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Illustration of the method

Applications:

   Modeling the CaM-free conformation of adenylate cyclase

   CO diffusion in myoglobin

   Activation loop conformational transition in insuline receptor kinase

Outline



Consider a system    subject to a potential    

The Free Energy (potential of mean force)

The PMF           associated to the          variables is defined via their probability 
density function  

* Useful to organize and interpret Molecular Dynamics (or Monte Carlo) 
simulations results 

* Gives information on relative time spent by the system in different configurations 
and the rate of transitions between them 

Introduce     functions of the system’s coordinates (collective variables)  

Definition of free energy

Consider a system with positions denoted as x, whose probability density function
(PDF) is Boltzmann-Gibbs

ρ(x) = Z−1e−βV (x) Z =
�

Ω
e−βV (x)dx

where V (x) denotes the potential energy and 1/β > 0 the temperature.

Introduce N functions of the system’s coordinates (collective variables) denoted as

θ(x) = (θ1(x), . . . , θN(x)) .

The free energy A(z) of the system with respect to the θ(x) variables is defined such
that e−βA(z) is the PDF of the variables θ(x):

A(z) = −β−1 logZ−1
�

Ω
e−βV (x)

N�

i=1

δ(θi(x)− zi) dx
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ρ(x) ∝ e−V (x)/kBT

AT (z)

AT (z) = −kBT lnZ−1

�
e−V (x)/kBT

�
δ(θ(x)− z)dx



Temperature Accelerated Molecular Dynamics

Suppose we could simulate:

ρ(z) ∝ e−AT (z)/kB T̄

The trajectory would sample

γ̄żi = −∂AT (z)

∂zi
+
�

2kBT̄ γ̄η(t)

kBT̄ � ∆AT (z)

Then to cross over free energy barriers we could take



Temperature Accelerated Molecular Dynamics

Suppose we could simulate:

γ̄żi = −∂AT (z)

∂zi
+
�

2kBT̄ γ̄η(t)

The negative gradient of the PMF (mean force) can be computed locally via an 
expectation on    , conditional on                  .

Is it possible to sample the free energy A(z) from a dynamics of z variables?

If A(z) is the free energy computed at physical temperature β−1, consider

γ̄żj = −
∂A(z)

∂zj
+

�
2β̄−1γ̄ ηz

j(t)

with 1/β̄( �= 1/β).

The negative gradient of the free energy, the mean force f(z) = −∇zA(z), is a local
quantity that can be computed at point z via calculation of an expectation on x.

Multi-scale framework: estimate the mean force locally at z from the microscopic dy-
namics, and use it to evolve z. Re-initialization problem for the microscopic dynamics.

⇒ Seamless scheme (E, Ren, Vanden-Eijnden): evolve x and z concurrently, with two
different clocks, exchanging data at every step. re-initialization problems for the 

Definition of free energy

Consider a system with positions denoted as x, whose probability density function
(PDF) is Boltzmann-Gibbs

ρ(x) = Z−1e−βV (x) Z =
�

Ω
e−βV (x)dx

where V (x) denotes the potential energy and 1/β > 0 the temperature.

Introduce N functions of the system’s coordinates (collective variables) denoted as

θ(x) = (θ1(x), . . . , θN(x)) .

The free energy A(z) of the system with respect to the θ(x) variables is defined such
that e−βA(z) is the PDF of the variables θ(x):

A(z) = −β−1 logZ−1
�

Ω
e−βV (x)

N�

i=1

δ(θi(x)− zi) dx

Multi-scale approach: 
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Computing the mean force

Mean force as a conditional average

∂A

∂zα
=

N�

β=1

�
∇V · ∇θβG−1

αβ − β−1∇ ·
�
G−1

αβ∇θβ

��

θ(x)=z

where �·�z denotes expectation with respect to e−βV (x) conditional on θ(x) = z, and
Gαβ(x) = ∇zθα · ∇zθβ.

Blue Moon approach: conditional probability densities from constrained simulations;
simulate with the bare V (x) plus constraints at θ(x) = zk. Compute −∂A/∂zα from
an expression containing the Lagrange multiplier λα enforcing the constraint plus a
correction term.

Sprik & Ciccotti 1998, Ciccotti Kapral Vanden-Eijnden 2005
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Temperature Accelerated Molecular Dynamics

Suppose we could simulate:

γ̄żi = −∂AT (z)

∂zi
+
�

2kBT̄ γ̄η(t)

Seamless scheme (E, Ren, Vanden-Eijnden J. Comput. Physics (2009)): 

evolve     and     concurrently, with two different time-scales, exchanging data at 
every step. 
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http://www.informatik.uni-trier.de/~ley/db/journals/jcphy/jcphy228.html#ERV09
http://www.informatik.uni-trier.de/~ley/db/journals/jcphy/jcphy228.html#ERV09


Temperature Accelerated Molecular Dynamics
L. M. & E. Vanden-Eijnden Chem. Phys. Lett., 426, 168 (2006)

Consider the system of equations

Where      and      are independent white noises,     and     are different frictions,
and       ,         are different temperatures.

Temperature accelerated molecular dynamics (TAMD)

to explore free energy space

Consider the system of equations





γẋi = −
∂V (x)

∂xi
− κ

N�

j=1

(θj(x)− zj)
∂θj(x)

∂xi
+

�
2β−1γ ηx

i (t),

γ̄żj = κ(θj(x)− zj) +
�

2β̄−1γ̄ ηz
j(t)

(�)

where ηx and ηz are independent white-noises, γ̄ and γ are different friction coefficients
and β−1, β̄−1 are different temperatures.

(�) describes the evolution of the coupled system (x, z) ∈ Rn×RN under the potential

Uκ(x, z) = V (x) +
1

2
κ

N�

j=1

(zj − θj(x))2.

When γ/γ̄ → 0 the dynamics for z(t) is approximately

γ̄żj = −
∂Aκ(z)

∂zj
+

�
2β̄−1γ̄ ηz

j(t)

where

Aκ(z) = −β−1 logZκ
−1

�
Ω exp

�
−βV (x)− 1

2βκ
�N

j=1(zj − θj(x))2
�

dx → A(z) as κ→∞

Simulate the system (�) with γ/γ̄ small and κ large to explore free energy space. Take
1/β̄ > 1/β to cross barriers prohibitive for un-coupled θ(x(t)) at 1/β.
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γẋi = −
∂V (x)

∂xi
− κ

N�

j=1

(θj(x)− zj)
∂θj(x)

∂xi
+

�
2β−1γ ηx

i (t),
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L. M. & E. Vanden-Eijnden Chem. Phys. Lett., 426, 168 (2006)
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The limiting equation is a result of standard averaging theorems (G.C. Papanicolaou, 
Rocky Mt. J. Math. 6, 653 (1976); G.C. Papanicolaou, in: R.C. Di Prima (Ed.), Lect. Appl. Math., 16,  American 
Mathematical Society, 1977; E. Vanden-Eijnden, Comm. Math. Sci. 1, 2003 )

as

γ̄żj = −∂Aκ,T (z)

∂zj
+

�
2β̄−1γ̄ηzj (t)

−→ AT (z) κ −→ ∞

Aκ,T (z) = −β−1 lnZ−1

�
exp



−βV (x)− 1

2
βκ

N�

j=1

(zj − θ(x))2



 dx
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AD example:

Left: 3e7 MD simulation steps of uncoupled x. Right: 4e4 MD simulation steps of

coupled system (x, φ, ψ), accelerated in (φ, ψ) by T̄ /T ≈ 17.

TAMD is simple to set-up, works with many collective variables, does not require a

priori knowledge of the free energy landscape. Caveat: Requires to pick suitable CVs

(common issue).

TAMD borrows ideas from AFED (Tuckerman and coworkers 2001-), and metady-

namics (Laio & Parrinello 2002), where A(z) is sampled directly.

Other possibility: use TAMD only for a quick exploration of the free energy landscape,

and reconstruct it in a different way: the single sweep method

40ns of standard MD simulation          40ps of TAMD with

AD example:

Left: 3e7 MD simulation steps of uncoupled x. Right: 4e4 MD simulation steps of

coupled system (x, φ, ψ), accelerated in (φ, ψ) by T̄ /T ≈ 17.

TAMD is simple to set-up, works with many collective variables, does not require a

priori knowledge of the free energy landscape. Caveat: Requires to pick suitable CVs

(common issue).

TAMD borrows ideas from AFED (Tuckerman and coworkers 2001-), and metady-

namics (Laio & Parrinello 2002), where A(z) is sampled directly.

Other possibility: use TAMD only for a quick exploration of the free energy landscape,

and reconstruct it in a different way: the single sweep method

Temperature Accelerated Molecular Dynamics

Simulate the coupled system with         small and    large to explore the PMF landscape
         . Use                     to cross energy barriers prohibitive for uncoupled      

γ/γ̄ κ
β̄−1 > β−1

Why computing the free energy is challenging?

Recall: e−βA(z) is the PDF of θ(x) if x is distributed according to Z−1e−βV (x)

Direct approach: Perform MD simulations of x, monitor θ(x) and bin to reconstruct
the PDF e−βA(z).

Prohibitive because of long time-scales due to metastability.

Again AD example:
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3e7 MD simulation steps (30 nanoseconds): 180 hours on single processor, φ(x) never
crosses zero!

Temperature accelerated molecular dynamics (TAMD)

to explore free energy space

Consider the system of equations





γẋi = −
∂V (x)

∂xi
− κ

N�

j=1

(θj(x)− zj)
∂θj(x)

∂xi
+

�
2β−1γ ηx

i (t),

γ̄żj = κ(θj(x)− zj) +
�

2β̄−1γ̄ ηz
j(t)

(�)

where ηx and ηz are independent white-noises, γ̄ and γ are different friction coefficients
and β−1, β̄−1 are different temperatures.

(�) describes the evolution of the coupled system (x, z) ∈ Rn×RN under the potential

Uκ(x, z) = V (x) +
1

2
κ

N�

j=1

(zj − θj(x))2.

When γ/γ̄ → 0 the dynamics for z(t) is approximately

γ̄żj = −
∂Aκ(z)

∂zj
+

�
2β̄−1γ̄ ηz

j(t)

where

Aκ(z) = −β−1 logZκ
−1

�
Ω exp

�
−βV (x)− 1

2βκ
�N

j=1(zj − θj(x))2
�

dx → A(z) as κ→∞

Simulate the system (�) with γ/γ̄ small and κ large to explore free energy space. Take
1/β̄ > 1/β to cross barriers prohibitive for un-coupled θ(x(t)) at 1/β.

Why computing the free energy is challenging?

Recall: e−βA(z) is the PDF of θ(x) if x is distributed according to Z−1e−βV (x)

Direct approach: Perform MD simulations of x, monitor θ(x) and bin to reconstruct
the PDF e−βA(z).

Prohibitive because of long time-scales due to metastability.

Again AD example:
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3e7 MD simulation steps (30 nanoseconds): 180 hours on single processor, φ(x) never
crosses zero!

AT (z)



Temperature Accelerated Molecular Dynamics

TAMD borrows ideas from other enhanced sampling methods:

Metadynamics (Laio & Parrinello, PNAS 2002 ...)

AFED (Tuckerman and coworkers: Rosso et al. JCP 2002 ...) 

Methods thought to be used to reconstruct            by direct sampling.AT (z)

Rather: use TAMD for a quick exploration of the PMF surface, and then reconstruct 
it at a second stage with different methods.

Advantages of TAMD: 

Untargeted exploration

Can be used with many collective variables
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TAMD simulation of Bordetella pertussis CyaA conformational 
transition

CyaA is a key virulence factor of B.p., the bacterium causing whooping cough. Its toxic 
activity is regulated by calmoduline binding (in red).

In order to understand the molecular basis of activation, it is important to inspect the 
conformation of CyaA before interaction with CaM, but a crystal structure of the isolated 
CyaA is still missing.

calmoduline (CaM)

with E. Selwa, G. Ciccotti and T. Malliavin

To be published soon..
If you have comments, please drop me an email



Reconstruction of PMF surfaces and reaction pathways

Combine TAMD with other methods

Single Sweep for PMF surface reconstruction

String method for finding reaction pathways



Single-sweep method for PMF calculations

Three separate, independent stages:

1) Use TAMD to rapidly explore the unknown PMF landscape

2) Compute the gradient of the PMF (a.k.a mean force) at points selected from the 
TAMD trajectory 

3) Use an interpolation/variational method to reconstruct globally the PMF from 
the mean force data (no more MD)

L. M. & E. Vanden-Eijnden J. Chem. Phys., 128, 184110 (2008)

Advantages: does not rely on histograms; the computational effort is concentrated 
on the mean force calculations: simulations independent from each other that are 
distributed on clusters.



Stage 2: Computing the mean force

Extract points      from TAMD trajectory and simulate

Computing the mean force

At each center zk, simulate

Mẍi = −
∂V (x)

∂xi
− κ̄

N�

j=1

(θj(x)− zk,j)
∂θj(x)

∂xi
+ bath at temperature T

with zk fixed. This describes the evolution of x under the potential (now at zk fixed)

Uκ̄(x, zk) = V (x) +
1

2
κ̄

N�

j=1

(zk,j − θj(x))2.

Estimate the mean force from

fk =
1

T

� T

0
κ̄ (θ(x(t))− zk) dt ≈ −∇zA(z)

The quadratic term in Uκ̄(x, zk) is a restraint to keep θ(x) ≈ zk.

Note: κ̄ can be chosen so that (i) one gets an accurate estimate of the conditional
expectation and (ii) the restraint term is not stiffer than other terms in the MD
potential V (x).

Computing the mean force

At each center zk, simulate

Mẍi = −
∂V (x)

∂xi
− κ̄

N�

j=1

(θj(x)− zk,j)
∂θj(x)

∂xi
+ bath at temperature T

with zk fixed. This describes the evolution of x under the potential (now at zk fixed)

Uκ̄(x, zk) = V (x) +
1

2
κ̄

N�

j=1

(zk,j − θj(x))2.

Estimate the mean force from

fk =
1

T

� T

0
κ̄ (θ(x(t))− zk) dt ≈ −∇zA(z)

The quadratic term in Uκ̄(x, zk) is a restraint to keep θ(x) ≈ zk.

Note: κ̄ can be chosen so that (i) one gets an accurate estimate of the conditional
expectation and (ii) the restraint term is not stiffer than other terms in the MD
potential V (x).

Now with     fixed!

   can be chosen in such a way that one gets accurate estimate but without making 
the system too stiff

Computing the mean force

At each center zk, simulate

Mẍi = −
∂V (x)

∂xi
− κ̄

N�

j=1

(θj(x)− zk,j)
∂θj(x)

∂xi
+ bath at temperature T

with zk fixed. This describes the evolution of x under the potential (now at zk fixed)

Uκ̄(x, zk) = V (x) +
1

2
κ̄

N�

j=1

(zk,j − θj(x))2.

Estimate the mean force from

fk =
1

T

� T

0
κ̄ (θ(x(t))− zk) dt ≈ −∇zA(z)

The quadratic term in Uκ̄(x, zk) is a restraint to keep θ(x) ≈ zk.

Note: κ̄ can be chosen so that (i) one gets an accurate estimate of the conditional
expectation and (ii) the restraint term is not stiffer than other terms in the MD
potential V (x).

Estimate the mean force from

zk

2. Computing the mean force

At each center zk, simulate

γẋi = −
∂V (x)

∂xi
− κ̄

N�

j=1

(θj(x)− zk,j)
∂θj(x)

∂xi
+

�
2β−1γ ηx

i (t) ,

with zk fixed. This describes the evolution of x under the potential (now at zk fixed)

Uκ̄(x, zk) = V (x) +
1

2
κ̄

N�

j=1

(zk,j − θj(x))2.

Estimate the mean force from

fk =
1

T

� T

0
κ̄ (θ(x(t))− zk) dt ≈

�
κ̄(θk(x)− zk)e−βUκ̄(x,zk)dx�

e−βUκ̄(x,zk) dx

= β−1 ∇z

�
log

�
e−βUκ̄(x,zk) dx

�
≈ −∇zA(z)

The quadratic term in Uκ̄(x, zk) is a restraint to keep θ(x) ≈ zk.

Note: κ̄ can be chosen so that (i) one gets an accurate estimate of the conditional
expectation and (ii) the restraint term is not stiffer than other terms in the MD
potential V (x).



Interpolation using Radial Basis Functions 
(Single-Sweep)

The single-sweep method for free energy calculation

(L.M. & Vanden-Eijnden, JCP 2008)

Made of three different stages:

1) Use TAMD to rapidly explore the unknown free energy landscape.

2) Compute the mean force f(z) = −∇zA(z) at centers z1, . . . , zk extracted from the
TAMD trajectory.

3) Use a Radial-Basis Functions (RBFs) representation for A(z) with centers at
z1, . . . , zk.

Ã(z) =
K�

k=1

akϕσ(|z − zk|)

where | · | the Euclidean norm in RN , a1, . . . , aK ∈ RK are the interpolation coefficients,
σ > 0, and ϕσ(u) is a radial-basis function. For example,

Gaussian packet : ϕσ(u) = exp (−
u2

2σ2
)

The parameters are determined from a least-square minimization of the difference
between the negative gradient of Ã(z) and the mean force fk in zk, i.e. minimize the
objective function:

E(a, σ) =
K�

k=1

���∇zÃ(zk) + fk

���
2
=

K�

k=1

���
K�

k�=1

ak�∇zϕσ(|zk − zk�|) + fk

���
2
.

The single-sweep method for free energy calculation

(L.M. & Vanden-Eijnden, JCP 2008)

Made of three different stages:

1) Use TAMD to rapidly explore the unknown free energy landscape.

2) Compute the mean force f(z) = −∇zA(z) at centers z1, . . . , zk extracted from the
TAMD trajectory.

3) Use a Radial-Basis Functions (RBFs) representation for A(z) with centers at
z1, . . . , zk.

Ã(z) =
K�

k=1

akϕσ(|z − zk|)

where | · | the Euclidean norm in RN , a1, . . . , aK ∈ RK are the interpolation coefficients,
σ > 0, and ϕσ(u) is a radial-basis function. For example,

Gaussian packet : ϕσ(u) = exp (−
u2

2σ2
)

The parameters are determined from a least-square minimization of the difference
between the negative gradient of Ã(z) and the mean force fk in zk, i.e. minimize the
objective function:

E(a, σ) =
K�

k=1

���∇zÃ(zk) + fk

���
2
=

K�

k=1

���
K�

k�=1

ak�∇zϕσ(|zk − zk�|) + fk

���
2
.

We introduce a RBF representation of the PMF

and determine the unknown parameters by optimizing an objective function defined 
as the difference between the calculated gradients and those from the 
representation

The single-sweep method for free energy calculation

(L.M. & Vanden-Eijnden, JCP 2008)

Made of three different stages:

1) Use TAMD to rapidly explore the unknown free energy landscape.

2) Compute the mean force f(z) = −∇zA(z) at centers z1, . . . , zk extracted from the
TAMD trajectory.

3) Use a Radial-Basis Functions (RBFs) representation for A(z) with centers at
z1, . . . , zk.

Ã(z) =
K�

k=1

akϕσ(|z − zk|)

where | · | the Euclidean norm in RN , a1, . . . , aK ∈ RK are the interpolation coefficients,
σ > 0, and ϕσ(u) is a radial-basis function. For example,

Gaussian packet : ϕσ(u) = exp (−
u2

2σ2
)

The parameters are determined from a least-square minimization of the difference
between the negative gradient of Ã(z) and the mean force fk in zk, i.e. minimize the
objective function:

E(a, σ) =
K�

k=1

���∇zÃ(zk) + fk

���
2
=

K�

k=1

���
K�

k�=1

ak�∇zϕσ(|zk − zk�|) + fk

���
2
.

Different RBF can be used.  A typical choice are gaussian functions

The centers do not have to lie on a regular grid: the method can be used in more 
than 2 dimensions. In our case, centers are extracted from the TAMD trajectory.

L. M. & E. Vanden-Eijnden J. Chem. Phys., 128, 184110 (2008)

(For the case of different     see M. Monteferrante, S. Bonella, S. Meloni, G. Ciccotti Mol. Sim., 35, 1116 (2009))σ


