussi argumenter en disant que $\widehat{G}(t,0) = \int_{\mathbb{R}^d} G(t,x) dx$. Imposer la normalisation de $G(t,\cdot)$ revient donc à demander que $\widehat{G}(t,0) = 1$, ce qui impose C = 1 au vu de (1.24).

Au temps initial, on voit que $\widehat{G}(t=0,k)=1$ pour tout $k\in\mathbb{R}^d$, donc $G(t,\cdot)$ est égal à la distribution δ_0 (se rappeler que la transformée de Fourier de δ_0 est la fonction identiquement égale à 1). Ceci est consistant avec le fait que $G(t,\cdot)$ converge lorsque $t\to 0$, au sens des distributions, vers la masse de Dirac δ_0 (fait signalé en section 1.1.4).

Par ailleurs, on remarque que G n'est bien définie que lorsque t>0. Lorsque t<0, la fonction $k\mapsto \widehat{G}(t,k)$ n'est pas dans $L^2(\mathbb{R}^d)$, et tout le calcul précédent s'effondre. L'expression ci-dessus de G perd aussi son sens, puisqu'elle fait appel à \sqrt{t} . On voit donc apparaître dès maintenant une propriété importante de l'équation de la chaleur : la non-réversibilité. La solution n'est définie que pour les temps futurs (c'est-à-dire $t\geq 0$ si la condition initiale est donnée en t=0).

Remarque 9. La notion de non-réversibilité est une notion souhaitée pour l'équation. Elle est directement liée à un principe physique, qui est le second principe de la thermodynamique (lequel explique par exemple pourquoi, dans une pièce isolée, la température s'uniformise, alors que le premier principe de la thermodynamique, principe de conservation d'énergie, n'impose pas ceci, mais simplement que la température moyenne demeure constante).

La fonction G que nous venons de construire est appelée solution fondamentale de l'équation de la chaleur, au sens où elle vérifie (formellement)

$$\begin{cases} \partial_t G - \Delta G = 0, & t > 0, \\ G(0) = \delta_0. \end{cases}$$
 (1.26)

Remarque 10. Une autre façon de trouver la fonction G est de remarquer que, si u(t,x) est une solution de l'équation de la chaleur (1.26), alors $\lambda^d u(\lambda^2 t, \lambda x)$ l'est également (le préfacteur λ^d venant du respect de la condition initiale). Il est donc naturel de chercher une fonction solution sous la forme $u(t,x) = \frac{v(|x|^2/t)}{t^{d/2}}$ (à une constante multiplicative près, à déterminer plus tard). On calcule alors

$$\partial_t u = -\frac{d}{2} \frac{v(|x|^2/t)}{t^{1+d/2}} - \frac{|x|^2}{2t^2} \frac{v'(|x|^2/t)}{t^{d/2}}$$

et

$$\partial_{x_j} u = \frac{2x_j}{t} \, \frac{v'(|x|^2/t)}{t^{d/2}},$$

ce qui donne

$$\partial_{x_j x_j} u = \frac{2}{t} \, \frac{v'(|x|^2/t)}{t^{d/2}} + \frac{4 x_j^2}{t^2} \, \frac{v''(|x|^2/t)}{t^{d/2}},$$

et donc

$$\Delta u = \frac{2d}{t} \, \frac{v'(|x|^2/t)}{t^{d/2}} + \frac{4|x|^2}{t^2} \, \frac{v''(|x|^2/t)}{t^{d/2}}.$$

La première ligne de (1.26) donne donc, dans la variable $y = |x|^2/t$,

$$-\frac{d}{2}v(y) - \frac{y}{2}v'(y) = 2dv'(y) + 4yv''(y).$$

On cherche une solution sous la forme $v(y) = \exp(-\omega y)$, ce qui donne

$$-\frac{d}{2} + \frac{\omega y}{2} = -2d \,\omega + 4y \,\omega^2,$$

ce qui conduit à choisir $\omega=1/4$. On a donc identifié $v(y)=\exp(-y/4)$, d'où $u(t,x)=C\,\frac{\exp(-|x|^2/(4t))}{t^{d/2}}$, et on obtient la valeur de la constante C grâce à la condition initiale. On retrouve bien (1.21).

Remarque 11. La non-réversibilité mentionnée ci-dessus se voit aussi lorsqu'on compare la condition initiale de l'équation (une masse de Dirac, i.e. une "fonction" très piquée en 0) avec la solution pour tout t > 0, qui est une fonction très régulière vis à vis de la variable x. On observe aussi un autre phénomène fondamental sur lequel on reviendra (cf. le théorème 14) : l'équation est régularisante, au sens où elle permet de passer d'une condition initiale très peu régulière à une solution (à tout temps t > 0) de classe $C^{\infty}(\mathbb{R}^d)$.

1.2.1.2 Solution homogène

On peut maintenant utiliser la fonction G pour construire une solution de l'équation de la chaleur avec condition initiale g. La manière la plus simple de procéder est de travailler en Fourier. Puisqu'on doit encore résoudre l'EDP sans second membre $\partial_t u - \Delta u = 0$, on a encore (1.23) pour la fonction \widehat{u} , ce qui conduit à la solution $\widehat{u}(t,k) = C(k)\,\widehat{G}(t,k)$ pour une fonction C(k) ne dépendant que de k (cf. la remarque 7). En utilisant la condition initiale, on a $\widehat{g}(k) = \widehat{u}(t=0,k) = C(k)\,\widehat{G}(t=0,k) = C(k)$, ce qui détermine complètement \widehat{u} . La fonction $\widehat{u}(t,\cdot)$ est un produit, ce qui revient à affirmer que la fonction $u(t,\cdot)$ est une convolution dans l'espace de départ. On introduit donc, pour $x \in \mathbb{R}^d$ et t>0, la fonction

$$u(t,x) = (G(t,\cdot)\star g)(x) = \int_{\mathbb{R}^d} G(t,x-y) g(y) dy = \frac{1}{(4\pi t)^{d/2}} \int_{\mathbb{R}^d} e^{\frac{-|x-y|^2}{4t}} g(y) dy.$$
(1.27)

Comme $G(t,\cdot) \in L^1(\mathbb{R}^d)$ pour tout t > 0, on déduit que si $g \in L^p(\mathbb{R}^d)$, alors $u(t,\cdot) \in L^p(\mathbb{R}^d)$ pour tout t > 0. On rappelle en effet le résultat suivant :

Lemme 12. Soit $\alpha \in L^1(\mathbb{R}^d)$ et $\beta \in L^p(\mathbb{R}^d)$ avec $1 \leq p \leq \infty$. Alors $\alpha \star \beta \in L^p(\mathbb{R}^d)$ et de plus $\|\alpha \star \beta\|_{L^p(\mathbb{R}^d)} \leq \|\alpha\|_{L^1(\mathbb{R}^d)} \|\beta\|_{L^p(\mathbb{R}^d)}$.

Théorème 13 (Solution de l'équation de la chaleur dans \mathbb{R}^d). Soit $g \in L^2(\mathbb{R}^d)$. Le problème

$$\begin{cases} \partial_t u - \Delta u = 0, & t > 0 \\ u(0) = g, \end{cases}$$
 (1.28)

a une solution unique $u\in C^0\big([0;\infty),L^2(\mathbb{R}^d)\big)\cap C^1\big((0;\infty),H^2(\mathbb{R}^d)\big)$, qui est donnée par la formule (1.27).

 $D\acute{e}monstration$. Il est clair que la définition (1.27) fournit une solution de l'équation (1.28) dans le bon espace fonctionnel (le vérifier en exercice!).

Si maintenant $v \in C^0([0;\infty), L^2(\mathbb{R}^d)) \cap C^1((0;\infty), H^2(\mathbb{R}^d))$ est une solution de (1.28) avec $g \equiv 0$, on peut prendre le produit scalaire avec la fonction $x \mapsto v(t,x)$ (qui est donc une fonction de $L^2(\mathbb{R}^d)$) et on intègre en temps sur $[0;t_0]$. On obtient

$$\frac{1}{2}\|v(t_0,\cdot)\|_{L^2(\mathbb{R}^d)}^2 + \int_0^{t_0} dt \int_{\mathbb{R}^d} |\nabla v|^2 dx = \frac{1}{2}\|v(0,\cdot)\|_{L^2(\mathbb{R}^d)}^2 = \frac{1}{2}\|g\|_{L^2(\mathbb{R}^d)}^2 = 0,$$

ce qui montre que $v(t_0,\cdot)=0$ pour tout $t_0.$ On obtient ainsi l'unicité de la solution.

Pour faire le calcul ci-dessus, on a utilisé que, pour tout t>0, on a $-\int_{\mathbb{R}^d} v\Delta v = \int_{\mathbb{R}^d} |\nabla v|^2$. Cette égalité peut être obtenue en utilisant le fait que $v(t,\cdot) \in H^2(\mathbb{R}^d)$ (par définition de l'espace de travail), et qu'on peut donc trouver $v_n \in C_c^{\infty}(\mathbb{R}^d)$ tel que $||v_n - v||_{H^2(\mathbb{R}^d)}$ tend vers 0 quand $n \to \infty$. Par intégration par partie,

on a
$$-\int_{\mathbb{R}^d} v_n \Delta v_n = \int_{\mathbb{R}^d} |\nabla v_n|^2$$
, et on peut passer à la limite $n \to \infty$ de chaque coté.

On a aussi le résultat de régularité suivant :

Théorème 14. Si $g \in L^2(\mathbb{R}^d)$, alors la solution (1.27) de (1.28) est dans $C^{\infty}((0;\infty) \times \mathbb{R}^d)$.

Démonstration. Il s'agit juste de remarquer que G est de classe C^{∞} sur $(0; \infty) \times \mathbb{R}^d$ et que toutes ses dérivées sont dans $C^0((0; \infty), L^2(\mathbb{R}^d))$, puis d'appliquer les résultats classiques de régularité d'intégrales dépendant d'un paramètre.

Ainsi, bien que nous ayons seulement supposé que la condition initiale g est dans $L^2(\mathbb{R}^d)$, on obtient que la solution u(t,x) est de classe C^{∞} par rapport à $x \in \mathbb{R}^d$ pour tout temps t > 0. On dit que l'équation de la chaleur a un effet régularisant. On voit bien sûr la non-réversibilité de ce processus.

De même, notons la propriété suivante :

Théorème 15. Si $g \ge 0$ avec g non identiquement nulle, alors u(t,x) > 0 pour tout $x \in \mathbb{R}^d$ et tout t > 0.

Ce résultat est une conséquence directe du fait que G>0. Même si g s'annule par endroit au temps initial, la solution est strictement positive sur tout l'espace quand t>0. On parle de *propagation à vitesse infinie*, notion déjà évoquée dans la section 1.1.4.

On a aussi le résultat (dit principe du maximum) suivant :

Théorème 16 (Principe du maximum). On suppose que $g \in L^2(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$. La solution u donnée par (1.27) est dans $L^{\infty}((0;\infty),L^{\infty}(\mathbb{R}^d))$ et vérifie

$$\sup_{t>0} \|u(t)\|_{L^{\infty}(\mathbb{R}^d)} \le \|g\|_{L^{\infty}(\mathbb{R}^d)}.$$

 $D\acute{e}monstration$. En utilisant le fait que G>0, la formule (1.27) donne

$$|u(t,x)| \le \int_{\mathbb{R}^d} G(t,x-y) |g(y)| \, dy \le ||g||_{L^{\infty}(\mathbb{R}^d)} \int_{\mathbb{R}^d} G(t,x-y) \, dy$$
$$= ||g||_{L^{\infty}(\mathbb{R}^d)} \int_{\mathbb{R}^d} G(t,z) \, dz = ||g||_{L^{\infty}(\mathbb{R}^d)}.$$

Ceci est vrai pour tout x, donc $||u(t,\cdot)||_{L^{\infty}(\mathbb{R}^d)} \leq ||g||_{L^{\infty}(\mathbb{R}^d)}$, et on conclut en prenant le supremum en t > 0.

On a enfin le comportement asymptotique suivant (qui montre à nouveau la non-réversibilité du problème, i.e. l'existence d'une "flèche du temps") :

Théorème 17 (Comportement asymptotique). On suppose que $g \in L^2(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$. La solution u donnée par (1.27) vérifie

$$\forall t > 0, \qquad \lim_{|x| \to \infty} u(t, x) = 0$$

et

$$\forall x \in \mathbb{R}^d, \qquad \lim_{t \to \infty} u(t, x) = 0.$$

Démonstration. Puisque G > 0, on peut écrire

$$u(t,x) = \int_{\mathbb{R}^d} \sqrt{G(t,x-y)} \sqrt{G(t,x-y)} g(y) dy,$$

et l'inégalité de Cauchy-Schwarz donne

$$|u(t,x)|^{2} \leq \left(\int_{\mathbb{R}^{d}} G(t,x-y) \, dy \right) \left(\int_{\mathbb{R}^{d}} G(t,x-y) \, g^{2}(y) \, dy \right)$$
$$= \int_{\mathbb{R}^{d}} G(t,x-y) \, g^{2}(y) \, dy$$

en utilisant la normalisation de $G(t,\cdot)$.

On démontre la première assertion. Soit t>0 fixé. Pour tout $y\in\mathbb{R}^d$, on voit que $\lim_{|x|\to\infty}G(t,x-y)\,g^2(y)=0$, et on sait par ailleurs que

$$|G(t, x - y) g^{2}(y)| \le \frac{1}{(4\pi t)^{d/2}} g^{2}(y),$$

où le membre de droite est indépendant de x et intégrable (puisque $g^2 \in L^1(\mathbb{R}^d)$). On peut donc appliquer le théorème de convergence dominée.

On démontre la seconde assertion. Soit $x \in \mathbb{R}^d$ fixé. Pour tout $y \in \mathbb{R}^d$, on voit que $\lim_{t \to \infty} G(t, x - y) g^2(y) = 0$, et on sait par ailleurs que

$$|G(t, x - y) g^{2}(y)| \le \frac{1}{(4\pi t)^{d/2}} g^{2}(y) \le \frac{1}{(4\pi)^{d/2}} g^{2}(y)$$

où la dernière inégalité est vraie pour tout $t \geq 1$ et où son membre de droite est indépendant de t et intégrable (puisque $g^2 \in L^1(\mathbb{R}^d)$). On peut donc encore appliquer le théorème de convergence dominée.

Remarque 18. Ces propriétés de l'équation de la chaleur sont très spécifiques aux équations de type parabolique et ne seront plus vraies pour l'équation des ondes, par exemple. Pour l'équation de la chaleur, démontrer ces propriétés dans le cas d'un ouvert borné nous prendra un peu plus de temps mais tout restera vrai (cf. la section 1.2.2).

1.2.1.3 Solution avec second membre

On s'intéresse maintenant à l'équation de la chaleur avec second membre. Pour cela, il est utile d'introduire l'opérateur U(t), agissant sur $L^2(\mathbb{R}^d)$ et défini par

$$U(t)g = G(t, \cdot) \star g.$$

Il s'agit simplement de l'opérateur de multiplication par $\widehat{G}(t,k)$ en Fourier.

On a le résultat suivant :

Théorème 19 (Équation de la chaleur dans tout l'espace avec second membre). Soient $g \in L^2(\mathbb{R}^d)$ et $f \in C^1([0;\infty), L^2(\mathbb{R}^d))$. Le problème

$$\begin{cases} \partial_t u - \Delta u = f, & t > 0 \\ u(0) = g, \end{cases}$$
 (1.29)

admet une unique solution dans l'espace $C^0([0;\infty), L^2(\mathbb{R}^d)) \cap C^1((0;\infty), L^2(\mathbb{R}^d))$, et celle-ci est donnée par la formule de Duhamel

$$u(t) = U(t)g + \int_0^t U(t-s) f(s) ds.$$
 (1.30)

Démonstration. L'unicité se montre encore par soustraction de deux solutions et estimées d'énergie (comme pour la preuve dans le théorème 13). On montre maintenant que la fonction proposée est bien solution. On a

$$u(t) = G(t, \cdot) \star g + \int_0^t G(t - s, \cdot) \star f(s, \cdot) ds, \qquad (1.31)$$

donc

$$\partial_t u = \partial_t \big(G(t, \cdot) \star g \big) + \int_0^t \partial_t G(t - s, \cdot) \star f(s, \cdot) \, ds + G(0, \cdot) \star f(t, \cdot)$$
$$= \big(\partial_t G(t, \cdot) \big) \star g + \int_0^t \partial_t G(t - s, \cdot) \star f(s, \cdot) \, ds + f(t, \cdot),$$

en utilisant le fait que $G(0,\cdot)=\delta_0$ et que la convolée par δ_0 est l'identité. Par ailleurs,

$$\Delta u(t) = (\Delta G(t, \cdot)) \star g + \int_0^t (\Delta G(t - s, \cdot)) \star f(s, \cdot) \, ds.$$

En utilisant que $\partial_t G = \Delta G$, on obtient que $\partial_t u - \Delta u = f$, c'est la première ligne de (1.29).

On fait maintenant tendre t vers 0 dans la formule proposée. Le second terme (intégrale entre 0 et t) s'annule, et il reste $u(0) = G(0, \cdot) \star g = g$, c'est la deuxième ligne de (1.29).

Une autre preuve consiste à passer en Fourier dans (1.29). On a ainsi

$$\partial_t \widehat{u}(t,k) + |k|^2 \widehat{u}(t,k) = \widehat{f}(t,k).$$

En utilisant la méthode de la variation de la constante, on voit que

$$\widehat{u}(t,k) = C(t,k) e^{-t|k|^2}$$

avec

$$\partial_t C(t,k) = e^{t|k|^2} \widehat{f}(t,k).$$

On peut résoudre cette équation et on trouve

$$C(t,k) = C(0,k) + \int_0^t e^{s|k|^2} \widehat{f}(s,k) \, ds,$$

ce qui entraine

$$\widehat{u}(t,k) = C(0,k) e^{-t|k|^2} + \int_0^t e^{(s-t)|k|^2} \widehat{f}(s,k) ds.$$

La condition initiale donne $\widehat{g}(k)=\widehat{u}(t=0,k)=C(0,k),$ et on obtient donc finalement

$$\widehat{u}(t,k) = \widehat{g}(k)\,\widehat{G}(t,k) + \int_0^t \widehat{G}(t-s,k)\,\widehat{f}(s,k)\,ds. \tag{1.32}$$

La transformée de Fourier inverse (qui transforme un produit en une convolution) permet d'aboutir à (1.31).

On observe à nouveau les propriétés régularisantes de l'opérateur.

1.2.2 Equation de la chaleur en domaine borné

1.2.2.1 Modélisation pour la condition aux limites

On revient à la modélisation par une particule se déplaçant sur la grille $\{k \Delta x\}_{k \in \mathbb{Z}}$, et on suppose maintenant que la particule ne se déplace pas dans tout \mathbb{R} , mais seulement dans un domaine borné, qu'on choisit, sans perte de généralité, sous la forme $\Omega = (0,1)$. On suppose qu'il existe $K \in \mathbb{N}$ tel que $K \Delta x = 1$, et que la particule est initialement dans Ω (et pas sur son bord!). Il faut donc maintenant faire des choix concernant les particules qui atteignent le bord de Ω , i.e. les positions k = 1 et k = K - 1. Différents choix sont possibles :

— une première option consiste à dire que toute particule qui atteint le bord disparait : lorsque la particule est en k=1 au temps n, elle peut sauter à droite avec probabilité 1/2 (et les itérations en temps se poursuivent), ou bien sauter à gauche avec probabilité 1/2, et dans ce cas elle disparait. Par conséquent, la probabilité de présence au bord est nulle : P(n, k=0) = P(n, k=K) = 0 pour tout n > 0. La loi d'évolution est alors (1.5) pour tout $2 \le k \le K - 2$. Au niveau du bord gauche, on a

$$P(n+1, k=1) = \frac{1}{2}P(n, k+1),$$

car la seule façon d'arriver en k=1 est d'avoir été en k=2 et d'avoir fait un saut vers la gauche (ce qui se produit avec probabilité 1/2); de même, pour le bord droit, on écrit

$$P(n+1, k = K-1) = \frac{1}{2}P(n, k-1).$$

En prenant la convention P(n,k=0)=P(n,k=K)=0, les deux règles ci-dessus se réécrivent comme (1.5) pour tout $1\leq k\leq K-1$. En passant à la limite Δt et Δx vers 0, on va retrouver la relation (1.9) pour tout t>0 et $x\in(0,1)$, avec les conditions u(t,x=0)=u(t,x=1)=0 pour tout t>0, conséquence de P(n,k=0)=P(n,k=K)=0. On trouve donc l'équation de la chaleur avec conditions aux limites de Dirichlet homogènes :

$$\partial_t u = \frac{\alpha}{2} \, \partial_{xx} u \, \text{dans } \Omega, \qquad u(t, \cdot) = 0 \, \text{sur } \partial \Omega.$$

— une seconde option consiste à dire que toute particule qui atteint le bord est renvoyée vers l'intérieur du domaine avec probabilité 1/2. Lorsque la particule est en k=0 au temps n, alors, au temps n+1, elle peut rester en k=0 (avec probabilité 1/2), ou bien elle peut aller en k=1 (avec probabilité 1/2 aussi). La loi d'évolution est alors (1.5) pour tout $1 \le k \le K-1$. Au niveau du bord gauche, on a

$$P(n+1,k=0) = \frac{1}{2}P(n,k=0) + \frac{1}{2}P(n,k=1),$$

car la seule façon d'arriver en k=0 est d'avoir été en k=1 et d'avoir fait un saut vers la gauche (ce qui se produit avec probabilité 1/2), ou d'avoir été au bord à l'instant d'avant et d'y être resté; on a bien sûr une relation analogue pour le bord droit.

En passant à la limite Δt et Δx vers 0 dans (1.5), on va retrouver la relation (1.9) pour tout t > 0 et $x \in (0,1)$. La condition aux limites est obtenue en voyant que la relation ci-dessus implique

$$P(n+1, k=0) - P(n, k=0) = \frac{1}{2} (P(n, k=1) - P(n, k=0)).$$

Le lien (1.7) entre P et u donne

$$\Delta t \, \partial_t u(t,0) = \frac{\Delta x}{2} \, \partial_x u(t,0).$$

En utilisant le scaling diffusif (1.4), ceci s'écrit

$$\frac{(\Delta x)^2}{\alpha} \, \partial_t u(t,0) = \frac{\Delta x}{2} \, \partial_x u(t,0),$$

ce qui donne $\partial_x u(t,0) = 0$ en passant à la limite $\Delta x \to 0$ et en gardant le terme dominant. On obtient ainsi l'équation de la chaleur avec conditions aux limites de Neumann homogènes :

$$\partial_t u = \frac{\alpha}{2} \, \partial_{xx} u \, \text{dans } \Omega, \qquad \partial_x u(t,\cdot) = 0 \, \text{sur } \partial \Omega.$$

On vient donc de comprendre la signification des conditions aux limites de Dirichlet et de Neumann homogènes, dans le cas où u représente la concentration d'une espèce (polluant, goutte d'encre, . . .) diffusant dans son milieu. Nous avons raisonné en dimension d=1, mais l'interprétation des conditions aux limites reste bien sûr valable en dimension d quelconque.

Lorsque le problème modélise l'évolution de la température, la condition u=0 (ou de manière plus générale $u=u_0$) sur $\partial\Omega$ s'interprête bien sûr comme le fait qu'on impose la température au bord du domaine. La condition $n\cdot\nabla u=0$ sur $\partial\Omega$ (qui est la généralisation multidimensionelle de $\partial_x u=0$) consiste à écrire que le flux de chaleur $q=-\nabla u$ (cf. la discussion au début de la section 1.2) a une composante normale nulle sur $\partial\Omega$ (ou imposée à une certaine valeur τ si on travaille avec $n\cdot\nabla u=\tau$), ce qui correspond à un domaine isolé thermiquement de l'extérieur.

On reviendra sur ces questions de conditions aux limites quand on abordera la mécanique des solides (cf. le chapitre 3). On verra alors aussi des conditions aux limites mixtes, au sens de type Dirichlet sur une partie de $\partial\Omega$ et de Neumann sur le reste de $\partial\Omega$, ce qui aura beaucoup de sens dans ce cadre.

1.2.2.2 Propriétés qualitatives

Dans toute la suite de cette section 1.2.2, on s'intéresse à l'équation de la chaleur dans le domaine borné Ω , qu'on munit de conditions aux limites de type Dirichlet homogènes (mais le même type de raisonnement s'applique pour d'autres conditions aux limites, comme par exemple des conditions aux limites de type Neumann homogènes) :

$$\begin{cases}
\partial_t u - \Delta u = f & \text{pour tout } t > 0, \text{ dans } \Omega, \\
u(0) = g & \text{dans } \Omega, \\
u(t, \cdot) = 0 & \text{pour tout } t > 0, \text{ sur } \partial \Omega.
\end{cases}$$
(1.33)

On va ici retrouver les propriétés qualitatives obtenues dans le cas où l'équation est posée dans tout l'espace \mathbb{R}^d , avec des arguments plus ou moins techniques (on renvoie à [2] pour certaines preuves). Commençons par les effets régularisants :

Théorème 20 (Effet régularisant avec $f \equiv 0$). On suppose que Ω est un ouvert borné de \mathbb{R}^d , de classe C^{∞} . Soit $g \in L^2(\Omega)$ une condition initiale et u l'unique solution de (1.33) avec $f \equiv 0$. Alors, pour tout $0 < \varepsilon < T$, on a

$$u \in C^{\infty}([\varepsilon; T] \times \overline{\Omega}).$$

Remarque 21. La continuité étant une propriété locale, le résultat ci-dessus indique donc que $u \in C^{\infty}(]0;T] \times \overline{\Omega})$. La manière avec laquelle est énoncé le théorème 20 est en fait un artefact de la preuve, qui consiste à montrer que, pour tout $\varepsilon > 0$, la fonction u est dans l'espace $H^r(]\varepsilon;T[\times\Omega)$ pour tout $r \geq 0$, puis à invoquer les injections de Sobolev pour en déduire que $u \in C^{\infty}([\varepsilon;T]\times\overline{\Omega})$.

Le théorème 20 est à rapprocher du théorème 14, mais sa preuve est plus difficile. On peut aussi obtenir la régularité jusqu'à t=0 (i.e. sur $[0;T]\times\overline{\Omega}$) ou avec un terme source $f\neq 0$, ce qui est évidemment encore plus délicat à obtenir que le théorème 20.

On a aussi des résultats de type "principe du maximum", à rapprocher du théorème 16 :

Théorème 22 (Principe du maximum faible). Soient Ω un ouvert borné de \mathbb{R}^d , T > 0, $g \in L^2(\Omega)$, $f \in L^2(]0; T[, L^2(\Omega))$, et u l'unique solution de (1.33). Si $f \geq 0$ presque partout dans $[0; T] \times \Omega$ et $g \geq 0$ presque partout dans Ω , alors $u \geq 0$ presque partout dans $[0; T] \times \Omega$.

Remarque 23. Le fait que u reste positive ou nulle lorsque les données sont positives ou nulles est important physiquement, par exemple si u représente une température, g la température initiale et f les sources de chaleur. En présence de sources de chaleur et si la température initiale est positive, on s'attend à ce qu'elle le reste (attention, localement, la température à l'instant t peut devenir plus petite qu'initialement, en particulier aux points x pour lesquels la température initiale était maximale : il ne faut donc pas s'attendre à ce que $u(t,x) \geq g(x)$ pour tout t > 0).

Voici maintenant un résultat plus précis quand $f\equiv 0$ et qui traduit l'existence d'une propagation à vitesse infinie : même si la condition initiale s'annule à certains endroits à l'intérieur de Ω , la solution u vérifie u(t,x)>0 pour tout t>0 et $x\in\Omega$.

Théorème 24 (Propagation à vitesse infinie). Soit Ω un ouvert borné régulier $de \mathbb{R}^d$, un temps final T > 0 et une fonction $g \in L^2(\Omega)$ telle que $g \neq 0$ et $g \geq 0$ presque partout. Alors la solution u de (1.33) avec $f \equiv 0$ vérifie

$$\forall x \in \Omega, \qquad u(t, x) > 0$$

pour tout temps t > 0.

Ce résultat est à rapprocher du théorème 15, dont la démonstration était très simple. Dans le cas présent, la démonstration du théorème 24 est complexe et repose sur une inégalité de type Harnack parabolique, ou une formule de la moyenne parabolique. On renvoie à [3] pour plus de détails.

Discutons maintenant le comportement asymptotique de la solution, dans le cas où le second membre f ne dépend pas du temps.

Théorème 25 (Comportement asymptotique, f indépendant de t). Soit Ω un ouvert borné régulier de \mathbb{R}^d , $g \in L^2(\Omega)$ et $u \in C^0([0;T],L^2(\Omega))$ l'unique solution de (1.33). On suppose que f est indépendant du temps. Alors on a

$$\lim_{t \to \infty} ||u(t) - v||_{L^2(\Omega)} = 0,$$

où v est l'unique solution dans $H^1_0(\Omega)$ du problème $-\Delta v = f$. On note que cette limite est indépendante de la condition initiale g.

Dans le cas où f est identiquement nul, on obtient un résultat comparable au théorème 17.

Démonstration. On introduit w(t) = u(t) - v, qui vérifie le problème

$$\left\{ \begin{array}{ll} \partial_t w - \Delta w = 0 & \quad \text{pour tout } t > 0, \, \text{dans } \Omega, \\ w(0) = g - v & \quad \text{dans } \Omega, \\ w(t, \cdot) = 0 & \quad \text{pour tout } t > 0, \, \text{sur } \partial \Omega. \end{array} \right.$$

On considère la première ligne du problème, on multiplie par w, on intègre sur Ω (et on utilise une intégration par partie sur le second terme en utilisant la condition de nullité au bord) :

$$\frac{1}{2}\partial_t \int_{\Omega} w^2 + \int_{\Omega} |\nabla w|^2 = 0 \quad \text{pour tout } t > 0.$$

On utilise ensuite l'inégalité de Poincaré sur Ω : il existe $\lambda>0$ tel que

$$\forall q \in H_0^1(\Omega), \qquad \|q\|_{L^2(\Omega)} \le \lambda \|\nabla q\|_{L^2(\Omega)}.$$

Puisque $w(t,\cdot) \in H_0^1(\Omega)$, on en déduit que, pour tout t > 0,

$$\partial_t \int_{\Omega} w^2 = -2 \int_{\Omega} |\nabla w|^2 \le -\frac{2}{\lambda^2} \int_{\Omega} w^2.$$

On peut alors appliquer le lemme de Gronwall, ce qui donne que, pour tout t>0,

$$\int_{\Omega} w^2(t,\cdot) \le \exp(-2t/\lambda^2) \int_{\Omega} w^2(t=0,\cdot),$$

et donc

$$||w(t)||_{L^2(\Omega)} \le \exp(-t/\lambda^2) ||w(t=0)||_{L^2(\Omega)} = \exp(-t/\lambda^2) ||g-v||_{L^2(\Omega)},$$

ce qui implique directement le résultat souhaité.

Remarque 26. On notera que la vitesse de décroissance de u(t) vers sa limite en temps infini est gouvernée par la constante de Poincaré dans Ω (quantité qui est reliée à la première valeur propre du laplacien dans Ω au vu de l'exercice 29).

Remarque 27. Le comportement décrit par le théorème 25 est à nouveau caractéristique des équations paraboliques. Le même raisonnement formel aboutit à une conclusion fausse dans le cas de l'équation des ondes. Considérons en effet le problème $\partial_{tt}u - \Delta u = f$ dans Ω , avec des conditions initiales adéquates, et la condition aux limites $u(t,\cdot) = 0$ sur $\partial\Omega$ pour tout t>0. En supposant f indépendant du temps, il est tentant d'introduire à nouveau l'unique solution $v \in H^1_0(\Omega)$ du problème $-\Delta v = f$. Dans le cas de l'équation des ondes, la solution u(t) ne s'approche pas de v lorsque $t\to 0$. Le comportement de u(t) est plutôt un comportement oscillant autour de v (cf. la section 1.5.2.1), et non pas un comportement dissipatif vers v comme formalisé par le théorème 25.

1.2.2.3 Approche spectrale

On propose dans cette section (sous la forme d'une série d'exercices) une méthode permettant d'écrire de manière "explicite" la solution de (1.33). On va utiliser pour cela un outil, l'approche spectrale (quelques rappels sont rassemblés au chapitre 10), qui remplace dans le cadre présent d'un problème posé sur un ouvert borné Ω l'outil de la transformée de Fourier qu'on a utilisé lorsqu'on travaillait dans tout l'espace \mathbb{R}^d .

On se donne un temps final T>0 et on cherche une solution de (1.33) dans l'espace $L^2(]0;T[,H^1_0(\Omega))\cap C^0([0;T],L^2(\Omega))$. On considère la famille $(w_k)_{k\geq 1}\subset H^1_0(\Omega)$ des fonctions propres du Laplacien avec conditions de Dirichlet au bord de Ω (cf. le théorème 64 du chapitre de rappel 10):

$$-\Delta w_k = \lambda_k \, w_k,\tag{1.34}$$

où les λ_k sont les valeurs propres du Laplacien de Dirichlet (on rappelle que l'opérateur $(-\Delta)^{-1}$ est un opérateur compact et auto-adjoint de $L^2(\Omega)$ dans $L^2(\Omega)$). On normalise les vecteurs propres par la condition $\int_{\Omega} w_k \, w_\ell = \delta_{k\ell}$ et il est facile de voir que $\int_{\Omega} \nabla w_k \cdot \nabla w_\ell = \lambda_k \, \delta_{k\ell}$. Par ailleurs, on sait que les $(w_k)_{k\geq 1}$ forment une base de $L^2(\Omega)$.

Exercice 28. Dans le cas $\Omega =]0,1[$ (et ceci se généralise en dimension d > 1 pour des pavés), montrer qu'on a $w_k(x) = \sqrt{2} \sin(k\pi x)$ et $\lambda_k = (k\pi)^2$ pour tout $k \geq 1$. On voit donc que la première valeur propre est simple, et que la fonction propre associée a un signe. Il en est de même pour le laplacien avec conditions aux limites de Neumann, pour lesquel on a $w_k(x) = \sqrt{2} \cos(k\pi x)$ et $\lambda_k = (k\pi)^2$ pour tout $k \geq 0$.

Exercice 29. Etablir une relation entre la plus petite constante C_{Ω} possible dans l'inégalité de Poincaré, i.e. la plus petite constante C_{Ω} telle que

$$\forall q \in H_0^1(\Omega), \qquad \|q\|_{L^2(\Omega)} \le C_\Omega \|\nabla q\|_{L^2(\Omega)},$$

et la première valeur propre λ_1 de (1.34).

On revient maintenant au problème de la chaleur (1.33). Comme on cherche sa solution u dans $C^0([0;T],L^2(\Omega))$, on peut écrire, pour tout t,

$$u(t) = \sum_{k \ge 1} \alpha_k(t) \, w_k$$

avec
$$\alpha_k(t) = \int_{\Omega} u(t) w_k$$
.

Exercice 30. En testant l'équation de la chaleur contre w_k , montrer que chaque α_k est solution du problème

$$\left\{ \begin{array}{rl} \alpha_k'(t) + \lambda_k \, \alpha_k(t) &= \beta_k(t) & dans \]0; T[, \\ \alpha_k(0) &= \alpha_k^0, \end{array} \right.$$

36

$$\beta_k(t) = \int_{\Omega} f(t) w_k, \qquad \alpha_k^0 = \int_{\Omega} g w_k.$$

Il s'agit pour chaque k d'une équation différentielle ordinaire (et il y a un découplage complet entre les différentes valeurs de k). Montrer que l'unique solution du problème ci-dessus est

$$\alpha_k(t) = \alpha_k^0 e^{-\lambda_k t} + \int_0^t \beta_k(s) e^{-\lambda_k(t-s)} ds.$$

Ainsi, on trouve que u s'écrit (au moins de manière formelle)

$$u(t) = \sum_{k>1} e^{-\lambda_k t} \langle g, w_k \rangle w_k + \int_0^t \sum_{k>1} e^{-\lambda_k (t-s)} \langle f(s), w_k \rangle w_k ds, \qquad (1.35)$$

où $\langle \cdot, \cdot \rangle$ est le produit scalaire dans $L^2(\Omega)$.

Il est maintenant utile d'introduire l'opérateur U(t), agissant sur $L^2(\Omega)$ et défini par

$$U(t)g = \sum_{k>1} e^{-\lambda_k t} \langle g, w_k \rangle w_k$$

pour tout $g \in L^2(\Omega)$. On sait que $\lambda_k \geq 0$ pour tout k, et donc, pour tout t > 0, on a

$$\begin{split} \|U(t)g\|_{L^2(\Omega)}^2 &= \sum_{k\geq 1} e^{-2\lambda_k t} |\langle g, w_k \rangle|^2 \, \|w_k\|_{L^2(\Omega)}^2 \quad \text{[orthogonalit\'e des w_k]} \\ &\leq \sum_{k\geq 1} |\langle g, w_k \rangle|^2 \quad \text{[les w_k sont normalis\'es et $\lambda_k \geq 0$]} \\ &= \|g\|_{L^2(\Omega)}^2, \quad \text{[Parseval]} \end{split}$$

ce qui donne bien le fait que $U(t)g \in L^2(\Omega)$. La formule (1.35) s'écrit alors

$$u(t) = U(t)g + \int_0^t U(t-s)f(s) \, ds, \tag{1.36}$$

expression à rapprocher de (1.30). On peut montrer que cette formule fournit bien une fonction $u \in L^2(]0; T[, H^1_0(\Omega)) \cap C^0([0; T], L^2(\Omega))$, ce qui permet d'obtenir l'existence et l'unicité de la solution à (1.33).

Exercice 31. En utilisant l'expression (1.35), donner une nouvelle preuve du théorème 25.

Solution. On utilise l'expression (1.35) de la solution de (1.33). Dans le cas présent où f est indépendant du temps, on a

$$u(t) = \sum_{k \ge 1} e^{-\lambda_k t} \langle g, w_k \rangle w_k + \sum_{k \ge 1} \langle f, w_k \rangle w_k \int_0^t e^{-\lambda_k (t-s)} ds$$
$$= \sum_{k \ge 1} e^{-\lambda_k t} \langle g, w_k \rangle w_k + \sum_{k \ge 1} \langle f, w_k \rangle w_k \frac{1 - e^{-\lambda_k t}}{\lambda_k}.$$

οù

En testant la formulation variationnelle associée à l'équation définissant v avec la fonction test w_k , on trouve

$$\langle f, w_k \rangle = \int_{\Omega} \nabla v \cdot \nabla w_k = \lambda_k \int_{\Omega} v \, w_k = \lambda_k \, \langle v, w_k \rangle,$$

où on a utilisé à la deuxième égalité la définition de w_k . En insérant ceci dans l'expression de u(t), on obtient donc

$$u(t) = \sum_{k>1} e^{-\lambda_k t} \langle g, w_k \rangle w_k + \sum_{k>1} \langle v, w_k \rangle w_k \left(1 - e^{-\lambda_k t} \right),$$

et donc, en utilisant la décomposition $v = \sum_{k>1} \langle v, w_k \rangle w_k$, on a

$$u(t) - v = \sum_{k>1} e^{-\lambda_k t} \langle g - v, w_k \rangle w_k,$$

d'où

$$\begin{aligned} \|u(t) - v\|_{L^{2}(\Omega)}^{2} &= \sum_{k \geq 1} e^{-2\lambda_{k}t} |\langle g - v, w_{k} \rangle|^{2} \\ &\leq e^{-2\lambda_{1}t} \sum_{k \geq 1} |\langle g - v, w_{k} \rangle|^{2} = e^{-2\lambda_{1}t} \|g - v\|_{L^{2}(\Omega)}^{2}, \end{aligned}$$

d'où le résultat. On remarque aussi que, dans le cas particulier où g = v, l'inégalité ci-dessus indique que u(t) = v pour tout t, ce qui est bien sûr la solution de (1.33) dans ce cas très particulier.

1.2.2.4 Schémas numériques

On a mis en exergue ci-dessus plusieurs propriétés qualitatives de l'équation de la chaleur (1.33). Il est donc normal, lorsqu'on construit des schémas numériques, de se demander si ceux-ci vérifient les mêmes propriétés qualitatives (qui sont souvent au fond des propriétés physiques fondamentales). Afin de rester dans un cadre simple, on revient à une situation mono-dimensionelle, et on discrétise le problème sur $\Omega=]0,1[$ par la méthode la plus simple, c'est-à-dire la méthode des différences finies. On considère donc le problème

$$\partial_t u = \alpha \, \partial_{xx} u,\tag{1.37}$$

avec $\alpha>0$, on utilise le pas de temps Δt et le pas d'espace Δx avec $1=(N+1)\,\Delta x$ pour un certain $N\in\mathbb{N}$. Dans la suite, u_j^n est l'approximation de $u(n\,\Delta t,j\,\Delta x)$. On va considérer trois schémas en temps. Avant cela, on rappelle la notion de stabilité d'un schéma.

Soit $1 \le p < \infty$. Pour tout $U := (u_j)_{1 \le j \le N} \in \mathbb{R}^N$, on définit la norme

$$||U||_p = \left(\sum_{j=1}^N \Delta x \, |u_j|^p\right)^{1/p},$$

qui a pour objectif de ressembler à $||u||_{L^p(\Omega)}$. Dans le cas $p=\infty$, on définit naturellement

$$||U||_{\infty} = \max_{1 \le j \le N} |u_j|,$$

ce qui là aussi ressemble à $||u||_{L^{\infty}(\Omega)}$.

Définition 32. Soit $1 \leq p \leq \infty$. Un schéma aux différences finies est dit inconditionnellement stable pour la norme L^p s'il existe une constante C, indépendante de Δt et de Δx , telle que

$$\forall n \in \mathbb{N}, \quad \|U^n\|_p \le C \|U^0\|_p \tag{1.38}$$

quelle que soit la donnée initiale U^0 .

Si (1.38) n'a lieu que pour des pas Δt et Δx astreints à certaines inégalités, on dit que le schéma est conditionnellement stable.

Remarque 33. La stabilité par rapport à une norme n'implique pas la stabilité par rapport à d'autres normes, même si toutes les normes sont équivalentes en dimension finie. Il existe des schémas qui sont stables par rapport à une norme mais qui ne le sont pas par rapport à une autre. En effet, le point crucial est que la majoration (1.38) est uniforme par rapport à Δx et Δt .

Remarque 34. Bien sûr, la notion de stabilité n'est utile que pour des EDP telles que la solution exacte vérifie $||u(t,\cdot)||_{L^p(\Omega)} \leq C||u(0,\cdot)||_{L^p(\Omega)}$.

Commençons par le schéma d'Euler explicite, qui consiste à discrétiser (1.37) par

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} - \alpha \frac{u_{j-1}^n - 2u_j^n + u_{j+1}^n}{(\Delta x)^2} = 0.$$
 (1.39)

Théorème 35. On considère l'équation de la chaleur (1.37), munie de conditions aux limites de Dirichlet homogènes. On discrétise cette équation par le schéma d'Euler explicite (1.39). Ce schéma est stable en norme L^{∞} si et seulement si la condition

$$2\alpha \Delta t \le (\Delta x)^2 \tag{1.40}$$

est satisfaite. On appelle la condition (1.40) la condition de Courant-Friedrich-Lewy ou condition CFL.

Pour la petite histoire, la condition de stabilité (1.40) fut découverte en 1928 (avant l'apparition des premiers ordinateurs!).

Remarque 36. Le schéma d'Euler explicite (1.39) est stable en norme L^2 si et seulement si la même condition (1.40) est satisfaite. On peut montrer ceci en utilisant la transformée de Fourier discrète (analyse de stabilité de von Neumann).

Remarque 37. Il n'est pas étonnant qu'il y ait une borne inférieure sur la valeur de Δx pour que le schéma soit stable. Sinon, on pourrait faire tendre Δx vers 0 (à Δt fixé), et le schéma (1.39) deviendrait

$$\frac{u^{n+1} - u^n}{\Delta t} - \alpha \, \partial_{xx} u^n = 0.$$

Dans cette équation, on remarque qu'on perd de la régularité à chaque pas de temps : si $u^n \in H^2(\Omega)$, alors $u^{n+1} \in L^2(\Omega)$, etc, d'où l'instabilité du schéma.

Démonstration du théorème 35. Le schéma d'Euler explicite (1.39) peut se réécrire sous la forme

$$u_j^n = \alpha \frac{\Delta t}{(\Delta x)^2} u_{j-1}^{n-1} + \left(1 - 2\alpha \frac{\Delta t}{(\Delta x)^2}\right) u_j^{n-1} + \alpha \frac{\Delta t}{(\Delta x)^2} u_{j+1}^{n-1}.$$
 (1.41)

Si la condition CFL est vérifiée, alors (1.41) montre que u_j^n est une combinaison linéaire convexe des valeurs u_{j-1}^{n-1} , u_j^{n-1} et u_{j+1}^{n-1} au temps précédent. En effet, tous les coefficients dans le membre de droite de (1.41) sont positifs et leur somme vaut 1.

Si la donnée initiale U^0 est bornée par deux constantes m et M telles que

$$\forall 0 \le j \le N+1, \quad m \le u_i^0 \le M,$$

alors une récurrence facile montre que les mêmes inégalités restent vraies pour tous les temps ultérieurs :

$$\forall 0 \le j \le N+1, \quad \min(0,m) \le u_j^n \le \max(0,M)$$

en prenant en compte les conditions aux limites de Dirichlet (on n'a pas forcément u^0 nul au bord; par contre, u^1 est nul au bord et se calcule à partir de u^0 et de valeurs nulles pour $j \leq 0$ et $j \geq N+1$). On a donc bien $\max_{0 \leq j \leq N+1} |u_j^n| \leq \|U^0\|_{\infty}, \text{ et la stabilité } L^{\infty}.$

Réciproquement, supposons que la condition CFL ne soit pas vérifiée, c'est-à-dire que

$$2 \alpha \Delta t > (\Delta x)^2$$
.

On écrit le schéma d'Euler explicite de manière compacte sous la forme $U^n=M\,U^{n-1}$, où la matrice M vaut

$$M = \begin{pmatrix} 1 - 2c & c & 0 & \cdots & 0 \\ c & 1 - 2c & c & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & c & 1 - 2c & c \\ 0 & \cdots & 0 & c & 1 - 2c \end{pmatrix}$$

avec $c = \alpha \Delta t/(\Delta x)^2 > 1/2$, et où $U^n \in \mathbb{R}^N$ est le vecteur des degrés de liberté internes (on n'y met pas les deux degrés de liberté sur le bord du domaine, qui sont de toute façon fixés par les conditions aux limites). Pour certaines données initiales, le schéma n'est pas stable :

Considérons le vecteur

$$\forall 1 \le j \le N, \quad \xi_j = (-1)^j$$

qui vérifie $\xi^T \xi = N$.

— On a

$$M \xi = (3c - 1, 1 - 4c, 4c - 1, \dots)^T$$

et donc
$$\xi^T M \xi = 2(1 - 3c) + (N - 2)(1 - 4c)$$
.

— On calcule que

$$-\frac{\xi^T M \, \xi}{\xi^T \xi} = (4c-1) \frac{N-2 + 2(3c-1)/(4c-1)}{N}.$$

— Puisque 2c > 1, on a 4c-1 > 1. Donc il existe $N_0(c)$ tel que, si $N \ge N_0(c)$ (c'est à dire si $\Delta x \le \Delta x_0(c)$), alors

$$-\frac{\xi^T M \, \xi}{\xi^T \xi} > 1,$$

ce qui signifie que la plus petite valeur propre de ${\cal M}$ vérifie

$$\lambda_{\min} = \inf_{U \in \mathbb{R}^N} \frac{U^T M \, U}{U^T U} \leq \frac{\xi^T M \, \xi}{\xi^T \xi} < -1.$$

— Pour $U^0 = U_{\min}$ (vecteur propre associé à la valeur propre λ_{\min}), on a $U^n = \lambda_{\min}^n U^0$ et donc on a $|u_j^n| = |\lambda_{\min}|^n |u_j^0| \underset{n \to +\infty}{\longrightarrow} +\infty$ pour tout $1 \le j \le N$.

Le schéma n'est donc pas stable en norme L^{∞} .

On considère maintenant le schéma d'Euler implicite, qui consiste à discrétiser (1.37) par

$$\frac{u_j^n - u_j^{n-1}}{\Delta t} - \alpha \frac{u_{j-1}^n - 2u_j^n + u_{j+1}^n}{(\Delta x)^2} = 0.$$
 (1.42)

On peut montrer le résultat suivant :

Théorème 38. On considère l'équation de la chaleur (1.37), munie de conditions aux limites de Dirichlet homogènes. On discrétise cette équation par le schéma d'Euler implicite (1.42). Ce schéma est stable en norme L^{∞} quels que soient les pas de temps Δt et d'espace Δx (le schéma d'Euler implicite est donc inconditionnellement stable en norme L^{∞}).

La preuve repose sur l'argument suivant. Sans perte de généralité, on peut supposer que la condition initiale U^0 vérifie

$$\forall 1 \leq j \leq N, \quad m \leq u_i^0 \leq M$$

pour deux constantes $m \leq 0 \leq M$. On peut alors montrer (par récurrence) que, pour tout $n \in \mathbb{N}^*$,

$$\forall 1 \le j \le N, \quad m \le u_i^n \le M,$$

et ceci sans aucune condition sur Δt et Δx .

Remarque 39. Dans l'esprit de la remarque 37, on voit que, dans la limite $\Delta x \to 0$ à Δt fixé, le schéma (1.42) devient

$$\frac{u^{n+1} - u^n}{\Delta t} - \alpha \, \partial_{xx} u^{n+1} = 0,$$

ce qui est un problème bien posé. Cette observation est consistante avec le fait qu'il n'y a pas de condition CFL pour le schéma d'Euler implicite.

Remarque 40. Pour intégrer l'équation de la chaleur, on peut donc choisir entre :

- le schéma d'Euler explicite, qui va nécessiter de petits pas de temps (pour respecter la condition CFL), mais dont chaque pas de temps peut être résolu en un coût calcul très faible,
- et le schéma d'Euler implicite, pour lequel on peut prendre de plus grands pas de temps, mais dont chaque pas de temps nécessite l'inversion d'une matrice (et donc un coût calcul plus élevé).

Le choix entre l'un ou l'autre des schémas dépend de la situation, il n'y a pas de choix uniformément meilleur.

On termine par un schéma centré (dit schéma de Richardson), qui consiste à discrétiser (1.37) par

$$\frac{u_j^{n+1} - u_j^{n-1}}{2\Delta t} - \alpha \frac{u_{j-1}^n - 2u_j^n + u_{j+1}^n}{(\Delta x)^2} = 0.$$

On a donc approché la dérivée en temps selon $\partial_t u(t_n,x_j) \approx \frac{u_j^{n+1} - u_j^{n-1}}{2\Delta t}$, ce qui aboutit à un schéma complètement symétrique dans les variables n et j. En considérant des conditions aux limites périodiques, i.e. u(t,x=0) = u(t,x=1) pour tout t, et en utilisant l'analyse de stabilité de von Neumann (par transformée de Fourier discrète), on peut montrer que le schéma est inconditionnellement instable en norme L^2 (il est instable pour tous les choix de pas de temps et d'espace!).

1.3 Equation de transport

On se restreint ici au cas d'une équation posée dans tout l'espace \mathbb{R}^d , avec une condition initiale régulière, et lorsque le second membre est nul (problème homogène). On renvoie au chapitre 9 (et en particulier à la section 9.1) pour le cas (toujours dans \mathbb{R}^d) d'une condition initiale moins régulière, ou bien d'un second membre non nul. L'étude est techniquement plus compliquée, mais les mêmes conclusions qualitatives demeurent. Le cas de l'équation de transport posé dans un domaine borné est brièvement évoqué ci-dessous.

1.3.1 Problème continu

On s'intéresse donc ici à l'équation de transport dans tout l'espace \mathbb{R}^d :

$$\partial_t u + b \cdot \nabla_x u = 0, \tag{1.43}$$

où b est un vecteur fixe de \mathbb{R}^d (pris pour simplifier indépendant de x et t). Ce type d'équations modélise le transport (par un flot de vitesse b) d'espèces chimiques. La fonction u représente la concentration de ces espèces, fonction du temps et de l'espace. On retrouvera aussi plus tard cette équation, quand on s'intéressera (en physique statistique) à l'évolution de la distribution de particules évoluant suivant une dynamique hamiltonienne (cf. par exemple l'équation de Liouville (4.10)).

Supposons que u est une fonction régulière. On remarque alors que (1.43) signifie qu'une certaine dérivée de u s'annule. Soit $(t,x) \in \mathbb{R} \times \mathbb{R}^d$ fixé. Introduisons la fonction auxilliaire z(s) = u(t+s,x+sb). Alors (1.43) signifie que z'(s) = 0, donc que $s \mapsto u(t+s,x+sb)$ est une fonction constante sur tout \mathbb{R} . Ainsi, pour chaque point $(t,x) \in \mathbb{R} \times \mathbb{R}^d$, u est constante sur la droite de direction $(1,b) \in \mathbb{R}^{d+1}$ passant par (t,x). La fonction régulière u est donc connue partout pourvu que l'on connaisse u sur au moins un point de chacune de ces droites (c'est la méthode des caractéristiques).

Considérons alors le problème avec condition initiale régulière $g \in C^1(\mathbb{R}^d)$:

$$\begin{cases}
\partial_t u(t,x) + b \cdot \nabla_x u(t,x) = 0, & (t,x) \in (0,\infty) \times \mathbb{R}^d, \\
u(0,x) = g(x), & x \in \mathbb{R}^d.
\end{cases}$$
(1.44)

Les arguments précédents montrent que la fonction u définie sur $[0,\infty)\times\mathbb{R}^d$ par

$$u(t,x) := g(x - bt) \tag{1.45}$$

est l'unique solution de (1.44) dans $C^1([0,\infty)\times\mathbb{R}^d)$. Notons que la formule (1.45) décrit une *onde progressive*, avançant dans la direction b à la vitesse $|b|_{\mathbb{R}^d}$. La propagation a lieu à vitesse finie, à la différence de l'équation de la chaleur (cf. la section 1.1.4 et les théorèmes 15 et 24).

On remarque aussi que, pour tout t > 0, la fonction $x \mapsto u(t,x)$ a exactement la même régularité que la condition initiale : l'équation de transport n'a pas d'effet régularisant, à la différence de l'équation de la chaleur (cf. les théorèmes 14 et 20).

Lorsqu'on travaille dans un ouvert Ω borné, il faut imposer des conditions aux limites. Il faut alors distinguer les points x de $\partial\Omega$ pour lesquels b pointe vers l'intérieur du domaine (i.e. les points $x \in \partial\Omega$ tels que $b(x) \cdot n(x) < 0$, où n(x) est le vecteur normal sortant ; ce sont les points de flot entrant) et les points x de $\partial\Omega$ pour lesquels b pointe vers l'extérieur du domaine (i.e. les points $x \in \partial\Omega$ tels que $b(x) \cdot n(x) > 0$; ce sont les points de flot sortant). En particulier, on ne peut pas imposer de conditions aux limites sur l'ensemble de $\partial\Omega$ (penser à deux points reliés par une caractéristique : la connaissance de u en un point

impose la valeur de u en l'autre point). On renvoie à l'exercice 41 pour une illustration en dimension d=1. Imposer les conditions aux limites est donc une opération délicate, puisqu'on ne peut imposer les valeurs de u (ou de certaines de ses dérivées spatiales) qu'en les points entrants.

Exercice 41. On considère le problème d'advection en dimension d=1 donné par $\partial_t u + b \, \partial_x u = 0$ pour une vitesse b>0 constante. On note $u_0 \in C^1$ la condition initiale.

- 1. On suppose que $\Omega = \mathbb{R}$. Trouver une solution de classe C^1 au problème.
- 2. On suppose maintenant que Ω = (0,1) et que u₀ = 0. La forme de la solution trouvée dans la question précédente suggère que, si on souhaite fixer la valeur de la solution au bord, il faut faire cela au bord gauche en imposant u(t,0) = f(t) pour une certaine fonction f ∈ C¹(R₊) vérifiant f(0) = 0 et telle que f'(0) = 0. Dans ce cadre, trouver une solution de classe C¹ au problème.

1.3.2 Schémas numériques

On se place en dimension un d'espace, dans l'ouvert $\Omega = (0,1)$. Nous considérons l'équation de transport (ou d'advection) suivante :

$$\begin{cases} \partial_t u + V \, \partial_x u = 0, & \text{dans } \mathbb{R}_+^* \times \Omega, \\ u(t,0) = u(t,1), & \text{pour tout } t \in \mathbb{R}_+^* \text{ (conditions aux limites périodiques),} \\ u(0,x) = u^0(x), & \text{pour tout } x \in \Omega \text{ (condition initiale),} \end{cases}$$

$$(1.46)$$

avec une vitesse $V \in \mathbb{R} \setminus \{0\}$ constante et uniforme et une condition initiale u^0 . Pour simplifier, nous supposerons que V > 0 (des résultats analogues peuvent être obtenus sans difficulté pour V < 0). Le but de cette section d'étudier plusieurs schémas aux différences finies explicites pour cette équation.

Le terme de dérivée en temps sera toujours approché à l'aide de la formule

$$\partial_t u(t_n, x_j) \approx \frac{u_j^{n+1} - u_j^n}{\Delta t}.$$

Nous allons considérer trois types de schémas, qui correspondent à trois manières d'approcher le terme $V \, \partial_x u$:

— Le schéma $explicite \ centr\'e$:

$$V \partial_x u(t_n, x_j) \approx V \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x},$$

ce qui aboutit au schéma

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + V \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} = 0.$$
 (1.47)

— Le schéma explicite décentré aval :

$$V \partial_x u(t_n, x_j) \approx V \frac{u_{j+1}^n - u_j^n}{\Delta x},$$

ce qui aboutit au schéma

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + V \frac{u_{j+1}^n - u_j^n}{\Delta x} = 0.$$
 (1.48)

— Le schéma explicite décentré amont :

$$V \partial_x u(t_n, x_j) \approx V \frac{u_j^n - u_{j-1}^n}{\Delta x},$$

ce qui aboutit au schéma

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + V \frac{u_j^n - u_{j-1}^n}{\Delta x} = 0.$$
 (1.49)

On peut montrer les résultats suivants (on renvoie à la définition 32 pour la notion de schéma stable en norme L^p):

- Le schéma explicite centré (1.47) est consistant avec l'équation d'advection (1.46), précis à l'ordre 1 en temps et 2 en espace, mais inconditionnellement instable en norme L^2 .
- Le schéma explicite décentré aval (1.48) est consistant avec l'équation d'advection (1.46), précis à l'ordre 1 en temps et 1 en espace, mais inconditionnellement instable en norme L^2 .
- Le schéma explicite décentré amont (1.49) est consistant avec l'équation d'advection (1.46), précis à l'ordre 1 en temps et 1 en espace, et stable en norme L^2 sous la condition

$$V \Delta t < \Delta x, \tag{1.50}$$

dite condition CFL du nom de ses découvreurs, les mathématiciens Courant, Friedrichs et Lewy.

— Le schéma explicite décentré amont (1.49) est aussi conditionnellement stable en norme L^{∞} sous la même condition CFL (1.50).

Bien sûr, lorsque V<0, le décentrement amont (qui consiste à aller chercher l'information en amont du flot) s'écrit $V \partial_x u(t_n,x_j) \approx V \frac{u_{j+1}^n - u_j^n}{\Delta x}$.

Remarque 42. L'idée de décentrement amont est une idée majeure de l'analyse numérique. Elle est particulièrement cruciale dans tous les problèmes de mécanique des fluides où elle fut d'abord découverte (en anglais, on parle de upwinding, qui traduit l'idée que l'on remonte le vent ou le courant), mais elle apparaît dans bien d'autres modèles.

Les résultats ci-dessus peuvent être rigoureusement établis en utilisant l'analyse de stabilité de von Neumann (par transformée de Fourier discrète). On

présente ici une autre approche, basée sur la notion d'équation équivalente (ou équation modifiée). L'idée est de chercher une EDP (avec des coefficients qui vont dépendre a priori des paramètres de discrétisation numérique, Δt et Δx), telle que la solution v de cette EDP vérifie $v(n \Delta t, j \Delta x) = u_j^n$, où $\{u_j^n\}_{j,n}$ est la solution obtenue par le schéma numérique. En pratique, cette EDP équivalente est construite de manière itérative, en identifiant les termes correctifs à l'équation de départ les uns après les autres. Cette idée est très générale en analyse numérique (pour les EDP, les EDO, etc).

Mettons en oeuvre ce programme dans le cas du schéma explicite centré (1.47). On écrit

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{v(n \, \Delta t + \Delta t, j \, \Delta x) - v(n \, \Delta t, j \, \Delta x)}{\Delta t}$$
$$= \partial_t v + \frac{\Delta t}{2} \, \partial_{tt} v + O(\Delta t^2),$$

où les dérivées de la fonction v à la dernière ligne sont évaluées en $(n \Delta t, j \Delta x)$. On a de même

$$u_{j+1}^n = v(n\,\Delta t, j\,\Delta x + \Delta x) = u_j^n + \Delta x\,\partial_x v + \frac{\Delta x^2}{2}\,\partial_{xx}v + \frac{\Delta x^3}{6}\,\partial_{xxx}v + O(\Delta x^4),$$

donc

$$\frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} = \partial_x v + O(\Delta x^2).$$

En reportant ces expressions dans le schéma numérique (1.47), on obtient que v est solution de

$$\partial_t v + \frac{\Delta t}{2} \,\partial_{tt} v + V \,\partial_x v = O(\Delta t^2) + O(\Delta x^2). \tag{1.51}$$

On pourrait identifier les termes de reste $O(\Delta t^2)$ et $O(\Delta x^2)$ en allant plus loin dans les développements de Taylor, mais cela n'est pas indispensable ici. A l'ordre dominant, on retrouve bien l'équation de départ (le schéma est bien consistant!), i.e. $\partial_t v + V \partial_x v = 0$. Ceci implique, toujours à l'ordre dominant, que

$$\partial_{tt}v = -\partial_t (V \partial_x v) = -V \partial_x \partial_t v = V^2 \partial_{xx} v.$$

En reportant ceci dans (1.51), et en ignorant les termes de reste, on obtient que v est solution de

$$\partial_t v + \frac{\Delta t}{2} V^2 \,\partial_{xx} v + V \,\partial_x v = 0. \tag{1.52}$$

Il s'agit donc d'une équation avec un terme de diffusion portant le mauvais signe : il apparait la contribution $+\partial_{xx}v$ et non pas $-\partial_{xx}v$ comme dans l'équation de la chaleur. Cette équation (1.52) est mal posée (ignorer le terme de transport, passer sur les modes propres du laplacien, et constater que les coefficients $\alpha_k(t)$ sont donnés par $\alpha_k(t) = \alpha_k(0) \exp(\lambda_k \Delta t \, V^2 \, t/2)$; comme les λ_k tendent vers $+\infty$, la somme $\sum_k \alpha_k(t) \, w_k(x)$ n'est pas convergente dès que t>0), ce qui explique pourquoi le schéma explicite centré est instable.

On peut aussi faire le même exercice sur le schéma décentré amont (on rappelle l'hypothèse V>0). En utilisant le fait que

$$\frac{u_j^n - u_{j-1}^n}{\Delta x} = \partial_x v - \frac{\Delta x}{2} \, \partial_{xx} v + O(\Delta x^2),$$

on déduit du schéma numérique (1.49) que

$$\partial_t v + \frac{\Delta t}{2} \partial_{tt} v + V \partial_x v - \frac{\Delta x}{2} V \partial_{xx} v = O(\Delta t^2) + O(\Delta x^2).$$

En utilisant à nouveau la relation $\partial_{tt}v=V^2\,\partial_{xx}v$ et en ignorant les termes de reste, on obtient que v est solution de

$$\partial_t v + V \,\partial_x v + \left[\frac{\Delta t}{2} \,V^2 - \frac{\Delta x}{2} \,V\right] \partial_{xx} v = 0. \tag{1.53}$$

Cette équation conduit à une solution stable si et seulement si le coefficient devant le terme $\partial_{xx}v$ est négatif ou nul (plus précisément, si le coefficient est nul, il faudrait identifier les termes suivants du développement pour se prononcer). On doit donc choisir Δt et Δx tels que

$$\frac{\Delta t}{2} V^2 - \frac{\Delta x}{2} V \le 0,$$

ce qui, compte tenu du fait que V>0, est équivalent à $V\Delta t \leq \Delta x$, et on retrouve la condition CFL!

L'équation équivalente (1.53) permet de comprendre deux observations numériques :

- quand on considère la condition initiale $u_0(x) = \sin x$, le signal est correctement transporté par le schéma numérique (1.49), mais son amplitude diminue au cours des itérations en temps. Ceci est du à la présence du terme diffusif dans (1.53), et du caractère dissipatif de l'équation;
- quand on considère une condition initiale irrégulière (sous la forme d'un créneau, par exemple), la solution devient de plus en plus régulière au cours des itérations en temps du schéma (1.49). Ceci est relié au caratère régularisant de l'équation de la chaleur.

1.4 Transport advectif-diffusif d'une espèce chimique

On considère une espèce chimique diluée dans un gaz ou un liquide (par la suite, on parlera de fluide porteur). On note u(x,t) la concentration de cette espèce au point x et à l'instant t. La fonction $u: \mathbb{R}^d \times [0,+\infty[\to \mathbb{R}$ est régie par l'équation de bilan suivante :

$$\partial_t u + \operatorname{div}(j_A + j_D) = f. \tag{1.54}$$

Cette équation, qui exprime la conservation de la masse de l'espèce chimique, fait intervenir les quantités suivantes :

— $j_{\rm A}$ (à valeurs dans \mathbb{R}^d) représente le flux advectif de l'espèce chimique. Celui-ci provient du fait que le fluide porteur est en mouvement. On note $\beta: \mathbb{R}^d \times [0, +\infty[\to \mathbb{R}^d \text{ le champ de vitesse du fluide porteur. Le flux advectif s'écrit sous la forme$

$$j_{\rm A} = \beta u$$
.

On suppose que le fluide porteur est incompressible, ce qui implique par conservation de la masse (voir la section 3.4.1) que la divergence du champ de vitesse β est nulle.

 $-j_{\rm D}$ (à valeurs dans \mathbb{R}^d) représente le flux diffusif de l'espèce chimique. Lorsque la concentration de l'espèce chimique n'est pas homogène en espace, celle-ci est également transportée par des phénomènes diffusifs. On fait l'hypothèse que le flux diffusif est proportionnel au gradient de concentration de l'espèce chimique :

$$j_{\rm D} = -D\nabla u$$
,

où D>0 est un paramètre réel qu'on appelle coefficient de diffusion. L'équation ci-dessus porte le nom de loi de Fick.

— f (à valeurs scalaires) représente des sources ou puits de l'espèce chimique.

En regroupant les expresssions des flux advectif et diffusif ci-dessus, on aboutit à l'équation suivante, dite équation d'advection—diffusion :

$$\partial_t u + \beta \cdot \nabla u - D\Delta u = f. \tag{1.55}$$

On observera que l'on a utilisé le fait que div $\beta=0$ et que le coefficient D est constant. Enfin, lorsque la donnée f ne dépend pas du temps, on peut s'intéresser à la solution de (1.55) à l'équilibre; celle-ci est solution de l'équation suivante :

$$\beta \cdot \nabla u - D\Delta u = f. \tag{1.56}$$

1.5 Equation des ondes

Soit Ω un ouvert de \mathbb{R}^d (qui peut être \mathbb{R}^d tout entier). Etant donné une fonction $f:]0, +\infty[\times\Omega \longrightarrow \mathbb{R}$ et deux fonctions $u_0: \Omega \longrightarrow \mathbb{R}$ et $u_1: \Omega \longrightarrow \mathbb{R}$, on considère le problème suivant : chercher une fonction $u: [0, +\infty[\times\overline{\Omega} \longrightarrow \mathbb{R}$ vérifiant

$$\begin{cases}
\partial_{tt}u - \Delta u = f & \text{sur }]0, +\infty[\times\Omega, \\
u(t, \cdot) = 0 & \text{sur }]0, +\infty[\times\partial\Omega, \\
u(0, \cdot) = u_0 & \text{sur } \Omega, \\
\partial_t u(0, \cdot) = u_1 & \text{sur } \Omega.
\end{cases}$$
(1.57)

L'EDP dans (1.57) est appelée équation des ondes. Elle fait intervenir l'opérateur $\partial_{tt} - \Delta$ appelé le d'Alembertien. En dimension d = 1 avec $\Omega =]0, L[$, le

problème (1.57) modélise les vibrations d'une corde élastique de longueur L autour de sa position d'équilibre lorsqu'elle est sollicitée par une force extérieure f. La fonction $u(t,\cdot): x\in\Omega\mapsto u(t,x)$ représente la position de la corde à l'instant t. La condition limite $u(t,\cdot)=0$ signifie que la corde est maintenue attachée à ses deux extrémités. Les équations $u(0,\cdot)=u_0$ et $\partial_t u(0,\cdot)=u_1$ constituent les conditions initiales (ou données de Cauchy) pour le problème (1.57). Elles signifient que l'on se donne à l'instant t=0 la position et la vitesse de la corde. En dimension d=2, le problème (1.57) modélise les vibrations d'une membrane élastique autour de sa position d'équilibre, dans le régime de l'élasticité linéaire. Plus généralement, le problème (1.57) modélise la propagation d'une onde acoustique, électromagnétique, etc.

On notera une différence importante dans la formulation des problèmes (1.20) et (1.57): le premier fait intervenir une dérivée d'ordre un en temps alors que le deuxième fait intervenir une dérivée d'ordre deux en temps.

L'origine physique de l'équation des ondes sera étudiée plus tard. On s'intéresse ici aux propriétés qualitatives des solutions, afin de les comparer à celles des autres équations vues dans ce chapitre.

1.5.1 Equation des ondes dans tout l'espace

1.5.1.1 Le cas mono-dimensionnel

Nous commençons par le cas simple de l'équation des ondes posée sur tout \mathbb{R} (on étudiera le cas multi-dimensionnel ci-dessous, cf. la section 1.5.1.2) :

$$\begin{cases}
\frac{\partial^2}{\partial t^2} u(t, x) - c^2 \frac{\partial^2}{\partial x^2} u(t, x) = 0, & (t, x) \in]0; \infty[\times \mathbb{R}, \\
u(0, x) = u_0(x), & x \in \mathbb{R}, \\
\frac{\partial}{\partial t} u(0, x) = u_1(x), & x \in \mathbb{R}.
\end{cases} (1.58)$$

La constante c a la dimension d'une vitesse, on l'appelle souvent célérité. On impose des conditions initiales à la fois sur la solution et sur sa dérivée en temps.

Nous supposons pour commencer que u_0 et u_1 sont des fonctions régulières. On va alors chercher la solution sous la forme

$$u(t,x) = f(x - ct) + g(x + ct)$$

pour deux fonctions régulières f et g qu'on determine en fonction de u_0 et u_1 . On constate en effet que l'expression ci-dessus est solution de la première ligne de (1.58), quelque soit f et g. La fonction $(t,x)\mapsto f(x-ct)$ représente une onde progressive avançant à la vitesse c vers la droite, alors que $(t,x)\mapsto g(x+ct)$ est une onde progressive avançant à la vitesse c vers la gauche.

On calcule

$$u_0(x) = u(0, x) = f(x) + g(x)$$

et

$$u_1(x) = \frac{\partial}{\partial t}u(0, x) = -c f'(x) + c g'(x).$$

On trouve donc la formule de d'Alembert :

$$u(t,x) = \frac{1}{2} \left(u_0(x - ct) + u_0(x + ct) \right) + \frac{1}{2c} \int_{x - ct}^{x + ct} u_1(s) \, ds. \tag{1.59}$$

On voit déjà, sur ce cas très simple, de grandes différences de comportement par rapport à l'équation de la chaleur. Supposons que les conditions initiales soient à support compact : il existe a < b tels que

$$\operatorname{Supp}(u_0) \cup \operatorname{Supp}(u_1) \subseteq [a;b].$$

Alors, pour t > 0, on a

$$\operatorname{Supp}(u(t,\cdot)) \subseteq [a-ct;b+ct].$$

Ainsi, la propagation a lieu à la vitesse c (cf. les figures 1.1 et 1.2), il n'y a pas de propagation à vitesse infinie comme pour l'équation de la chaleur (cf. la section 1.1.4 et les théorèmes 15 et 24). On retrouve la même situation que pour l'équation de transport.

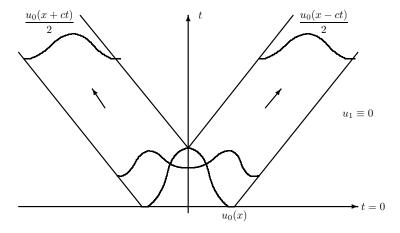


FIGURE 1.1 – Equation des ondes en 1D : propagation quand $u_1 \equiv 0$ et $u_0 \neq 0$.

Par ailleurs, on voit qu'il n'y a aucun gain ou aucune perte de régularité de la solution comme c'est le cas pour l'équation de la chaleur (effet régularisant, cf. les théorèmes 14 et 20) ou l'équation de Burgers (apparition de singularités). Ainsi, si $u_1 \equiv 0$, alors, pour tout t>0, la fonction $u(t,\cdot)$ a exactement la même régularité que la fonction u_0 . C'est une situation analogue à celle de l'équation de transport.

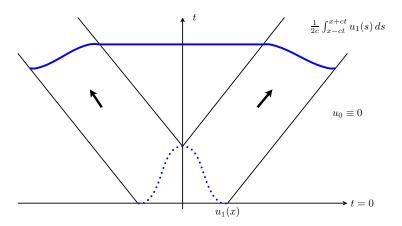


FIGURE 1.2 – Equation des ondes en 1D : propagation quand $u_0 \equiv 0$ et $u_1 \neq 0$.

On peut aussi trouver la solution fondamentale en procédant par régularisation. On choisit $u_0 \equiv 0$ et $u_1^{\varepsilon} = \varepsilon^{-1}\phi(\cdot/\varepsilon)$ pour une fonction $\phi \in C_c^{\infty}(\mathbb{R})$ d'intégrale égale à 1. La solution, donnée par (1.59), est

$$u^\varepsilon(t,x) = \frac{1}{2c}\,\int_{x-ct}^{x+ct} u_1^\varepsilon(s)\,ds = \frac{1}{2c}\,\int_{\mathbb{R}} \mathbf{1}_{[x-ct,x+ct]}(s)\,u_1^\varepsilon(s)\,ds.$$

Quand $\varepsilon \to 0$, u_1^{ε} converge (au sens des distributions) vers la masse de Dirac δ_0 . Si x+ct < 0, alors les supports des fonctions $1_{[x-ct,x+ct]}$ et u_1^{ε} sont disjoints quand ε est assez petit, et $u^{\varepsilon}(t,x)$ tend donc vers 0. Il en est de même lorsque x-ct>0. On s'intéresse donc au cas x-ct<0< x+ct. Dans ce cas, la fonction $s \to 1_{[x-ct,x+ct]}(s)$ est régulière sur le support de u_1^{ε} , on peut donc appliquer le résultat de convergence précédent et $u^{\varepsilon}(t,x)$ tend donc vers $1_{[x-ct,x+ct]}(0)/2c=1/2c$. On voit donc que

$$u^{\varepsilon}(t,x) \to_{\varepsilon \to 0} G(t,x)$$

où la fonction G (représentée sur la figure 1.3) est donnée par

$$G(t,x) = \frac{1}{2c} 1_{[-ct;ct]}(x). \tag{1.60}$$

La fonction u^{ε} est solution de (1.58). En passant à la limite $\varepsilon \to 0$ dans cette équation, on obtient donc que la fonction G définie par (1.60) est la solution (formelle) du problème

$$\begin{cases} \frac{\partial^2}{\partial t^2} G - c^2 \frac{\partial^2}{\partial x^2} G = 0, & (t, x) \in]0; \infty[\times \mathbb{R}, \\ G(0, \cdot) = 0, & \text{dans } \mathbb{R}, \\ \frac{\partial}{\partial t} G(0, \cdot) = \delta_0, & \text{dans } \mathbb{R}. \end{cases}$$
(1.61)

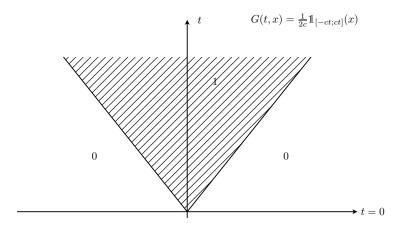


FIGURE 1.3 – Equation des ondes en 1D : solution fondamentale G donnée par (1.60).

On peut alors remarquer que la solution générale (1.59), pour des conditions initiales u_0 et u_1 régulières quelconques, s'écrit

$$\begin{split} u(t,x) &= \frac{1}{2}(u_0(x-ct) + u_0(x+ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} u_1(s) \, ds \\ &= \frac{d}{dt} \left(\frac{1}{2c} \int_{x-ct}^{x+ct} u_0(s) \, ds \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} u_1(s) \, ds \\ &= \frac{d}{dt} \left(\int_{\mathbb{R}} G(t,x-y) \, u_0(y) \, dy \right) + \int_{\mathbb{R}} G(t,x-y) \, u_1(y) \, dy, \end{split}$$

ce qu'on peut écrire sous la forme

$$u(t) = \frac{d}{dt}\mathcal{G}(t)u_0 + \mathcal{G}(t)u_1, \qquad (1.62)$$

l'opérateur $\mathcal{G}(t)$ est défini, pour toute fonction $\psi,$ par

$$(\mathcal{G}(t)\psi)(x) = \int_{\mathbb{R}} G(t, x - y) \, \psi(y) \, dy = \int_{\mathbb{R}} G(t, y) \, \psi(x - y) \, dy$$
$$= \frac{1}{2c} \int_{\mathbb{R}} 1_{I(0, ct)}(y) \, \psi(x - y) \, dy, \quad (1.63)$$

où I(0,ct) = [-ct,ct] est le segment centré en 0 et de rayon ct.

1.5.1.2 Le cas multi-dimensionnel

On considère l'équation des ondes posée dans \mathbb{R}^d , pour d > 1:

$$\begin{cases}
\frac{\partial^2}{\partial t^2} u(t, x) - c^2 \Delta u(t, x) = 0, & (t, x) \in]0; \infty[\times \mathbb{R}^d, \\
u(0, x) = u_0(x), & x \in \mathbb{R}^d, \\
\frac{\partial}{\partial t} u(0, x) = u_1(x), & x \in \mathbb{R}^d,
\end{cases}$$
(1.64)

où les conditions initiales u_0 et u_1 sont encore supposées être régulières (on a pris c=1 pour simplifier).

En analogie avec le cas mono-dimensionnel, on peut montrer que la formule (1.62) donne encore une solution de l'équation des ondes, où l'opérateur $\mathcal{G}(t)$ est cette fois-ci défini, pour toute fonction ψ , par

$$(\mathcal{G}(t)\psi)(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} 1_{B(0;t)}(y) \frac{\psi(x-y)}{\sqrt{t^2 - |y|^2}} dy \qquad (d=2), \tag{1.65}$$

$$(\mathcal{G}(t)\psi)(x) = \frac{1}{4\pi t} \int_{S(0;t)} \psi(x-y) \, d\sigma(y) \qquad (d=3), \tag{1.66}$$

où $B(0;t) \subset \mathbb{R}^2$ est la boule ouverte de centre 0 et de rayon t et $S(0;t) \subset \mathbb{R}^3$ est la sphère de centre 0 et de rayon t ($d\sigma(y)$ est la mesure surfacique de cette sphère).

Grâce à ces formules, on peut vérifier que la solution se propage à vitesse finie (comme dans le cas mono-dimensionel) : si $\operatorname{Supp}(u_0) \cup \operatorname{Supp}(u_1) \subset B(0,r)$, alors $\operatorname{Supp}(u(t,\cdot)) \subset B(0,r+t)$.

Remarque 43. En dimension d paire quelconque, l'opérateur $\mathcal{G}(t)$ s'obtient par une formule similaire à (1.65). Lorsque la dimension d est impaire quelconque, $\mathcal{G}(t)$ s'obtient par une formule similaire à (1.66). On renvoie à [3] pour ces résultats.

1.5.2 L'équation des ondes dans un ouvert borné

Tout comme pour l'équation de la chaleur, nous étudions maintenant l'équation des ondes (avec c=1 pour simplifier) dans un ouvert borné $\Omega\subset\mathbb{R}^d$, avec des conditions de Dirichlet homogènes au bord et terme source f (qu'on suppose pour simplifier être indépendant de t):

$$\begin{cases} \frac{\partial^2}{\partial t^2} u(t,x) - \Delta u(t,x) = f(x), & (t,x) \in]0; T[\times \Omega, \\ u(t,x) = 0 \text{ si } x \in \partial \Omega, \\ u(0,x) = g(x), & x \in \Omega, \\ \frac{\partial}{\partial t} u(0,x) = h(x), & x \in \Omega. \end{cases}$$

$$(1.67)$$

1.5.2.1 Approche spectrale

Comme pour l'équation de la chaleur, on va utiliser une méthode spectrale. On cherche donc la solution de (1.67) sous la forme

$$u(t) = \sum_{k \ge 1} \alpha_k(t) \, w_k$$

où les $\{w_k\}_{k\geq 1}$ sont les modes propres du laplacien, solutions de (1.34). On pose $\beta_k = \langle f, w_k \rangle$. En testant l'équation des ondes contre w_k , on voit que chaque α_k est solution du problème

$$\begin{cases} \frac{\partial^2}{\partial t^2} \alpha_k(t) + \lambda_k \, \alpha_k(t) &= \beta_k \quad \text{dans }]0; T[, \\ \alpha_k(0) &= \alpha_k^0, \\ \frac{\partial}{\partial t} \alpha_k(0) &= \alpha_k^1, \end{cases}$$

οù

$$\alpha_k^0 = \int_{\Omega} g \, w_k, \qquad \alpha_k^1 = \int_{\Omega} h \, w_k.$$

On voit donc que

$$\alpha_k(t) = \frac{\beta_k}{\lambda_k} + \left(\alpha_k^0 - \frac{\beta_k}{\lambda_k}\right) \cos(\sqrt{\lambda_k}t) + \alpha_k^1 \frac{\sin(\sqrt{\lambda_k}t)}{\sqrt{\lambda_k}},$$

ce qui donne

$$u(t,x) = \sum_{k \ge 1} \frac{\beta_k}{\lambda_k} w_k(x) + \sum_{k \ge 1} w_k(x) \left[\left(\alpha_k^0 - \frac{\beta_k}{\lambda_k} \right) \cos(\sqrt{\lambda_k} t) + \alpha_k^1 \frac{\sin(\sqrt{\lambda_k} t)}{\sqrt{\lambda_k}} \right].$$
(1.68)

On est donc amené à introduire l'opérateur U(t) qui à toute fonction $\psi \in L^2(\Omega)$ associe la fonction

$$(U(t)\psi)(x) = \sum_{k\geq 1} \frac{\sin(\sqrt{\lambda_k}t)}{\sqrt{\lambda_k}} \langle \psi, w_k \rangle w_k(x).$$

Puisque les $\{w_k\}_{k\geq 1}$ sont orthonormés dans $L^2(\Omega)$, on voit que

$$||U(t)\psi||_{L^{2}(\Omega)}^{2} = \sum_{k>1} \frac{\sin^{2}(\sqrt{\lambda_{k}}t)}{\lambda_{k}} |\langle \psi, w_{k} \rangle|^{2} \le \frac{1}{\lambda_{1}} ||\psi||_{L^{2}(\Omega)}^{2},$$

si bien que U(t) est un opérateur linéaire et continu de $L^2(\Omega)$ dans $L^2(\Omega)$.

On obtient finalement

$$u(t) = \int_0^t U(t-s) f \, ds + U'(t)g + U(t)h, \tag{1.69}$$

formule à rapprocher de (1.36).

1.5.2.2 Propriétés qualitatives

Comme l'étude de l'équation dans tout l'espace l'a montré, on ne peut pas s'attendre à des propriétés de régularisation ou de propagation à vitesse infinie avec l'équation des ondes.

Les propriétés de propagation à vitesse finie se manifestent de la manière suivante. Dans le problème (1.67), supposons que $f \equiv 0$ et que les conditions initiales g et h ont un support compact $K \subset \Omega$. On peut alors montrer que la solution u de (1.67) coïncide avec la solution de l'équation des ondes (1.64) posée sur tout l'espace \mathbb{R}^d tant que cette solution ne touche pas le bord, donc sur un intervalle de temps $[0;t_0]$ avec $t_0>0$. La propagation a alors lieu à vitesse finie (cf. la section 1.5.1.2). Dès que la solution touche le bord $\partial\Omega$, les deux solutions diffèrent à cause des conditions de Dirichlet sur $\partial\Omega$.

L'équation des ondes est par contre réversible en temps, à la différence de l'équation de la chaleur. Si u est solution de (1.67) sur $]0, T[\times\Omega]$, alors, la fonction v(t)=u(T-t) est aussi solution de l'équation des ondes sur $]0, T[\times\Omega]$, avec des conditions finales (en t=T) plutot que des conditions initiales (en t=0). L'équation aux dérivées partielles (la première ligne de (1.67)) ne change pas dans le changement de variable $t\mapsto T-t$, grâce à la dérivée d'ordre deux en temps.

En l'absence de terme source, l'énergie se conserve, comme montré par le théorème suivant.

Théorème 44 (Conservation de l'énergie). On considère la solution u de (1.67), et on suppose que $f \equiv 0$. On a alors la conservation de l'énergie :

$$\int_{\Omega} \left(\left| \frac{\partial}{\partial t} u(t, x) \right|^2 + |\nabla u(t, x)|^2 \right) dx = \int_{\Omega} \left(h(x)^2 + |\nabla g(x)|^2 \right) dx \tag{1.70}$$

pour tout $t \in]0; T[.$

Pour le cas de l'équation de la chaleur, on a montré (cf. le théorème 25) que la solution de l'équation stationnaire, i.e. la fonction $v \in H_0^1(\Omega)$ solution de

$$-\Delta v = f \quad \text{dans } \Omega,$$

joue un role, au sens où la solution de l'équation de la chaleur converge, en temps long, vers la solution stationnaire. Ce n'est pas le cas ici, pour l'équation des ondes. En effet, en testant l'équation ci-dessus contre w_k , on constate pour commencer (c'est un calcul qu'on a déjà fait dans le cas de l'équation de la chaleur) que

$$\beta_k = \langle f, w_k \rangle = \int_{\Omega} \nabla v \cdot \nabla w_k = \lambda_k \langle v, w_k \rangle$$

et donc le premier terme de (1.68) s'écrit

$$\sum_{k\geq 1} \frac{\beta_k}{\lambda_k} w_k(x) = \sum_{k\geq 1} \langle v, w_k \rangle w_k(x) = v(x).$$

On écrit donc (1.68) sous la forme

$$u(t,x) = v(x) + \sum_{k>1} w_k(x) \left[\left(\alpha_k^0 - \frac{\beta_k}{\lambda_k} \right) \cos(\sqrt{\lambda_k} t) + \alpha_k^1 \frac{\sin(\sqrt{\lambda_k} t)}{\sqrt{\lambda_k}} \right],$$

et le second terme ne converge pas dans $L^2(\Omega)$. En effet, si on avait convergence vers un certain $S_0 \in L^2(\Omega)$, en prenant le produit scalaire contre w_k (pour n'importe quel $k \geq 1$), on obtiendrait la convergence en temps long de $\left(\alpha_k^0 - \frac{\beta_k}{\lambda_k}\right) \cos(\sqrt{\lambda_k}t) + \alpha_k^1 \frac{\sin(\sqrt{\lambda_k}t)}{\sqrt{\lambda_k}}$ vers $\langle S_0, w_k \rangle$. La seule façon d'obtenir ceci est d'avoir $\alpha_k^0 - \frac{\beta_k}{\lambda_k} = \alpha_k^1 = 0$, ce qui signifie que u(t,x) = v(x) pour tout t, et donc en particulier u(0,x) = v(x) et $\frac{\partial}{\partial t} u(0,x) = 0$. En dehors de ce choix très particulier de conditions initiales, la fonction u(t) ne converge pas vers v (en fait, elle reste à égale distance de v, et "tourne" autour).

1.5.2.3 Illustration numérique

Concluons cette présentation générale avec un exemple numérique qui permet de bien illustrer la différence entre l'équation de la chaleur et l'équation des ondes en ce qui concerne la régularité que l'on peut attendre des solutions.

Nous considérons pour ces deux équations le domaine $\Omega=]-2,2[$, un membre de droite f=0 et une donnée initiale en créneau

$$u_0(x) = \begin{cases} 1 & \text{si } |x| \le 0.25, \\ 0 & \text{sinon.} \end{cases}$$

La figure 1.4 présente les solutions pour l'équation de la chaleur (1.20) et l'équation des ondes (1.57) à l'instant t=0.75 (pour l'équation de la chaleur, on a multiplié le laplacien par un coefficient de diffusion égal à 0.1 afin d'éviter que la solution ne décroisse trop vite vers zéro). On observe que pour l'équation de la chaleur, la solution est régulière (on peut montrer qu'elle est C^{∞} en temps et en espace) alors que pour l'équation des ondes, la solution propage les singularités de la donnée initiale.

FIGURE 1.4 – Solution de l'équation de la chaleur (1.20) et de l'équation des ondes (1.57) pour une donnée initiale en créneau et un second membre f = 0.