

Free energy techniques in Bayesian Statistics

Gabriel STOLTZ

stoltz@cermics.enpc.fr

(CERMICS, Ecole des Ponts & MICMAC team, INRIA Rocquencourt)

CECAM workshop, June 2012

Gabriel Stoltz (ENPC/INRIA)

CECAM workshop, June 2012 1 / 26

Outline

Sampling a mixture model in Bayesian statistics

- Description of the model
- Choosing a reaction coordinate
- Free energy biased sampling

Convergence and efficicency of the Wang-Landau algorithm

- Description of our flavor of the Wang-Landau algorithm
- Convergence of the algorithm
- Assessing an improved convergence rate

[CLS12] N. Chopin, T. Lelièvre and G. Stoltz, *Statist. Comput.*, 2012 [FJLS12] G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre and G. Stoltz, in preparation

Sampling a mixture model in Bayesian statistics

Description of the mixture model

- Data set $\{y_i\}_{i=1,...,N_{\text{data}}}$ approximated by mixture of K Gaussians $f(y \mid \theta) = \sum_{i=1}^{K} q_i \sqrt{\frac{\lambda_i}{2\pi}} \exp\left(-\frac{\lambda_i}{2}(y-\mu_i)^2\right)$
- Parameters $\theta = (q_1, \dots, q_{K-1}, \mu_1, \dots, \mu_K, \lambda_1, \dots, \lambda_K)$ with

$$\mu_i \in \mathbb{R}, \quad \lambda_i \geqslant 0, \quad 0 \leqslant q_i \leqslant 1, \quad \sum_{i=1}^{K-1} q_i \leqslant 1$$

• Prior distribution $p(\theta)$: Random beta model

Aim

Find the values of the parameters (namely θ , and possibly K as well) describing correctly the data

[RG97] S. Richardson and P. J. Green. *J. Roy. Stat. Soc. B*, 1997. [JHS05] A. Jasra, C. Holmes and D. Stephens, Statist. Science, 2005

Target distribution

Prior distribution: additional variable $\beta \sim \Gamma(g, h)$

• uniform distribution of the weights q_i

•
$$\mu_k \sim \mathcal{N}\left(M, \frac{R^2}{4}\right)$$
 with M = mean of data, R = max – min

•
$$\lambda_k \sim \Gamma(lpha, eta)$$
 with $g = 0.2$ and $h = 100 g/lpha R^2$

Posterior density
$$\pi(heta) = rac{1}{Z_{\mathcal{K}}} p(heta) \prod_{i=1}^{N_{\mathrm{data}}} f(y_i \,|\, heta)$$

- Initial conditions: equal weights, means and variances for the Gaussians
- Metropolis random walk with (anisotropic) Gaussian proposals
- Metastability: at least K! 1 symmetric replicates of any mode, but there may be additional metastable states
- $\bullet\,$ Metastability increased when $\textit{N}_{\rm data}$ increases

Fish data

Left: Lengths of snappers ($N_{data} = 256$), and a possible fit for K = 3 using the last configuration from the trajectory plotted in the right picture.

Right: Typical sampling trajectory, gaussian random walk with $(\sigma_q, \sigma_\mu, \sigma_\nu, \sigma_\beta) = (0.0005, 0.025, 0.05, 0.005).$

[IS88] A. J. Izenman and C. J. Sommer, J. Am. Stat. Assoc., 1988.
 [BMY97] K. Basford et al., J. Appl. Stat., 1997

```
Gabriel Stoltz (ENPC/INRIA)
```

Hidalgo stamp data

Left: Thickness of Mexican stamps ($N_{data} = 485$), and two possible fits for K = 3 ("genuine multimodality", solid line: dominant mode).

Right: Typical sampling trajectory, gaussian random walk with $(\sigma_q, \sigma_\mu, \sigma_v, \sigma_\beta) = (0.001, 0.05, 0.1, 0.005).$

[TSM86] D. Titterington *et al.*, *Statistical Analysis of Finite Mixture Distributions*, 1986. [FS06] S. Frühwirth-Schnatter, *Finite Mixture and Markov Switching Models*, 2006.

Gabriel Stoltz (ENPC/INRIA)

CECAM workshop, June 2012 7 / 26

Numerical procedure

Computation of the bias for a given reaction coordinate:

- Metropolis dynamics with Gaussian proposals
- Choose a reaction coordinate ξ
- ABF for q, μ , β , Self-Healing Umbrella Sampling for V
- Output: approximation A(z) of the free energy associated with ξ

Biased dynamics:

- Sample $\pi_A(\theta) \propto \pi(\theta) e^{A(\xi(\theta))}$
- Cauchy proposals with $au_{\mu}=R/1000$, $au_{
 m v}=2/R^2$, $au_{eta}=2lpha R^2 imes 10^{-5}$

Reweighting procedure:
$$\mathbb{E}_{\pi}(\varphi) = rac{\mathbb{E}_{\pi_{A}}\left(\varphi \exp\left\{-A \circ \xi\right\}\right)}{\mathbb{E}_{\pi_{A}}\left(\exp\left\{-A \circ \xi\right\}\right)}$$

[DP01] E. Darve and A. Pohorille, J. Chem. Phys., 2001
[HC04] J. Hénin and C. Chipot, J. Chem. Phys., 2004
[MBCPS06] S. Marsili et al., J. Phys. Chem. B, 2006

Adpative dynamics

Decompose the state space using slabs $\{\theta : \xi(\theta) \in (z_i, z_{i+1})\}$. Perfect convergence (statistical error, Δz ,...) not required because of reweighting

Self-Healing Umbrella sampling: parameter free, no derivative needed. For $z \in (z_i, z_{i+1})$,

$$\exp\{-A_t(z)\} = \frac{1}{Z_t} \left(1 + \sum_{j=1}^{t-1} \mathbf{1}_{\{z_i \leq \xi(\theta_j) < z_{i+1}\}} \exp\left[-A_j \circ \xi(\theta_j)\right]\right),$$

Adaptive Biasing Force: discrete integration of the approximate mean force (hence smoother potential)

$$egin{aligned} \mathcal{F}_t(z) &= rac{\displaystyle\sum_{j=1}^{t-1} f(heta_j) \mathbf{1}_{\{z_i \leqslant \xi(heta_j) \leqslant z_{i+1}\}}}{\displaystyle\sum_{j=1}^{t-1} \mathbf{1}_{\{z_i \leqslant \xi(heta_j) \leqslant z_{i+1}\}}} \end{aligned}$$

Choice of the reaction coordinate

- How fast does the approximate free energy A_t converge to A?
- How efficient is the importance sampling/reweighting?
- (1) How efficient is the MCMC sampling of the biased density?
- (2) How representative are the points simulated from the biased distribution? (non-negligible weights)

$$\mathrm{EF} = \frac{\left(\sum_{n=1}^{N} w(\theta_n)\right)^2}{T \sum_{n=1}^{N} w(\theta_n)^2} \simeq \frac{\left(\int_{z_{\min}}^{z_{\max}} \exp\left\{-\widehat{A}(z)\right\} dz\right)^2}{(z_{\max} - z_{\min}) \int_{z_{\min}}^{z_{\max}} \exp\left\{-2\widehat{A}(z)\right\} dz}$$

• How difficult is it to determine, a priori, an interval for the reaction coordinate values?

Free energies for various reaction coordinates (Fishery)

Trajectories of (μ_1, μ_2, μ_3) , biased dynamics (Fishery)

Free energies for various reaction coordinates (Hidalgo)

Trajectories of (μ_1, μ_2, μ_3) , biased dynamics (Hidalgo)

Efficiency factors

Fishery data, K = 3

Reaction coordinate	β	potential	q_1	μ_1
EF (numerical)	0.17	0.16	0.48	0.04
EF (theoretical)	0.179	0.178	0.454	0.079

Fishery data, $\xi = \beta$

K	3	4	5	6
EF (numerical)	0.17	0.18	0.17	0.16
EF (theoretical)	0.179	0.195	0.180	0.171

Hidalgo, K = 3

Reaction coordinate	β	potential	q_1
EF (numerical)	0.02	0.24	0.23
EF (theoretical)	0.06	0.13	0.18

Why β works

Suggested range (statistical arguments): β is a small fraction of R^2 , *e.g.* $z_{\min} = R^2/2000$ and $z_{\max} = R^2/20$

Simulated pairs $(\mu_1, \log \lambda_1)$ conditional $\beta \in [0, 0.5]$, [1.5, 2] and [3.5, 4]

When β is large, large variances of the modes are favored by the prior distribution (density $\lambda^{\alpha-1} \exp(-\beta\lambda)$ and variance $v = \lambda^{-1}$)

 \rightarrow the modes cover the full range of data and switchings are made easier

Convergence of the Wang-Landau algorithm

Description of the Wang-Landau algorithm (1)

• **Partitioning** of the space X intro subsets X_i with weights

$$\theta_{\star}(i) \stackrel{\mathrm{def}}{=} \int_{\mathsf{X}_{i}} \pi(x) \, dx$$

Typically,
$$X_i = \xi^{-1} ([\alpha_{i-1}, \alpha_i))$$
 and $\pi(x) = e^{-U(x)}$

• Importance sampling to reduce metastability issues: biased measure

$$\pi_{\theta}(x) = \left(\sum_{i=1}^{d} \frac{\theta_{\star}(i)}{\theta(i)}\right)^{-1} \sum_{i=1}^{d} \frac{\pi(x)}{\theta(i)} \mathbb{1}_{X_{i}}(x)$$

for any $\theta \in \Theta = \left\{ \theta = (\theta(1), \cdots, \theta(d)) \ \middle| \ 0 < \theta(i) < 1, \ \sum_{i=1}^{d} \theta(i) = 1 \right\}$

[WL01] F. Wang and D. Landau, Phys. Rev. Lett. & Phys. Rev. E, 2001

Description of the Wang-Landau algorithm (2)

Linearized WL in the stochastic approximation setting Given $X_0 \in X$ and weights $\theta_0 \in \Theta$ (typically $\theta_0(i) = 1/d$), (1) draw X_{n+1} from conditional distribution $P_{\theta_n}(X_n, \cdot)$ (Metropolis); (2) assume that $X_{n+1} \in X_i$. The weights are then updated as

$$\begin{cases} \theta_{n+1}(i) = \theta_n(i) + \gamma_{n+1} \ \theta_n(i) \left(1 - \theta_n(i)\right) \\ \theta_{n+1}(k) = \theta_n(k) - \gamma_{n+1} \ \theta_n(k) \ \theta_n(i) & \text{for } k \neq i. \end{cases}$$
(1)

Comparison with original Wang-Landau algorithm

- deterministic step-sizes γ_n , to be chosen appropriately
- no "flat histogram" criterion

• no flat histogram chieffon • linearized weight update $\theta_{n+1}(i) = \theta_n(i) - \frac{1 + \gamma_{n+1} \mathbb{1}_{I(X_{n+1})=i}}{d}$

[AL10] Y. Atchade and J. Liu, Stat. Sinica, 2010 [Liang05] F. Liang, J. Am. Stat. Assoc., 2005

 $1+\sum_{i=1}^{n}\gamma_{n+1}\theta_n(j)\mathbb{1}_{I(X_{n+1})=i}$

Stochastic approximation framework

SSA reformulation

Define
$$\eta_{n+1} = H(X_{n+1}, \theta_n) - h(\theta_n)$$
 and $h(\theta) = \int_X H(x, \theta) \pi_{\theta}(x) dx$. Then,
 $\theta_{n+1} = \theta_n + \gamma_{n+1} h(\theta_n) + \gamma_{n+1} \eta_{n+1}$.

Here,
$$H_i(x,\theta) = \theta(i) \left(\mathbbm{1}_{X_i}(x) - \theta(I(x))\right)$$
 and $h(\theta) = \left(\sum_{i=1}^d \frac{\theta_{\star}(i)}{\theta(i)}\right)^{-1} \left(\theta_{\star} - \theta\right)$

Idea of proofs:

- η_n is a "small, random" perturbation
- the mean-field function h ensures the convergence to θ_{*} in the absence of noise: there is a Lyapunov function V such that (∇V, h) < 0 when θ ≠ θ_{*}
- conditions on the step-sizes

Assumptions

- The density π with respect to the measure λ is such that $\sup_X \pi < \infty$ and $\inf_X \pi > 0$. In addition, $\theta_{\star}(i) > 0$.
- For any $\theta \in \Theta$, P_{θ} is a Metropolis-Hastings dynamics with invariant distribution π_{θ} and symmetric proposal distribution with density q(x, y) satisfying $\inf_{X^2} q > 0$.
- the sequence (γ_n)_{n≥1} is a non-negative deterministic sequence such that

 (a) (γ_n)_n is a non-increasing sequence converging to 0;
 (b) sup_n γ_n ≤ 1;
 (c) Σ_n γ_n = ∞;
 (d) Σ_n γ²_n < ∞;
 (e) Σ_n |γ_n γ_{n-1}| < ∞.

Examples of acceptable step-sizes: $\gamma_n = \frac{\gamma_*}{n^{lpha}}$ with $lpha \in (1/2, 1]$

Convergence of the Wang-Landau algorithm

The aim is to apply general convergence results in SSA.

Weak stability result

The weight sequence almost surely comes back to a compact subset of $\boldsymbol{\Theta}$

$$\limsup_{n\to\infty}\left(\min_{1\leqslant j\leqslant d}\theta_n(j)\right)>0\quad \text{a.s.}$$

Convergence result

The sequence $\{\theta_n\}$ almost surely converges to θ_{\star} , and

$$\frac{1}{n}\sum_{k=1}^n f(X_k) \xrightarrow{\text{a.s.}} \int f(x) \, \pi_{\theta_\star}(x) \, dx$$

Various ways to recover averages with respect to π (instead of π_{\star}).

[AMP05] C. Andrieu, E. Moulines, and P. Priouret, SIAM J. Control Opt., 2005.

Efficiency of the Wang-Landau algorithm?

Various to quantify the efficiency

- convergence rate (asymptotic variance)
- exit times out of metastable states
- references: unbiased dynamics and dynamics at $\theta = \theta_{\star}$ fixed

Asymptotic variance:

- additional assumptions on the step-sizes (satisfied for $\gamma_n \sim \gamma_\star/n^{\alpha}$ when $\alpha \in (1/2, 1]$ or $\gamma_n = \gamma_*/n$ with $\gamma_* > d/2$)
- ullet comparison with "ideal" dynamics $Y_{n+1} \sim P_{ heta_\star}(Y_n, \cdot)$ and

$$\widetilde{\theta}_{n+1} = \widetilde{\theta}_n + \gamma_{n+1} H(Y_n, \theta_\star),$$

- the sequences θ_n and θ_n have the same asymptotic variances, which are of order $O(\gamma_n)$
- with averaging: variance of order 1/n in all cases

First exit times: toy analytical example

Description of the dynamics

• three state model with $\theta_2^* = \frac{\varepsilon}{2-\varepsilon}$ and $\theta_1^* = \theta_3^* = \frac{1-\varepsilon}{2-\varepsilon}$

• in typical applications, $\varepsilon \sim \exp(\beta E_0)$

• proposal: equilikely jumps to nearest neighbor only (1 \rightarrow 2, 2 \rightarrow {1,3} and 3 \rightarrow 2)

Scaling of the exit times

- first exit times $T_{1
 ightarrow 3} = \min \left\{ n \, : \, I_n = 3 \text{ starting from } I_0 = 1
 ight\}$
- non-adpative dynamics: $T_{1 \rightarrow 3} \sim \frac{1}{c}$

• Adaptive dynamics:
$$T_{1\rightarrow 3} \sim \begin{cases} |\ln \varepsilon|^{1/(1-\alpha)} & \text{for } \alpha \in (0,1) \\ \varepsilon^{-1/(1+\gamma_*)} & \text{for } \alpha = 1 \end{cases}$$

First exit times: numerical results (1)

Entropic switch, Metropolis dynamics with isotropic Gaussian proposals

[PSLS03] S. Park, M. K. Sener, D. Lu, and K. Schulten, J. Chem. Phys., 2003

Gabriel Stoltz (ENPC/INRIA)

CECAM workshop, June 2012 25 / 26

First exit times: numerical results (2)

Table: Exponents of the scaling law $T_{\beta} \sim C_{\alpha} \beta^{\mu_{\alpha}}$ for $\gamma_n = n^{-\alpha}$ with $0 < \alpha < 1$.

α	μ_{α}	theoretical
0.125	1.11	1.14
0.25	1.30	1.33
0.375	1.55	1.60
0.5	2.02	2
0.625	2.72	2.67
0.75	4.06	4

Table: Exponents of the scaling law $T_{\beta} \sim \exp(\mu_{\gamma_*}\beta)$ for $\gamma_n = \gamma_*/n$.

γ_*	μ_{γ_*}	μ_{γ_*}/μ_0
0	2.32	1
1	1.74	0.75
2	1.51	0.65
4	1.25	0.54
8	0.92	0.40

Non-adaptive dynamics: $\alpha = 1$ and $\gamma_* = 0$

Conclusion: adaptive dynamics allow to go from exponential scalings of the exit times to power-law scalings.