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Introduction

Molecular dynamics

We consider overdamped Langevin dynamics:

dXt = −∇V (Xt) dt +
√

2β−1 dWt , (1)

used to model the evolution of the position vector Xt of N particles in an
energy landscape defined by the potential energy V : R3N → R.

The dynamics (1) are obtained as a limit as m → 0 or γ →∞ of the Langevin dynamics

dXt = m−1Pt dt

dPt = −∇V (Xt) dt − γm−1Pt dt +
√

2γβ−1 dWt .
(2)

This energy landscape typically has many metastable states, corresponding to
basins of attraction of the gradient dynamics dy/dt = −∇V (y).

In applications it is of interest how Xt moves between these basins – this is
the so-called metastable dynamics.
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Introduction

Definition.

We write D for a generic basin of attraction of dy/dt = −∇V (y).

b10

Figure : The basin D = [0, b] of attraction of 1 w.r.t. dy/dt = −∇V (y).
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Introduction

Let S : R3N → N be a function which labels the basins of attraction of
dy/dt = −∇V (y). So each basin D has the form D = S−1(i), i ∈ N.

Figure : A trajectory of Xt and S(Xt), with two basins labeled 0 and 1.

The metastable dynamics is then S(Xt)t≥0.

Problem:

Efficiently generate approximations Ŝ(t)t≥0 of S(Xt)t≥0.
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Introduction

The quasistationary distribution

With metastable dynamics, the time scale to reach “local equilibrium” in a
basin is much smaller than the time scale to exit the basin.

The notion of local equilibrium can be formalized using the quasistationary
distribution (QSD).

Definition.

The superscript in Xµ
t means Xt has initial distribution given by µ: X0 ∼ µ.

Definition.

The QSD ν in D satisfies the following:

ν(A) = lim
t→∞

P(Xµ
t ∈ A |Xµ

s ∈ D ∀ s ∈ [0, t])

for any probability measure µ supported in D and any measurable A ⊂ D.

Given that Xt remains in D, the distribution of Xt converges exponentially
fast to the QSD in D, no matter the initial distribution of X0.
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Generating exit events from a basin

If X0 is distributed according to the QSD in D, then the first exit time of Xt

from D is exponentially distributed and independent of the exit position:

Theorem.

Define τ = inf{t > 0 : X ν
t /∈ D}. Then

P(τ > t) = e−λt and τ, Xτ are independent.

The theorem can be used to tackle the following:

Subproblem.

Efficiently generate an exit event of X ν
t from a given basin D.

The idea is to iterate the subproblem solution to generate the metastable
dynamics approximation Ŝ(t)t≥0.

The assumption X0 ∼ ν should not be drastic because the time scale for Xt

to reach the QSD in D is much smaller than the time scale for Xt to exit D.
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Generating exit events from a basin

Generating exit events

Definition.

Let {∂Di}i=1,2,...,n be a measurable partition of ∂D.
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Figure : The basin D of attraction of x0. Each ∂Di is a neighborhood of a saddle point,
xi (i ≥ 1), of V in ∂D.

Definition.

Define r.v.’s τ and I by

τ = inf{t > 0 : X ν
t /∈ D} and I = i ⇔ X ν

τ ∈ ∂Di .

Define λ and pi by

λ−1 := E[τ ] and pi := P(I = i).

An exit event from D, starting at the QSD, is represented by the pair (τ, I ),
with τ the exit time and I the exit pathway.
Starting at the QSD, the expected time to exit D is λ−1 and the probability
to exit through ∂Di is pi .
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Generating exit events from a basin

The last theorem leads to the following:

Theorem.

Let {Ti}i=1,2,...,n be independent r.v.’s with P(Ti > t) = e−λpi t . Then(
min

1≤i≤n
Ti , arg min

1≤i≤n
Ti

)
∼ (τ, I ).

The preceding applies to any dynamics whenever the QSD in D exists.

The theorem can be used to sample exit events from D provided that
estimates of the parameters λpi are available.

From now on we consider only overdamped Langevin dynamics and assume:

Assumption.

V is a Morse function, D is the basin of attraction of x0 w.r.t. dy/dt = −∇V (y),
and each ∂Di is a neighborhood in ∂D of a single (index one) saddle point, xi , of
V on ∂D.
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Generating exit events from a basin

The Arrhenius law

Under the preceding assumption λpi can be estimated by the so-called
Arrhenius law:

The Arrhenius law

λpi ≈ ηie−β(V (xi )−V (x0)) for large β (3)

Here ηi is a known function of the eigenvalues of the Hessian matrix of V at
the saddle point xi and minimum x0.

In particular ηi is β-independent.

The Arrhenius law is assumed valid when

β(V (xi )− V (x0)) >> 1.

If the locations of the saddle points are known a priori, the theorem along
with equation (3) can be used to sample exit events from D.
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exit events in TAD

Temperature accelerated dynamics (TAD)

Notation.

Let βhi and βlo be a high and low temperature. We use superscripts hi and lo to
denote objects at βhi and βlo . (E.g. ν lo is the QSD in D at temperature βlo .)

We recall again:

Subproblem.

Generate an exit event of X ν lo

t from D at temperature βlo .

In TAD1, the exit event at βlo is generated by simulating multiple exit times
and pathways at βhi , then extrapolating what would have happened at βlo .

In TAD, the saddle point locations are not assumed to be known a priori, and
it is not necessary that all the saddle points be found. Furthermore in TAD it
is not required that any of the ηi be calculated.

1proposed in A.F. Voter and M.R. Sørensen, J. Chem. Phys. 112 (2000).
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exit events in TAD

Exit Algorithm (for generating an exit event of X ν lo

t from D).

Let N = 1, Tstop =∞ and iterate the following steps:

1. Let X
(N)
0 be an sample of νhi , the QSD in D at temperature βhi .

2. Evolve X
(N)
t at temperature βhi until the first time, τ (N), at which it exits D.

3. Now X
(N)

τ (N) ∈ ∂Di for some i ∈ {1, . . . , n}. If X
(k)

τ (k) /∈ ∂Di ∀ 1 ≤ k < N, let

T lo
i =

(
τ (1) + . . .+ τ (N)

)
e−(βhi−βlo)(V (xi )−V (x0))

extrapolated low temp exit time

T lo
min = min{T lo

min,T
lo
i }, I lomin = i ⇔ T lo

min = T lo
i update fastest low temp exit event

Tstop = T lo
min/ min

1≤i≤n
e−(βhi−βlo)(V (xi )−V (x0))

update stopping time

The minimum above can be replaced with any a priori lower bound.

4. If τ (1) + . . .+ τ (N) < Tstop, let N = N + 1 and return to Step 1. Otherwise
store the exit event (T lo

min, I
lo
min).
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exit events in TAD

Remarks:

At low temperatures the QSD in D can be efficiently sampled2.

By construction, the fastest extrapolated low temperature exit event will be
found by time Tstop.

The Exit Algorithm is expected to be accurate when the Arrhenius law is valid:

min
1≤i≤n

βhi (V (xi )− V (x0))� 1. (4)

The Exit Algorithm will be efficient when also

βhi � βlo . (5)

To see that latter, recall the stopping time Tstop is updated via

Tstop = T lo
min/ min

1≤i≤n
e−(βhi−βlo)(V (xi )−V (x0)), (6)

and notice from (4) and (5) the denominator in the RHS of (6) is � 1.

2See for example G. Simpson and M. Luskin, M2AM (to appear) arxiv:1204.0819.
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exit events in TAD

Mathematical analysis

Assumption.

In the Exit Algorithm, X
(N)
0 ∼ νhi for all N ≥ 1 and:

(A1) e−(βhi−βlo)(V (xi )−V (x0)) is everywhere replaced with
λhiphi

i

λloplo
i

.

Under the above assumption, the Exit Algorithm exactly replicates the low
temperature exit event:

Theorem.

Under the above assumption,

(T lo
min, I

lo
min) ∼ (τ lo , I lo)

where we recall

τ lo = inf{t > 0 : X ν lo

t /∈ D} and I lo = i ⇔ X ν lo

τ lo ∈ ∂Di .

We investigate (A1) shortly.
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exit events in TAD

Idea of proof: Consider Exit Algorithm with no stopping criterion. Define

Ni = min{N : X
(N)

τ (N) ∈ ∂Di} first trial to exit thru ith pathway

T hi
i = τ (1) + . . .+ τ (Ni ) cumulative time to first exit thru ith pathway

One can show that the r.v.’s T hi
i are independent and

P(T hi
i > t) = e−λ

hiphi
i t .

So since

T lo
i ≡ T hi

i

λhiphii
λloploi

,

we see that the r.v.’s T lo
i are independent and

P(T lo
i > t) = e−λ

loplo
i t .

The stopping time is chosen so that by construction, the value of the smallest T lo
i

will not change after Tstop. Appealing to our earlier theorem we are done.
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exit events in TAD

Theorem. (Justifying (A1)).

Let D = [x1, x2]. Under the preceding assumptions, for i = 1, 2:

λhiphii
λloploi

=

(
1 + O

(
1

βhi
− 1

βlo

))
e−(βhi−βlo)(V (xi )−V (x0))

as βhi →∞, βhi/βlo → positive const.

This shows that the Arrhenius law extrapolation becomes exact in the small
temperature limit, at least in 1D.

We hope to prove an analogue of the theorem in any dimension.

Side note: We also have the following formal statement of the Arrhenius law:

Theorem.

Let D = [x1, x2]. Under the preceding assumptions, for i = 1, 2:

λpi =
(
1 + O

(
β−1

))
ηie
−β(V (xi )−V (x0)) as β →∞.
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TAD

Main Algorithm (for generating metastable dynamics Ŝ(t)t≥0).

Let Tsim = 0, choose a basin-dependent decorrelation time Tcorr , and:

1. Starting at t = Tsim, evolve X lo
t at temperature βlo in the current basin D.

2. If X lo
t exits D at a time Tsim + τ < Tsim + Tcorr , set

Ŝ(t) = S(D), t ∈ [Tsim,Tsim + τ ],

advance the clock by Tsim = Tsim + τ and go back to Step 1, with D now the
new basin. Otherwise, set

Ŝ(t) = S(D), t ∈ [Tsim,Tsim + Tcorr ],

advance the clock by Tsim = Tsim + Tcorr , and proceed to Step 3.

3. Do the Exit Algorithm in the current basin D. Then set

Ŝ(t) = S(D), t ∈ [Tsim,Tsim + T lo
min],

advance the clock by Tsim = Tsim + T lo
min, and return to Step 1, with D the

new basin obtained by exiting through ∂DI lomin
.
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TAD

Exact metastable dynamics

Theorem.

The Main Algorithm for generating metastable dynamics Ŝ(t) is exact in the
limit Tcorr →∞ and βhi →∞.

In Steps 1–2 of the Main Algorithm, the dynamics are simulated exactly and
so no error is induced.

We want the dynamics to be distributed according to ν lo in some basin
before the Exit Algorithm begins.

This is why steps 1–2 of the Main Algorithm are included: after Step 2, we
have (approximately) X lo

Tsim
∼ ν lo . Indeed, X lo

t converges to ν lo exponentially
fast in Tcorr (in total variation norm).

Since Tcorr and the simulation time of the Exit Algorithm will be (on
average) much smaller than the time scale to exit a basin at temperature βlo ,
the Main Algorithm will be efficient compared to direct sampling of
trajectories at low temperature.
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Conclusion
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