Examen du cours de M2 : Méthodes numériques probabilistes

12 janvier 2011, 09h00 - 12h00. Les notes de cours sont autorisées.

Exercice: Variables antithétiques

Soit $f:[0,1] \to \mathbb{R}$ une fonction de carré intégrable. On veut estimer $I = \int_0^1 f(x) dx$ par une méthode de Monte Carlo. Dans la suite, U désigne une variable aléatoire de loi uniforme sur [0,1], et $(U_i)_{i\geq 1}$ une suite i.i.d. de variables aléatoires de loi uniforme sur [0,1].

1 Montrer que

$$I = \mathbb{E}\left(\frac{1}{2}(f(U) + f(1 - U))\right).$$

Montrer que l'estimateur

$$I_{2n} = \frac{1}{2n} \sum_{i=1}^{n} (f(U_i) + f(1 - U_i))$$

converge presque sûrement vers I. Rappeler comment on obtient une estimation de l'erreur $|I_{2n} - I|$.

 ${\bf 2}$ On aimerait comparer la variance de l'estimateur I_{2n} à la variance de l'estimateur de Monte Carlo classique

$$J_{2n} = \frac{1}{2n} \sum_{i=1}^{2n} f(U_i).$$

Montrer que $Var(I_{2n}) \leq Var(J_{2n})$ si et seulement si $Cov(f(U), f(1-U)) \leq 0$.

3 On suppose que la fonction f est monotone. Montrer que

$$\mathbb{E}[(f(U_1) - f(U_2))(f(1 - U_1) - f(1 - U_2))] \le 0.$$

En déduire que dans ce cas, $Cov(f(U), f(1-U)) \le 0$. Conclure sur l'intérêt pratique de cette méthode.

Problème: Homogénéisation périodique

1 Soit X_t^x un processus stochastique à valeur dans \mathbb{R}^d solution de l'équation différentielle stochastique :

$$dX_t^x = b(X_t^x) dt + \sigma(X_t^x) dW_t$$

de condition initiale $X_0^x = x$, où W_t est un mouvement brownien d-dimensionnel, $b : \mathbb{R}^d \to \mathbb{R}^d$ et $\sigma : \mathbb{R}^d \to \mathbb{R}^{d \times d}$ sont deux fonctions régulières, telles que

$$a = \frac{1}{2}\sigma\sigma^T \ge \alpha \operatorname{Id}$$

pour un réel $\alpha > 0$. On suppose que b et σ sont périodiques de période 1 dans toutes les directions : $\forall k \in \mathbb{Z}^d$, $\forall x \in [0,1)^d$,

$$b(x+k) = b(x)$$
 et $\sigma(x+k) = \sigma(x)$.

On peut donc voir b et σ comme des fonctions définies sur le tore $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$. On définit le processus

$$Y_t^x = X_t^x \mod 1$$

à valeur dans \mathbb{T}^d comme la projection de X_t^x sur \mathbb{T}^d . Dans la suite, on identifie \mathbb{T}^d à $[0,1)^d$. On a donc, dans \mathbb{T}^d ,

$$dY_t^x = b(Y_t^x) dt + \sigma(Y_t^x) dW_t.$$

1.1 Soit $f: \mathbb{T}^d \to \mathbb{R}$ une fonction test. Rappeler l'équation aux dérivées partielles vérifiée par $u(t,x) = \mathbb{E}(f(Y_t^x))$ $(t \ge 0$ et $x \in \mathbb{T}^d$), en utilisant l'opérateur différentiel défini par : pour une fonction test $\varphi: \mathbb{T}^d \to \mathbb{R}$,

$$\mathcal{L}\varphi = b \cdot \nabla \varphi + a : \nabla^2 \varphi = \sum_{i=1}^d b_i \frac{\partial \varphi}{\partial x_i} + \sum_{i,j=1}^d a_{i,j} \frac{\partial^2 \varphi}{\partial x_i \partial x_j}.$$

1.2 Rappeler l'équation aux dérivées partielles satisfaite par la loi à l'instant t de Y_t^x , en utilisant l'opérateur différentiel défini par : pour une fonction test $\varphi : \mathbb{T}^d \to \mathbb{R}$,

$$\mathcal{L}^*\varphi = -\operatorname{div}(b\,\varphi) + \nabla^2 : (a\,\varphi) = -\sum_{i=1}^d \frac{\partial(b_i\varphi)}{\partial x_i} + \sum_{i,j=1}^d \frac{\partial^2(a_{i,j}\varphi)}{\partial x_i\partial x_j}.$$

2 Soit $m: \mathbb{T}^d \to \mathbb{R}_+^*$ une densité de probabilité sur \mathbb{T}^d , régulière et strictement positive. On suppose dans la suite que, pour $i \in \{1, \dots, d\}$,

$$b_i = \sum_{j=1}^{d} a_{i,j} \frac{\partial \ln m}{\partial x_j} + \sum_{j=1}^{d} \frac{\partial a_{i,j}}{\partial x_j}.$$

2.1 Vérifier que

$$\mathcal{L}^* m = 0.$$

Comment cette dernière relation se traduit en termes du processus Y_t^x ?

2.2 Montrer que, pour une fonction test $\varphi : \mathbb{T}^d \to \mathbb{R}$

$$\mathcal{L}^*\varphi = \sum_{i,j=1}^d \frac{\partial}{\partial x_i} \left(a_{i,j} \, m \frac{\partial}{\partial x_j} \left(\frac{\varphi}{m} \right) \right).$$

En déduire que pour deux fonctions tests $\varphi, \psi : \mathbb{T}^d \to \mathbb{R}$,

$$\int_{\mathbb{T}^d} (\varphi \mathcal{L}\psi) \, m = -\int_{\mathbb{T}^d} a(\nabla \varphi) \cdot (\nabla \psi) \, m = \int_{\mathbb{T}^d} (\psi \mathcal{L}\varphi) \, m. \tag{1}$$

2.3 En utilisant l'inégalité de Poincaré Wirtinger sur le tore : il existe $C_p > 0$ telle que pour toute fonction $\varphi \in H^1(\mathbb{T}^d)$,

$$\int_{\mathbb{T}^d} \left(\varphi - \int_{\mathbb{T}^d} \varphi \right)^2 \le C_p \int_{\mathbb{T}^d} |\nabla \varphi|^2,$$

et le fait que m est une fonction strictement positive et régulière, montrer que

$$\lambda_0 = \inf_{\varphi \in H^1(\mathbb{T}^d), \int_{\mathbb{T}^d} \varphi m = 0} \frac{-\int_{\mathbb{T}^d} (\varphi \mathcal{L}\varphi) m}{\int_{\mathbb{T}^d} \varphi^2 m}$$
(2)

est strictement positif.

2.4 Soit $f: \mathbb{T}^d \to \mathbb{R}$ une fonction régulière et telle que $\int_{\mathbb{T}^d} fm = 0$. En utilisant le Lemme de Lax-Milgram sur le Hilbert

$$V = \left\{ \varphi : \mathbb{T}^d \to \mathbb{R}, \int_{\mathbb{T}^d} \varphi^2 m + \int_{\mathbb{T}^d} |\nabla \varphi|^2 m < \infty, \int_{\mathbb{T}^d} \varphi m = 0 \right\}$$

muni du produit scalaire $(\varphi, \psi)_V = \int_{\mathbb{T}^d} \varphi \psi \, m + \int_{\mathbb{T}^d} \nabla \varphi \cdot \nabla \psi \, m$, montrer que le problème

$$\begin{cases} \mathcal{L}\chi = f \text{ sur } \mathbb{T}^d \\ \int_{\mathbb{T}^d} \chi m = 0 \end{cases}$$

admet une unique solution $\chi \in V$. On admettra que la solution χ est régulière si les données (a, m et f) sont régulières.

2.5 (Question indépendante de la suite du problème) L'objectif de cette question est d'interpréter la relation de symétrie (1) en termes du processus Y_t^x . On suppose dans cette question (et dans cette question seulement) que Y_t^x admet une densité de transition au sens suivant : il existe une fonction q(t,x,y) de $\mathbb{R}_*^+ \times \mathbb{T}^d \times \mathbb{T}^d$ à valeur dans \mathbb{R}^+ telle que pour toute fonction $f: \mathbb{T}^d \to \mathbb{R}$ mesurable bornée,

$$\mathbb{E}(f(Y_t^x)) = \int_{\mathbb{T}^d} f(y) \, q(t, x, y) \, dy.$$

Soit f_1 et f_2 deux fonctions régulières. On note $v_1(t,x) = \mathbb{E}(f_1(Y_t^x))$ et $v_2(t,x) = \mathbb{E}(f_2(Y_t^x))$. En considérant, pour t fixé, la fonction $s \in [0,t] \mapsto \int_{\mathbb{T}^d} v_1(t-s,x)v_2(s,x)m(x)dx$, montrer que

$$\int_{\mathbb{T}^d} v_1(t, x) f_2(x) m(x) \, dx = \int_{\mathbb{T}^d} v_2(t, x) f_1(x) m(x) \, dx.$$

En déduire la relation :

$$q(t, x, y)m(x) = q(t, y, x)m(y).$$

Quel nom donneriez-vous à une telle propriété?

3 On considère le processus Z_t^{ε} défini par

$$Z_t^\varepsilon=\varepsilon Y_{t/\varepsilon^2}^0.$$

Soit $l \in \mathbb{R}^d$ un vecteur de norme euclidienne 1.

3.1 Montrer qu'il existe une unique fonction $\chi_l \in V$ solution de

$$\begin{cases} \mathcal{L}\chi_l = l \cdot b \text{ sur } \mathbb{T}^d, \\ \int_{\mathbb{T}^d} \chi_l \, m = 0. \end{cases}$$

3.2 En utilisant un calcul d'Itô, vérifier que (sur \mathbb{T}^d)

$$l \cdot Y_t^0 = \int_0^t l \cdot b(Y_s^0) \, ds + \int_0^t l \cdot \sigma(Y_s^0) \, dW_s$$
$$= \chi_l(Y_t^0) - \chi_l(0) + \int_0^t (l - \nabla \chi_l(Y_s^0)) \cdot \sigma(Y_s^0) \, dW_s.$$

En déduire que

$$l \cdot Z_t^{\varepsilon} = R_t^{\varepsilon} + M_t^{\varepsilon}$$

οù

$$R_t^{\varepsilon} = \varepsilon \left(\chi_l(Y_{t/\varepsilon^2}^0) - \chi_l(0) \right)$$

et

$$M_t^{\varepsilon} = \varepsilon \int_0^{t/\varepsilon^2} (l - \nabla \chi_l(Y_s^0)) \cdot \sigma(Y_s^0) dW_s.$$

3.3 Identifier la limite de R_t^{ε} quand $\varepsilon \to 0$. En admettant le théorème ergodique : pour toute fonction φ telle que $\int_{\mathbb{T}^d} |\varphi| m < \infty$, presque sûrement

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \varphi(Y_s^0) \, ds = \int_{\mathbb{T}^d} \varphi m,$$

identifier la limite de la variation quadratique $\langle M^{\varepsilon} \rangle_t$ de M_t^{ε} dans la limite $\varepsilon \to 0$.

3.4 Soit $N_t = \int_0^t \sigma_s dW_s$ où σ_s est un processus à valeurs réelles, adapté et borné. Montrer en utilisant un calcul d'Itô que

$$\mathbb{E}\left[\exp(iN_t + \langle N \rangle_t/2)\right] = 1$$

où $i^2 = -1$.

3.5 En utilisant le résultat précédent, vérifier que

$$\mathbb{E}\left(\exp(i\theta M_t^{\varepsilon})\right) - \exp(-\theta^2 a_l t) = \mathbb{E}\left[\exp(i\theta M_t^{\varepsilon})\left(1 - \exp(\theta^2 \langle M^{\varepsilon} \rangle_t/2) \exp(-\theta^2 a_l t)\right)\right],$$

οù

$$a_l = \int_{\mathbb{T}^d} (l - \nabla \chi_l(y))^T a(y) (l - \nabla \chi_l(y)) m(y) \, dy$$

est une constante. En déduire que, à t fixé,

$$\lim_{\varepsilon \to 0} \mathbb{E}\left(\exp(i\theta M_t^{\varepsilon})\right) = \exp(-\theta^2 a_l t).$$

En déduire un résultat de convergence en loi pour $l \cdot Z_t^{\varepsilon}$ (à t fixé, dans la limite $\varepsilon \to 0$).

3.6 Montrer qu'il existe une matrice $a^* \in \mathbb{R}^{d \times d}$ symétrique telle que pour tout vecteur unitaire l,

$$a_l = l^T a^* l.$$

Montrer que pour tout vecteur $v \in \mathbb{R}^d$,

$$\lim_{\varepsilon \to 0} \mathbb{E}\left(\exp(iv^T(Z_t^{\varepsilon}))\right) = \exp(-v^T a^* v t).$$

En déduire que, à t fixé et dans la limite $\varepsilon \to 0$, Z_t^{ε} converge en loi vers $\sigma^* W_t$, où $\sigma^* \in \mathbb{R}^{d \times d}$ est tel que $a^* = \frac{1}{2}\sigma^*(\sigma^*)^T$.

3.7 Montrer que

$$dZ_t^{\varepsilon} = \frac{1}{\varepsilon} b \left(\frac{Z_t^{\varepsilon}}{\varepsilon} \right) dt + \sigma \left(\frac{Z_t^{\varepsilon}}{\varepsilon} \right) dB_t, \tag{3}$$

où B_t est un mouvement Brownien d-dimensionnel.

3.8 (Question facultative indépendante de la suite du problème) Montrer que

$$a_l = \inf_{\varphi \in V} \int_{\mathbb{T}^d} (l - \nabla \varphi)^T a (l - \nabla \varphi) m.$$

- 4 On a montré ci-dessus que à t fixé et dans la limite $\varepsilon \to 0$, Z_t^ε solution de (3) et de condition initiale $Z_0^\varepsilon = 0$ converge en loi vers $\sigma^* W_t$. On admet dans cette dernière partie que ce résultat se généralise au processus $Z_t^{\varepsilon,x}$ solution de (3) et de condition initiale $Z_0^{\varepsilon,x} = x$: à t fixé et dans la limite $\varepsilon \to 0$, $Z_t^{\varepsilon,x}$ converge en loi vers $x + \sigma^* W_t$.
- **4.1** Soit $f: \mathbb{T}^d \to \mathbb{R}$ une fonction continue bornée. On pose $u^{\varepsilon}(t,x) = \mathbb{E}(f(Z_t^{\varepsilon,x}))$. Ecrire l'équation aux dérivées partielles satisfaite par $u^{\varepsilon}(t,x)$.
- **4.2** Montrer que $u^{\varepsilon}(t,x)$ converge simplement vers une fonction $u^{*}(t,x)$ solution d'une équation aux dérivées partielles que l'on précisera.