## On bias in free-energy calculations, and some free-energy methods for crystalline phases



## Outline

- Bias in free-energy calculations
- Neglected-tail bias model
- Neglected-sample bias model
- Overlap sampling (BAR) and work distributions
- Some methods for solid phases
- Harmonically-targeted temperature perturbation (HTTP)
- NPT simulations


## The Problem

- Bias in work-based free energy calculations
- Asymmetric, hard to detect, many different cases can be found



## Modeling of Bias



## Modeling of Bias



## Modeling of Bias



## Neglected-Tail Bias Model

- Begins with work distributions
- Assumes all error results from failure to sample tail past a specific point
- Otherwise perfect sampling
- Tail cutoff determined by maximization of
 probability expression $\quad P_{A}\left(W^{*}\right)=M p_{A}\left(W^{*}\right)\left[C_{A}\left(W^{*}\right)\right]^{n-1}$
- Value depends on amount of sampling, $M$
- Care taken to be effective in both small- and large-sampling regimes
- Many models apply only to large-sampling regimes


## Example: Weibul work distribution

- Models work distribution directly


$$
p_{A}(W)=\frac{q}{\Omega^{\delta}}\left|W-W_{c}\right|^{\delta-1} \exp \left[-\frac{\left(W-W_{c}\right)^{\delta}}{\Omega^{\delta}}\right]
$$

"It is important to have a quantitative estimate of the bias...but no reliable analytical theory exists"

## Example: Weibul work distribution

- Predicting the bias



## Independent Harmonic Oscillators (IHO)



$$
\frac{N}{2} \ln \left(\frac{\omega_{B}}{\omega_{A}}\right)
$$

Free energy
(molecular model)

Work method

- Many properties analytically tractable
- Very easy to sample uncorrelated configurations


## IHO - Work Distributions



$$
\begin{aligned}
& p_{A}(W)=\frac{\beta \omega_{A} / \omega_{B}}{1-\omega_{A} / \omega_{B}}[D(W)]^{\frac{N-2}{4}} \exp \left(-\frac{\beta \omega_{A} N x_{o}^{2}(1+D(W))}{\left(1-\omega_{A} / \omega_{B}\right)^{2}}\right) I_{\frac{N}{2}-1}\left(\frac{2 \beta \omega_{A} N x_{o}^{2} \sqrt{D(W)}}{\left(1-\omega_{A} / \omega_{B}\right)^{2}}\right) \\
& p_{B}(W)=\exp (-\beta W+\beta \Delta F) p_{A}(W) \\
& D(W) \equiv \frac{\omega_{A}}{\omega_{B}}+\frac{W}{\omega_{B} N x_{o}^{2}}\left(1-\frac{\omega_{A}}{\omega_{B}}\right)
\end{aligned}
$$

## IHO - Bias




## Phase-space Relations

- Two phase spaces relevant to free-energy calculations
- Possible relations for systems "A" and "B"
- "Typical" and "dominant" trajectories in NEW calculations



## Origin of the Asymmetric Bias

- Asymmetry in phase space relations connects to asymmetry in bias
- Both spaces must be sampled at once
- Possible if subset

- Must have subset relation!
- Fails if non-subset



## IHO - Phase Space








世画
State University of New York

## IHO - Relative Entropy









函
State University of New York

## Bias Estimation

- Neglected-tail model requires knowledge of work distributions
- Can we use neglected-tail concept to estimate bias in practice?

$$
\begin{aligned}
e^{-\beta\left(F_{B}-F_{A}\right)}= & \int_{-\infty}^{\infty} d W e^{-\beta W} p_{A}(W) \\
= & \int_{-\infty}^{W_{A}^{*}} d W e^{-\beta W} p_{A}(W)+\int_{W_{A}^{*}}^{\infty} d W e^{-\beta W} p_{A}(W) \\
= & e^{-\beta \Delta F} \int_{-\infty}^{W_{A}^{*}} d W p_{B}(W)+\left\langle e^{-\beta W}\right\rangle_{A} \\
e^{-\beta \Delta F}\left(1-C_{B}\left(W_{A}^{*}\right)\right)= & \left\langle e^{-\beta W}\right\rangle_{A} \\
e^{-\beta \Delta F}= & \left\langle e^{-\beta W}\right\rangle_{A} /\left(1-C_{B}\left(W_{A}^{*}\right)\right) \\
& \quad \text { Biased } \quad \text { Correction } \\
& \text { average }
\end{aligned}
$$



$$
W_{A}^{*}
$$

$W_{A}^{*}$

## Bias Correction

- Measure perturbation average,

$$
\left\langle e^{-\beta W}\right\rangle_{A}
$$

...which may be biased

- Note the lowest work value observed, $W_{\mathrm{A}}{ }^{*}$
- Perform perturbations in opposite direction
- Note fraction of work values that are less than $W_{\mathrm{A}}{ }^{*}, C_{\mathrm{B}}$
- Estimate unbiased average via

$W_{A}^{*}$

$$
e^{-\beta\left(F_{B}-F_{A}\right)}=\left\langle e^{-\beta W}\right\rangle_{A} /\left(1-C_{B}\left(W_{A}^{*}\right)\right)
$$

## Bias Correction - More General

- General weight function

$$
\begin{aligned}
& e^{-\beta \Delta F}=\int_{-\infty}^{\infty} d W e^{-\beta W} p_{A}(W) \\
&=\int_{-\infty}^{\infty} d W e^{-\beta W} p_{A}(W)(1-\pi(W))+\int_{-\infty}^{\infty} d W e^{-\beta W} p_{A}(W) \pi(W) \\
&=e^{-\beta \Delta F}\langle(1-\pi)\rangle_{B}+\left\langle\pi e^{-\beta W}\right\rangle_{A} \\
& e^{-\beta \Delta F}=\left\langle\pi e^{-\beta W}\right\rangle_{A} /\langle\pi\rangle_{B} \\
& \pi \underset{ }{\text { Previous case }} \\
& W^{*} W
\end{aligned}
$$

- ...leads to Bennett's method on optimizing $\pi$ !


## Neglected-Sample Bias Model

- Let a single sample represent bias due to neglect of tail
- When performing perturbation, consider the most important configuration in the system being perturbed into
- Calculate the free energy in the normal way, but also calculate the free energy assuming that you also sampled that most important configuration once.
- Take the difference between those results as an estimate of the bias.

$$
e^{-\beta\left(F_{B}-F_{A}\right)}=\frac{1}{M+1}\left[\sum_{i=1}^{M} e^{-\beta W_{i}}+e^{-\beta W_{\min }}\right]
$$

## Neglected-Sample Bias Model

- Does not rely on some characteristic of the calculation (distribution, rate of convergence, etc) to indicate "difficulty"
- When the calculation is abnormally unbiased, bias estimate will be small, or even negative
- Bias estimate will decay with $1 / \mathrm{N}$
- Bias might persist after bias estimate vanishes due to very unlikely configurations with large contributions
- More on this later...


## Staging Methods

- Optimal umbrella-sampling potential

$$
e^{-\beta U_{W}}=\left[\begin{array}{c}
{\left[e^{-\beta\left(U_{A}-F_{A}\right)}+e^{-\beta\left(U_{B}-F_{B}\right)}\right]} \\
\text { "Enveloping distribution" }
\end{array} e^{-\beta \Delta F}=\frac{\left\langle e^{-\beta\left(U_{B}-U_{W}\right)}\right\rangle_{W}}{\left\langle e^{-\beta\left(U_{A}-U_{W}\right)}\right\rangle_{W}}\right.
$$



- Optimal overlap-sampling potential
- Bennett's acceptance ratio

$$
e^{-\beta U_{W}}=\left[e^{+\beta\left(U_{A}-F_{A}\right)}+e^{+\beta\left(U_{B}-F_{B}\right)}\right]^{-1} \quad e^{-\beta \Delta F}=\frac{\left\langle e^{-\beta\left(U_{W}-U_{A}\right)}\right\rangle_{A}}{\left\langle e^{-\beta\left(U_{W}-U_{B}\right)}\right\rangle_{B}}
$$



- Optimal funnel-sampling potential
- Optimal form impractical
- involves solution to cubic polynomial
- Useful nonetheless
- non-optimally

$$
e^{-\beta \Delta F}=\left\langle e^{-\beta\left(U_{W}-U_{A}\right)}\right\rangle_{A}\left\langle e^{-\beta\left(U_{B}-U_{W}\right)}\right\rangle_{W}
$$



## Overlap Sampling

- Working equation

$$
e=e^{-\beta U}
$$

$$
e^{-\beta \Delta F} \equiv \chi(\alpha)=\frac{\left\langle e_{B} /\left(e_{A}+\alpha e_{B}\right)\right\rangle_{A}}{\left\langle e_{A} /\left(e_{A}+\alpha e_{B}\right)\right\rangle_{B}}
$$



- Bennett's optimization of $\alpha$ :

$$
\alpha=\frac{n_{B}}{n_{A}} \chi
$$

- With enough samples, $\chi$ is independent of $\alpha$, plot is flat



## Overlap Sampling



- For few samples, $\chi$ vs $\alpha$ is very straight line with slope -1
- With increasing samples, $\chi$ becomes flatter, but not yet flat even at $10^{8}$ samples
- Flatness indicates that all parts of overlap region are properly sampled



## Overlap Sampling - Bias

- Apply neglected-tail bias model to each stage
$-\mathrm{A} \rightarrow \mathrm{W}$ and $\mathrm{B} \rightarrow \mathrm{W}$ work distributions evaluated analytically from $\mathrm{A} \rightarrow \mathrm{B}$ distribution



$$
\begin{aligned}
& W_{A W}\left(W_{A B}\right)=k T \ln \left[1+\gamma e^{\beta W_{A B}}\right] \\
& p_{A W}\left(W_{A W}\right)=p_{A B}\left(W_{A B}\left(W_{A W}\right)\right) \frac{d W_{A B}}{d W_{A W}}
\end{aligned}
$$

- Application is underway


## Overlap Sampling: Neglected-Sample

- For overlap sampling, it is easy to gauge the largest possible contribution to each average

$$
e^{-\beta \Delta F} \equiv \chi(\alpha)=\frac{\left\langle e_{B} /\left(e_{A}+\alpha e_{B}\right)\right\rangle_{A}}{\left\langle e_{A} /\left(e_{A}+\alpha e_{B}\right)\right\rangle_{B}}
$$

- A: $e_{B} /\left(e_{B}+\alpha e_{A}\right) \leq 1$
- B: $e_{A} /\left(e_{B}+\alpha e_{A}\right) \leq 1 / \alpha$
${ }_{26}$ We will almost always overpredict the bias


## Overlap Sampling: Neglected-Sample




- Neglected sample bias helps B perturbation quite a bit, although the correction is too large at first
- Neglected sample bias overcorrection is large for A, primarily because the largest contribution sample is very unlikely there.


## Outline

- Bias in free-energy calculations
- Neglected-tail bias model
- Neglected-sample bias model
- Overlap sampling (BAR) and work distributions
- Some methods for solid phases
- Harmonically-targeted temperature perturbation (HTTP)
- NPT simulations


## Solid-Phase Free Energies, etc.

- Free-energy calculations can exploit the near-harmonic nature of the solid phase

$$
A=A_{\text {lat }}+A_{\text {harm }}+A_{\text {anharm }}
$$

- $A_{\text {lat }}$ is just the sum energy for the perfect lattice
- $A_{\text {harm }}$ can be obtained by lattice dynamics
- Free-energy calculation focuses on $A_{\text {anharm }}$
- Strategy
- Integrate in temperature from $\mathrm{T}=0\left(\right.$ where $\left.A_{\text {anharm }} \rightarrow 0\right)$
- Use targeted perturbation to isolate contribution of $A_{\text {anharm }}$ for increasing temperature


## HTTP (Harmonically Targeted Temperature Perturbation)

- Within the harmonic system, squared displacement is proportional to temperature
- When perturbing between temperatures $T_{1}$ and $T_{2}$, we scale coordinates (measured from lattice sites) as $x_{2}=x_{1}\left(T_{2} / T_{1}\right)^{0.5}$
- Anharmonic contribution is given via exponential average of energy change after scaling of coordinates

$$
e^{-\Delta\left(\beta A_{\mathrm{anharm}}\right)}=\left\langle e^{-\Delta(\beta U)}\right\rangle
$$

- Use overlap sampling and perturb up and down in $T$
- Advantages
- Smaller quantity to average
- Precision increases to degree system is harmonic
- Gives exact result (no noise) for perfectly harmonic system


## Example - Soft Spheres

- Free energy at melting
- $\mathrm{T}=1, \rho=1.1964$
- Finite-size effects on $A_{\text {anharm }}$ are very small!


画

## Solid-Phase NPT Simulation Algorithm

- When proposing volume change trials, we use coordinate scaling to update molecule positions

$$
\boldsymbol{r}=\boldsymbol{s}\left(\frac{1}{V} e^{\beta\left(P V+U_{\mathrm{la}}(\rho)\right)}\right)^{1 /(N-1) D}
$$

- Accept or reject trial with probability

$$
\chi=e^{-\beta\left(\Delta \mathrm{U}-\Delta \mathrm{U}_{\mathrm{lax}}\right)}
$$

- Pressure doesn't appear in acceptance!
- Its effect is felt instead in the coordinate scaling
- For hard spheres, if we can propose a volume change that does not cause overlaps, we will accept it
- Expansion can lead to overlap


## Results: Hard Spheres

- Simulate 256 hard spheres at $P=23.3$ for $10^{9}$ steps

|  | Standard move | Improved move |
| :--- | :---: | :---: |
| $<\rho>$ | $1.1997(3)$ | $1.200042(11)$ |
| step size | 0.000336 | 0.0127 |
| $\sigma_{V} / V$ | 0.00547 | 0.00549 |

- Densities agree, precision is improved by $33 \times$
- Step is $38 \times$ larger
- Obtain more than twice the size of fluctuations in $\ln V$


## Results: Hard Spheres

- Calculate average atomic displacement

- Standard scaling leaves configuration with inappropriate atomic displacements
- Translation MC moves must be used to relax configuration
- Excellent agreement between improved scaling and measured displacements


## Two other applications

- Results are still very good in other applications
- Albeit not as impressive as hard spheres
- Lennard-Jones spheres
- Simulate 500 Lennard-Jones spheres at $P=19.9$ for $10^{9}$ steps
- Densities agree, precision is improved by $62 \%$
- Step size is $10 \%$ larger, more than double the fluctuations in $\ln \mathrm{V}$
- Hard dumbbell crystal
- Scale rotational coordinates also
- Simulate 144 hard dumbbells at $P=45$ for $10^{9}$ steps
- Densities agree, precision improved by $3 \times$
- Step size is $6 \times$ larger, about $1 / 3$ the size of fluctuations in $\ln V$
- Compare to < $1 / 15$ for standard move


## Outline

- Bias in free-energy calculations
- Neglected-tail bias model
- Neglected-sample bias model
- Overlap sampling (BAR) and work distributions
- Some methods for solid phases
- Harmonically-targeted temperature perturbation (HTTP)
- NPT simulations

