

Two-Metal Ion Catalysis by Ribonuclease H

Edina Rosta

Department of Chemistry King's College London

Phosphate Groups as Building Blocks

Biological importance:

- Reproduction: DNA and RNA hydrolysis, synthesis Regulation of gene expression
- Energy storage and transfer: ADP/ATP equilibrium provides energy for reactions in the cells
- Signaling:

Phosphorylation activates or deactivates proteins in regulatory processes

• Theoretical importance:

- Reaction mechanism
- Highly charged species
- Solvation effects
- Charge transfer, polarization effects
- Large entropy effects
- Metal ions in enzymes

Two-Metal Ion Catalysis

IN active site + Raltegravir (drug molecule for HIV-IN)

> Krishnan, et. al., *PNAS*, 2010 Hare, et. al, *Nature*, 2010

HIV-RT RNase H active site + inhibitor beta-thujaplicinol superimposed with human RNase H active site

> Nowotny, et al., *Cell*, 2007 Himmel, et al., *Cell*, 2009

- Why are metal ions indispensable?
- Can we understand their catalytic roles based on quantum chemistry?

RNase H Catalytic Reaction

 B. halodurans RNase H complexed with RNA/DNA duplex substrate

Nowotny, et. al, Cell, 2005

- Crystal structure includes bound
 Mg²⁺-ions in active site
- Enzyme catalyzes the nonspecific cleavage of the RNA backbone phosphate ester bond in the RNA/DNA duplex via hydrolytic mechanism
- Same type of active site is major drug target in HIV-RT

Computational Methods

 NEW QM/MM implementation with Q-Chem
 +CHARMM using full electrostatic embedding

Woodcock et al., J. Comp. Chem., 2007

- Phosphate-diester hydrolysis by attacking water
- DFT B3LYP method
- Free energy calculations using Umbrella Sampling

Shao, et al., Phys. Chem. Chem. Phys., 2006

Umbrella Sampling

 $E_{i}(q_{A}) = U_{pot}(q_{A}) + \frac{1}{2}k_{i}(\xi_{A} - \xi_{i})^{2}$

- Run parallel simulations with harmonic constraints moving along the reaction coordinate
- Recover the unbiased free energy surface from combined data using e.g., WHAM

Reaction Coordinate

• 1D coordinate:

 Q_e = Bond breaking (r1) – Bond forming (r2)

 Allows to distinguish between associative/dissociative mechanisms

More O'Ferrall-Jencks diagram

Umbrella Sampling along Q_e

Automated search for discontinuities in atomic distances

Analyze atomic distances 3.5 (Å along umbrella r3 sampling windows for istance 2.5 discontinuities 2 r₃ 0.5 -2 -0.5 -1.5 -1 0 Reaction coordinate Q_{Δ} (Å)

Electron transfer: $Q_e = r_1 - r_2$ Proton transfer: $Q_p = r_3 - r_4$

Hamiltonian Replica Exchange

Why replica exchange? Can we optimize our protocol?

K. Hukushima and K. Nemotto, J. Phys. Soc. Japan, 1996 Fukunishi, Watanabe & Takada, J. Chem. Phys., 2002

- Running MD at different temperatures in parallel
- Couple the runs in order to speed up lowest
 - temperature's dynamics
- Temperature Preserve P_{eq} at each temperature
 - Detailed balance condition has to be satisfied

State Assignment in Protein Folding Simulations

$$\frac{dP_i}{dt}(t) = \sum_{\substack{j=1\\(j\neq i)}}^N \mathbf{k}_{i\leftarrow j} P_j(t) - \sum_{\substack{j=1\\(j\neq i)}}^N \mathbf{k}_{j\leftarrow i} P_i(t)$$

Replica 2 trajectory

Folding@home, V. Pande, Stanford

Two-State Kinetic Model of Replica Exchange and Simulated Tempering

W. Zheng, M. Andrec, E. Gallicchio and R. Levy, PNAS, 2007

Replica Exchange Rate

Coarse Graining Replica Exchange Coupled States: Fast Exchange Limit

N temperatures (2^{*N*} microstates)

Kinetic Theory: Continuum Limit

 Smoluchowski equation for diffusion in a one-dimensional harmonic potential

• Analytic solution for the slowest relaxation rate of the system:

$$\lambda = \frac{D}{\sigma^2} = \frac{K_{n_{\max} - 1, n_{\max}}}{\sigma^2}$$

$$\lambda_{\text{REMD}} = \frac{\sum_{i=1}^{N} \lambda(T_i) p_F(T_i) p_U(T_i)}{\sum_{i=1}^{N} p_F(T_i) p_U(T_i)}$$

Exact for $N \to \infty$ and $k_{RE} \to \infty$.

Folding/Unfolding of Ala₅

- All-atom simulations of Ala₅ in explicit water
- State correlation function of all temperatures:

$$c(t) = \frac{\left\langle s(t)s(0) \right\rangle_T - \left\langle s(t) \right\rangle_T^2}{\left\langle s(t)^2 \right\rangle_T - \left\langle s(t) \right\rangle_T^2}$$

 Fit for λ matches the prediction perfectly using the corresponding folding/unfolding rates!

Efficiency of Replica Exchange

Fraction folded

Estimating the mean of the folding state function s(t):

 Efficiency = relative error compared to standard MD simulations using the same computational resources:

$$\eta = \frac{\sigma_{MD}^{2}(Nt_{sim})}{\sigma_{REMD}^{2}(t_{sim})} = \frac{\sigma_{MD}^{2}(t_{sim})}{N\sigma_{REMD}^{2}(t_{sim})}$$

• Estimate of the error of a general property Y:

٦

$$Y(t) \cong \left(\langle Y \rangle_F - \langle Y \rangle_U\right) s(t) + \langle Y \rangle_U \Longrightarrow \operatorname{var}\left(\overline{Y}\right) \cong \left(\langle Y \rangle_F - \langle Y \rangle_U\right)$$

• Error in estimating the folding probability, *s*:

$$\sigma^{2}(t_{sim}) = \operatorname{var}(\bar{s}) = \frac{2}{t_{sim}^{2}} \int_{0}^{t_{sim}} (t_{sim} - t) c_{s}(t) dt$$

Efficiency of Replica Exchange

Results I: Kinetic Modeling

- Analytical efficiency expression is derived for *replica* exchange & simulated tempering simulations in the limit of fast exchange.
- Efficiency for slow exchange is obtained by numerical solution of the full kinetic rate matrix problem.
- Replica exchange & simulated tempering simulations have identical efficiencies in the limit of fast exchange.
- Model provides guidance for optimal simulation protocol to minimize the statistical error (*e.g.*, T-spacing, exchange frequency, *etc.*).

Rosta and Hummer, *J.Chem. Phys.*, 2009 Rosta and Hummer, *J.Chem. Phys.*, 2010

Computational Methods

NEW QM/MM implementation with Q-Chem
 +CHARMM using full electrostatic
 embedding

Woodcock et al., J. Comp. Chem., 2007

- Phosphate-diester hydrolysis by attacking water
- DFT B3LYP method
- Free energy calculations using Umbrella Sampling
- COUPLED WITH HAMILTONIAN REPLICA EXCHANGE

Shao, et al., Phys. Chem. Chem. Phys., 2006

Hamiltonian replica exchange

- Smoother curves better sampling
- Does not add extra cost to the simulations
- Discontinuity problem is not solved – could not help overcome proton transfer barrier

Rosta, Woodcock, Brooks, Hummer, J. Comp. Chem., 2009

Hysteresis in low dimensional reaction coordinates

Energy minimizations along Q_x:

(Fix value along Q_x, minimize along all other coordinates.)

Steepest Descent (SD):

- Passes through transition state
- Computationally not feasible
- Local search (L):
 - Overestimates barrier
 - Shows hysteresis
- Global search (G):
 - Underestimates barrier
 - Characterized by discontinuity

Rosta, Woodcock, Brooks, Hummer, J. Comp. Chem., 2009

Hysteresis in low dimensional reaction coordinates

Free energy calculations:

Perfect sampling + wrong reaction coordinate = underestimate the barrier of the 1D (PMF) free energy profile -- Characterized by discontinuity

 $e^{-G(Q_x)/k_BT} =$

 $\int dQ_{y} e^{-G(Q_{x},Q_{y})/k_{B}T}$

Rosta, Woodcock, Brooks, Hummer, J. Comp. Chem., 2009

Hamiltonian replica exchange

- Smoother curves better sampling
- Does not add extra cost to the simulations
- Discontinuity problem is not solved – could not help overcome proton transfer barrier

Electron transfer:

$$Q_e = r_1 - r_2$$

Proton transfer:

 $Q_p = r_3 - r_4$

New coordinate for additional 1D umbrella sampling: $Q_{ep} = Q_e + Q_p$

2D-WHAM with proton transfer + electron transfer coordinate, Q_{ep}

First proton transfer, then ET (bond breaking/forming at P)

Computational Methods

NEW QM/MM implementation with Q-Chem
 +CHARMM using full electrostatic
 embedding

Woodcock et al., J. Comp. Chem., 2007

- Phosphate-diester hydrolysis by attacking water: QM region with 91 atoms
- DFT B3LYP method (6-31+G* basis)
- Free energy calculations of the reaction with enhanced sampling methods: Hamiltonian replica exchange coupled with finite temperature string method

Shao, Rosta, et al., Phys. Chem. Chem. Phys., 2006

 Optimized a 1D string in the multidimensional space of the internal reaction coordinates to obtain minimum free energy path

E, Ren, Vanden-Eijnden, Phys. Rev. B, 2002

 Hamiltonian replica exchange between string images

TS

R₁

PS

 R_2

- Start with a guess for the string
- Run Umbrella Sampling simulations
- Determine forces for the images along the string
 RS
- Fit new string

- Start with a guess for the string
- Run Umbrella Sampling simulations
 - Determine forces acting on the images along the string
 - Fit new string
 - Redistribute images
- Run next iteration

- Converged string:
 - Forces are parallel to string
- We use all data from all string simulations with Histogram Free

implementation of WHAM
(MBAR): works with very high
dimensionality

Proton Transfer Pathways

Step I. Deprotonation of water via downstream phosphate group а. **Base** h via Glu188 via cleaved phosphate С. De Vivo et al. JACS, 2008 **Step II.** Protonation of leaving group н via 2'OH of sugar а. via cleaved phosphate b. Asp132 via conserved Asp132

Thiol substitution experiments on the accepting *O* atom show a nearly *10-fold reduction* in reaction rate.

Haruki et. al., Biochemistry, 2000

Rosta, Nowotny, Yang, Hummer, J. Am. Chem. Soc., 2011

RNase H: Free Energy Surface

 $Q_p = r_3 - r_4 + r_5 - r_6 + r_7 - r_8$

Free Energy Surface

It has been thought that proton transfer is generally facile, however, we find that *barriers are dominated by proton transfer!*

RNase H: Mechanism for Deprotonation (Step 1)

....HIOH

 OH_2

Asp71 of

 \cap

Asp192

0

Glu188

RNase H: Deprotonation *via* Downstream Phosphate

RNase H: Mechanism for Protonation (Step 2)

Product Formation via Asp132

Pentacoordinated Mg²⁺-ion B becomes more symmetrical @ TS

ASD.

✔ Glu109

- More symmetric coordination of Mg²⁺-ion *B* lowers the TS energy
- Shorter distance of Mg²⁺-ion B to the leaving group stabilizes the negative charge by lowering the pK_a of the leaving group

Single Metal-Ion Substitutions: QM Region and Reaction Coordinates

Substitutions at single metal ion sites: Mg²⁺ vs. Ca²⁺

Replacing either Mg²⁺ metal ions by Ca²⁺ abolishes catalysis.

Rosta, Yang, Hummer, in prep., 2012

Metal Ion *A* Site: Geometric effects do not play a major role

Rosta, Yang, Hummer, in prep., 2012

Role of partial charge transfer to metal ion *A*

Substitutions at metal ion A site with a series of divalent metal ions using Mg-optimized reaction pathway. (aug-cc-pVTZ(PP) basis set)

Metal Ion Charge (e)

30

28

26

14

12

10

Role of metal ion A

Substitutions at metal ion A site with a series of divalent metal ions using Mg-optimized reaction pathway.

- A multidimensional finite temperature string reaction coordinate method is developed for QM/MM free energy calculations with application to RNase H.
- Hamiltonian Replica Exchange is extended to enhance sampling with *String Free Energy* simulations.
- Several PT mechanistic pathways are identified in RNase H catalytic reaction. The reaction barrier (rate) agrees well with experiment for the most probable path.
- PT dominates the reaction barrier suggesting that enzymes use metal ions to help lower the pK_a of attacking and leaving groups.
- High resolution TS structures can be used in further simulations for predicting changes in catalysis upon perturbations such as binding of drug molecules

Acknowledgements

Gerhard Hummer

(Laboratory Of Chemical Physics, NIDDK, NIH)

X-Ray crystallography: Wei Yang (LMB, NIDDK, NIH) Marcin Nowotny (IIMCB, Warsaw) Kinetic theory: Attila Szabo (LCP, NIDDK, NIH) CHARMM + Q-Chem: Bernard Brooks (NHLBI, NIH) Lee Woodcock (USF, Tampa) Yihan Shao (Q-Chem)

