# Mathematical analysis of temperature accelerated dynamics

David Aristoff (joint work with T. Lelièvre)

School of Mathematics University of Minnesota

August 12, 2013

## Molecular dynamics

• We consider overdamped Langevin dynamics:

$$dX_t = -\nabla V(X_t) dt + \sqrt{2\beta^{-1}} dW_t, \qquad (1)$$

used to model the evolution of the position vector  $X_t$  of N particles in an energy landscape defined by the potential energy  $V : \mathbb{R}^{3N} \to \mathbb{R}$ .

The dynamics (1) are obtained as a limit as  $m \to 0$  or  $\gamma \to \infty$  of the Langevin dynamics

$$dX_t = m^{-1} P_t dt$$

$$dP_t = -\nabla V(X_t) dt - \gamma m^{-1} P_t dt + \sqrt{2\gamma \beta^{-1}} dW_t.$$
(2)

- This energy landscape typically has many metastable states, corresponding to basins of attraction of the gradient dynamics  $dy/dt = -\nabla V(y)$ .
- In applications it is of interest how X<sub>t</sub> moves between these basins this is the so-called metastable dynamics.

イロト 不得 トイヨト イヨト

#### Definition.

We write D for a generic basin of attraction of  $dy/dt = -\nabla V(y)$ .



Figure : The basin D = [0, b] of attraction of 1 w.r.t.  $dy/dt = -\nabla V(y)$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

• Let  $S : \mathbb{R}^{3N} \to \mathbb{N}$  be a function which labels the basins of attraction of  $dy/dt = -\nabla V(y)$ . So each basin D has the form  $D = S^{-1}(i)$ ,  $i \in \mathbb{N}$ .



Figure : A trajectory of  $X_t$  and  $S(X_t)$ , with two basins labeled 0 and 1.

• The metastable dynamics is then  $S(X_t)_{t\geq 0}$ .

#### **Problem:**

Efficiently generate approximations  $\hat{S}(t)_{t\geq 0}$  of  $S(X_t)_{t\geq 0}$ .

## The quasistationary distribution

- With metastable dynamics, the time scale to reach "local equilibrium" in a basin is much smaller than the time scale to exit the basin.
- The notion of local equilibrium can be formalized using the *quasistationary distribution (QSD)*.

#### Definition.

The superscript in  $X_t^{\mu}$  means  $X_t$  has initial distribution given by  $\mu$ :  $X_0 \sim \mu$ .

#### Definition.

The QSD  $\nu$  in *D* satisfies the following:

$$\nu(A) = \lim_{t \to \infty} \mathbb{P}(X_t^{\mu} \in A \,|\, X_s^{\mu} \in D \,\forall s \in [0, t])$$

for any probability measure  $\mu$  supported in D and any measurable  $A \subset D$ .

• Given that  $X_t$  remains in D, the distribution of  $X_t$  converges exponentially fast to the QSD in D, no matter the initial distribution of  $X_0$ .

• If X<sub>0</sub> is distributed according to the QSD in D, then the first exit time of X<sub>t</sub> from D is exponentially distributed and independent of the exit position:

#### Theorem.

Define  $\tau = \inf\{t > 0 : X_t^{\nu} \notin D\}$ . Then

 $\mathbb{P}( au > t) = e^{-\lambda t}$  and  $au, X_{ au}$  are independent.

• The theorem can be used to tackle the following:

#### Subproblem.

Efficiently generate an exit event of  $X_t^{\nu}$  from a given basin *D*.

- The idea is to iterate the subproblem solution to generate the metastable dynamics approximation  $\hat{S}(t)_{t\geq 0}$ .
- The assumption X<sub>0</sub> ~ ν should not be drastic because the time scale for X<sub>t</sub> to reach the QSD in D is much smaller than the time scale for X<sub>t</sub> to exit D.

イロン イロン イヨン イヨン

Definition.

Let  $\{\partial D_i\}_{i=1,2,...,n}$  be a measurable partition of  $\partial D$ .



Figure : The basin D of attraction of  $x_0$ . Each  $\partial D_i$  is a neighborhood of a saddle point,  $x_i$   $(i \ge 1)$ , of V in  $\partial D$ .

イロン イロン イヨン イヨン

#### **Definition.**

Let  $\{\partial D_i\}_{i=1,2,...,n}$  be a measurable partition of  $\partial D$ .

#### Definition.

Define r.v.'s  $\tau$  and I by

 $\tau = \inf\{t > 0 : X_t^{\nu} \notin D\} \quad \text{and} \quad I = i \quad \Leftrightarrow \quad X_{\tau}^{\nu} \in \partial D_i.$ 

Define  $\lambda$  and  $p_i$  by

 $\lambda^{-1} := \mathbb{E}[\tau]$  and  $p_i := \mathbb{P}(I = i).$ 

#### **Definition.**

Let  $\{\partial D_i\}_{i=1,2,...,n}$  be a measurable partition of  $\partial D$ .

#### Definition.

Define r.v.'s  $\tau$  and I by

 $\tau = \inf\{t > 0 : X_t^{\nu} \notin D\} \quad \text{and} \quad I = i \quad \Leftrightarrow \quad X_{\tau}^{\nu} \in \partial D_i.$ 

Define  $\lambda$  and  $p_i$  by

$$\lambda^{-1} := \mathbb{E}[\tau]$$
 and  $p_i := \mathbb{P}(I = i).$ 

An exit event from D, starting at the QSD, is represented by the pair (τ, I), with τ the exit time and I the exit pathway.

#### **Definition.**

Let  $\{\partial D_i\}_{i=1,2,...,n}$  be a measurable partition of  $\partial D$ .

#### Definition.

Define r.v.'s  $\tau$  and I by

 $\tau = \inf\{t > 0 : X_t^{\nu} \notin D\} \quad \text{and} \quad I = i \quad \Leftrightarrow \quad X_{\tau}^{\nu} \in \partial D_i.$ 

Define  $\lambda$  and  $p_i$  by

$$\lambda^{-1} := \mathbb{E}[\tau]$$
 and  $p_i := \mathbb{P}(I = i).$ 

- An exit event from D, starting at the QSD, is represented by the pair (τ, I), with τ the exit time and I the exit pathway.
- Starting at the QSD, the expected time to exit D is  $\lambda^{-1}$  and the probability to exit through  $\partial D_i$  is  $p_i$ .

・ロト ・回ト ・ヨト ・ヨト

The last theorem leads to the following:

#### Theorem.

Let  $\{T_i\}_{i=1,2,...,n}$  be independent r.v.'s with  $\mathbb{P}(T_i > t) = e^{-\lambda p_i t}$ . Then

$$\left(\min_{1\leq i\leq n}T_i, \arg\min_{1\leq i\leq n}T_i\right)\sim (\tau, I).$$

- The preceding applies to any dynamics whenever the QSD in D exists.
- The theorem can be used to sample exit events from D provided that estimates of the parameters  $\lambda p_i$  are available.
- From now on we consider only overdamped Langevin dynamics and assume:

#### Assumption.

*V* is a Morse function, *D* is the basin of attraction of  $x_0$  w.r.t.  $dy/dt = -\nabla V(y)$ , and each  $\partial D_i$  is a neighborhood in  $\partial D$  of a single (index one) saddle point,  $x_i$ , of *V* on  $\partial D$ .

## The Arrhenius law

• Under the preceding assumption  $\lambda p_i$  can be estimated by the so-called Arrhenius law:

#### The Arrhenius law

$$\lambda p_i \approx \eta_i e^{-\beta(V(x_i) - V(x_0))}$$
 for large  $\beta$  (3)

- Here η<sub>i</sub> is a known function of the eigenvalues of the Hessian matrix of V at the saddle point x<sub>i</sub> and minimum x<sub>0</sub>.
- In particular  $\eta_i$  is  $\beta$ -independent.
- The Arrhenius law is assumed valid when

$$\beta(V(x_i)-V(x_0)) >> 1.$$

• If the locations of the saddle points are known a priori, the theorem along with equation (3) can be used to sample exit events from *D*.

## Temperature accelerated dynamics (TAD)

#### Notation.

Let  $\beta^{hi}$  and  $\beta^{lo}$  be a high and low temperature. We use superscripts  $^{hi}$  and  $^{lo}$  to denote objects at  $\beta^{hi}$  and  $\beta^{lo}$ . (E.g.  $\nu^{lo}$  is the QSD in D at temperature  $\beta^{lo}$ .)

We recall again:

#### Subproblem.

Generate an exit event of  $X_t^{\nu^{lo}}$  from D at temperature  $\beta^{lo}$ .

- In TAD<sup>1</sup>, the exit event at β<sup>lo</sup> is generated by simulating multiple exit times and pathways at β<sup>hi</sup>, then extrapolating what would have happened at β<sup>lo</sup>.
- In TAD, the saddle point locations are not assumed to be known a priori, and it is not necessary that all the saddle points be found. Furthermore in TAD it is not required that any of the η<sub>i</sub> be calculated.

<sup>1</sup>proposed in A.F. Voter and M.R. Sørensen, J. Chem. Phys. **112** (2000). E Source Source Statements of the second second

**Exit Algorithm** (for generating an exit event of  $X_t^{\nu^{\prime o}}$  from *D*).

Let N=1,  $T_{stop}=\infty$  and iterate the following steps:

- 1. Let  $X_0^{(N)}$  be an sample of  $\nu^{hi}$ , the QSD in D at temperature  $\beta^{hi}$ .
- 2. Evolve  $X_t^{(N)}$  at temperature  $\beta^{hi}$  until the first time,  $\tau^{(N)}$ , at which it exits D.
- 3. Now  $X_{\tau^{(N)}}^{(N)} \in \partial D_i$  for some  $i \in \{1, \ldots, n\}$ . If  $X_{\tau^{(k)}}^{(k)} \notin \partial D_i \ \forall \ 1 \le k < N$ , let

$$\begin{split} T_i^{lo} &= \left(\tau^{(1)} + \ldots + \tau^{(N)}\right) e^{-(\beta^{hi} - \beta^{lo})(V(x_i) - V(x_0))} & \text{extrapolated low temp exit time} \\ T_{min}^{lo} &= \min\{T_{min}^{lo}, T_i^{lo}\}, \quad I_{min}^{lo} = i \Leftrightarrow T_{min}^{lo} = T_i^{lo} & \text{update fastest low temp exit event} \\ T_{stop} &= T_{min}^{lo} / \min_{1 \leq i \leq n} e^{-(\beta^{hi} - \beta^{lo})(V(x_i) - V(x_0))} & \text{update stopping time} \end{split}$$

The minimum above can be replaced with any a priori lower bound. 4. If  $\tau^{(1)} + \ldots + \tau^{(N)} < T_{stop}$ , let N = N + 1 and return to Step 1. Otherwise

store the exit event  $(T_{min}^{lo}, I_{min}^{lo})$ .

A D > A P > A B > A

Remarks:

- At low temperatures the QSD in D can be efficiently sampled<sup>2</sup>.
- By construction, the fastest extrapolated low temperature exit event will be found by time  $T_{stop}$ .

The Exit Algorithm is expected to be accurate when the Arrhenius law is valid:

$$\min_{1 \le i \le n} \beta^{hi} (V(x_i) - V(x_0)) \gg 1.$$
(4)

The Exit Algorithm will be efficient when also

$$^{hi} \ll \beta^{lo}.$$

• To see that latter, recall the stopping time  $T_{stop}$  is updated via

В

$$T_{stop} = T_{min}^{lo} / \min_{1 \le i \le n} e^{-(\beta^{hi} - \beta^{lo})(V(x_i) - V(x_0))},$$
(6)

and notice from (4) and (5) the denominator in the RHS of (6) is  $\gg 1.$ 

## Mathematical analysis

#### Assumption.

## In the Exit Algorithm, $X_0^{(N)} \sim \nu^{hi}$ for all $N \ge 1$ and: (A1) $e^{-(\beta^{hi}-\beta^{lo})(V(x_i)-V(x_0))}$ is everywhere replaced with $\frac{\lambda^{hi}p_i^{hi}}{\lambda^{lo}n^{lo}}$ .

• Under the above assumption, the **Exit Algorithm** exactly replicates the low temperature exit event:

#### Theorem.

Under the above assumption,

$$(T^{lo}_{min}, I^{lo}_{min}) \sim (\tau^{lo}, I^{lo})$$

where we recall

$$\tau^{\textit{lo}} = \inf\{t > 0 \ : \ X^{\nu^{\textit{lo}}}_t \notin D\} \quad \text{and} \quad I^{\textit{lo}} = i \ \Leftrightarrow X^{\nu^{\textit{lo}}}_{\tau^{\textit{lo}}} \in \partial D_i.$$

• We investigate (A1) shortly.

<ロ> (日) (日) (日) (日) (日)

Idea of proof: Consider Exit Algorithm with no stopping criterion. Define

$$N_i = \min\{N : X_{\tau^{(N)}}^{(N)} \in \partial D_i\}$$
 first trial to exit thru *i*th pathway  
 $T_i^{hi} = \tau^{(1)} + \ldots + \tau^{(N_i)}$  cumulative time to first exit thru *i*th pathway

One can show that the r.v.'s  $T_i^{hi}$  are independent and

$$\mathbb{P}(T_i^{hi} > t) = e^{-\lambda^{hi} p_i^{hi} t}.$$

So since

$$T_i^{lo} \equiv T_i^{hi} rac{\lambda^{hi} p_i^{hi}}{\lambda^{lo} p_i^{lo}},$$

we see that the r.v.'s  $T_i^{lo}$  are independent and

$$\mathbb{P}(T_i^{lo} > t) = e^{-\lambda^{lo} p_i^{lo} t}.$$

The stopping time is chosen so that by construction, the value of the smallest  $T_i^{lo}$  will not change after  $T_{stop}$ . Appealing to our earlier theorem we are done.

イロン イロン イヨン イヨン

#### Theorem. (Justifying (A1)).

Let  $D = [x_1, x_2]$ . Under the preceding assumptions, for i = 1, 2:

- This shows that the Arrhenius law extrapolation becomes exact in the small temperature limit, at least in 1D.
- We hope to prove an analogue of the theorem in any dimension.

Side note: We also have the following formal statement of the Arrhenius law:

#### Theorem.

Let  $D = [x_1, x_2]$ . Under the preceding assumptions, for i = 1, 2:

$$\lambda p_i = \left(1 + O\left(eta^{-1}
ight)
ight) \eta_i e^{-eta(V(x_i) - V(x_0))} \quad ext{as } eta o \infty.$$

### **Main Algorithm** (for generating metastable dynamics $\hat{S}(t)_{t\geq 0}$ ).

- Let  $T_{sim} = 0$ , choose a basin-dependent decorrelation time  $T_{corr}$ , and:
  - 1. Starting at  $t = T_{sim}$ , evolve  $X_t^{lo}$  at temperature  $\beta^{lo}$  in the current basin D.
  - 2. If  $X_t^{lo}$  exits D at a time  $T_{sim} + \tau < T_{sim} + T_{corr}$ , set

$$\hat{S}(t) = S(D), \quad t \in [T_{sim}, T_{sim} + \tau],$$

advance the clock by  $T_{sim} = T_{sim} + \tau$  and go back to Step 1, with *D* now the new basin. Otherwise, set

$$\hat{S}(t)=S(D), \quad t\in [T_{sim},T_{sim}+T_{corr}],$$

advance the clock by  $T_{sim} = T_{sim} + T_{corr}$ , and proceed to Step 3.

3. Do the **Exit Algorithm** in the current basin *D*. Then set

$$\hat{S}(t)=S(D), \quad t\in [T_{sim},T_{sim}+T_{min}^{lo}],$$

advance the clock by  $T_{sim} = T_{sim} + T_{min}^{lo}$ , and return to Step 1, with D the new basin obtained by exiting through  $\partial D_{I_{min}^{lo}}$ .

## Exact metastable dynamics

#### Theorem.

The Main Algorithm for generating metastable dynamics  $\hat{S}(t)$  is exact in the limit  $T_{corr} \to \infty$  and  $\beta^{hi} \to \infty$ .

- In Steps 1–2 of the Main Algorithm, the dynamics are simulated exactly and so no error is induced.
- We want the dynamics to be distributed according to  $\nu^{lo}$  in some basin before the **Exit Algorithm** begins.
- This is why steps 1–2 of the Main Algorithm are included: after Step 2, we have (approximately)  $X_{T_{sim}}^{lo} \sim \nu^{lo}$ . Indeed,  $X_t^{lo}$  converges to  $\nu^{lo}$  exponentially fast in  $T_{corr}$  (in total variation norm).
- Since  $T_{corr}$  and the simulation time of the Exit Algorithm will be (on average) much smaller than the time scale to exit a basin at temperature  $\beta^{lo}$ , the Main Algorithm will be efficient compared to direct sampling of trajectories at low temperature.

## Acknowledgements

## Collaborators T. Lelièvre (École des Ponts ParisTech)

Funding DOE Award de-sc0002085

Part of this work was completed while T. Lelièvre was an Ordway visiting professor at the University of Minnesota.

## Thanks Thanks to Gideon Simpson, Art Voter and Danny Perez for fruitful discussions.

http://www.math.umn.edu/~daristof/