Introduction	Goals	Overfitting	Examples	Key issues	Conclusion
000000000000	0000000	00000	000000000000000000000000000000000000000		i .

Classification and statistical machine learning

Sylvain Arlot

http://www.di.ens.fr/~arlot/

 $^{1}\mathrm{C}_{\mathrm{NRS}}$

²École Normale Supérieure (Paris), DI/ENS, Équipe SIERRA

CEMRACS 2013, July 26th, 2013

Introduction	Goals 00000000	Overfitting 00000	Examples 0000000000	Key issues 0000000000	Conclusion
Outline					

1 Introduction

2 Goals

Overfitting

4 Examples

5 Key issues

2/53 Sylvain Arlot

Classification and statistical machine learning



http://yann.lecun.com/exdb/mnist/

→ ?

Introduction

Goals Googoooo Overfitting

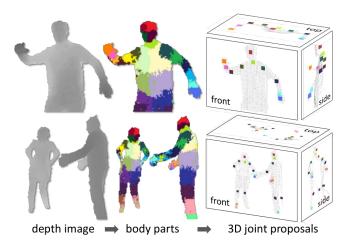
Examples Key issues

Conclusion

Object recognition

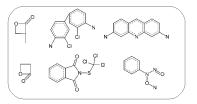
 \Rightarrow American flag? Butterfly? Teddy bear? . . .

http://www.vision.caltech.edu/Image_Datasets/Caltech256/3/53

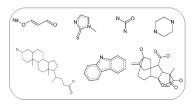


http://research.microsoft.com/en-us/projects/vrkinect/

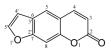
Mutagenic compounds



Non-mutagenic compounds



A compound with unknown properties:



Is it likely to be mutagenic or not?

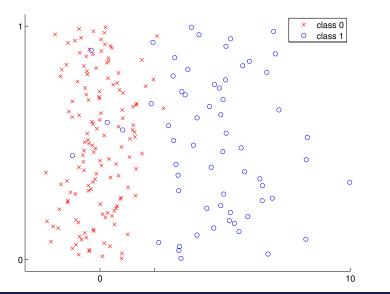
[Mahé et al., 2005, Shervashidze et al., 2011]

Figure obtained from Koji Tsuda

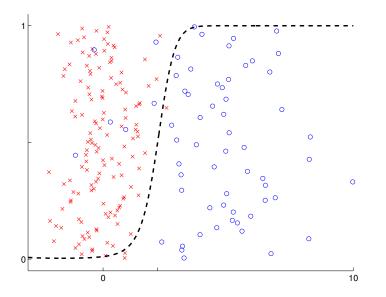
Many other applications

• Bioinformatics:

- sequencing data for diagnosis and prognosis (cancer, ...)
- personalized medicine
- ...
- Text classification:
 - Spam detection
 - Google ads
 - Automatic document classification
- Action recognition in videos
- Speech recognition
- Credit scoring
- . . .



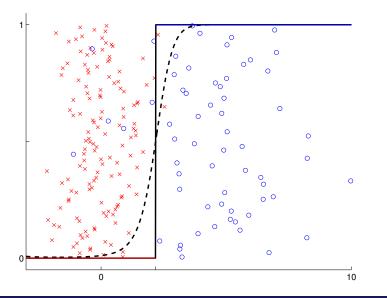
Classification and statistical machine learning



Classification and statistical machine learning

Introduction 0000000000000

Classification in \mathbb{R} : Bayes classifier



Classification and statistical machine learning

53

Binary supervised classification

• Data D_n : $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$ (i.i.d. $\sim P$)

Introduction

• Data D_n : $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$ (i.i.d. $\sim P$)

• Classifier: $f : \mathcal{X} \to \{0, 1\}$ measurable

Introduction

- Data D_n : $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$ (i.i.d. $\sim P$)
- Classifier: $f : \mathcal{X} \to \{0, 1\}$ measurable
- Cost/Loss function ℓ(f(x), y) measures how well f(x) "predicts" y For this talk: ℓ(y, y') = 1_{y≠y'} (0-1 loss)

Introduction

- Data D_n : $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$ (i.i.d. $\sim P$)
- Classifier: $f : \mathcal{X} \to \{0, 1\}$ measurable
- Cost/Loss function ℓ(f(x), y) measures how well f(x) "predicts" y For this talk: ℓ(y, y') = 1_{y≠y'} (0–1 loss)
- Goal: learn $f \in \mathbb{S} = \{$ measurable functions $\mathcal{X} \to \{0,1\} \}$ s.t. the risk

 $\mathcal{R}(f) := \mathbb{E}_{(X,Y)\sim P} \left[\ell(f(X), Y) \right] = \mathbb{P} \left(f(X) \neq Y \right)$ is minimal.

Goals

Introduction

- Data D_n : $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$ (i.i.d. $\sim P$)
- Classifier: $f : \mathcal{X} \to \{0, 1\}$ measurable

Overfitting

- Cost/Loss function $\ell(f(x), y)$ measures how well f(x)"predicts" yFor this talk: $\ell(y, y') = \mathbb{1}_{y \neq y'}$ (0–1 loss)
- Goal: learn $f \in \mathbb{S} = \{$ measurable functions $\mathcal{X} \to \{0,1\} \}$ s.t. the risk

 $\mathcal{R}(f) := \mathbb{E}_{(X,Y)\sim P}\left[\ell(f(X),Y)\right] = \mathbb{P}\left(f(X) \neq Y\right)$

is minimal.

• Remark: asymmetric cost $\ell_w(f(x), y) = w(y) \mathbb{1}_{f(x) \neq y}$ with $w(0) \neq w(1) > 0$ (spams, medical diagnosis).

Bayes estimator and excess risk

• Bayes classifier: $f^* \in \operatorname{argmin}_{f \in \mathbb{S}} \{ \mathcal{R}(f) \}$

• Bayes classifier: $f^* \in \operatorname{argmin}_{f \in \mathbb{S}} \{ \mathcal{R}(f) \}$

Proposition

In binary classification with the 0-1 loss,

 $f^{\star}(X) = \mathbb{1}_{\eta(X) \ge 1/2}$ (except maybe on $\{\eta(X) = 1/2\}$)

where $\eta(X) = \mathbb{P}(Y = 1 | X)$ is the regression function.

Bayes estimator and excess risk

• Bayes classifier: $f^{\star} \in \operatorname{argmin}_{f \in \mathbb{S}} \{ \mathcal{R}(f) \}$

Proposition

In binary classification with the 0-1 loss,

 $f^{\star}(X) = \mathbb{1}_{\eta(X) \ge 1/2}$ (except maybe on $\{\eta(X) = 1/2\}$)

where $\eta(X) = \mathbb{P}(Y = 1 | X)$ is the regression function. The Bayes risk is $\mathcal{R}(f^*) = \mathbb{E}[\min \{\eta(X), 1 - \eta(X)\}]$ and the excess risk of any $f \in \mathbb{S}$ is

 $\mathcal{R}(f) - \mathcal{R}(f^{\star}) = \mathbb{E}\left[\left| 2\eta(X) - 1 \right| \mathbb{1}_{f(X) \neq f^{\star}(X)} \right] .$

Remark: for the asymmetric cost ℓ_w , a similar result holds with 1/2 replaced by w(0)/(w(0) + w(1)).

$$\mathbb{P}(f(X) \neq Y \mid X) = \mathbb{P}(Y = 1) \mathbb{1}_{f(X) \neq 1} + \mathbb{P}(Y = 0) \mathbb{1}_{f(X) \neq 0}$$

= $\eta(X) \mathbb{1}_{f(X)=0} + (1 - \eta(X)) \mathbb{1}_{f(X)=1}$
\ge min { $\eta(X), 1 - \eta(X)$ }

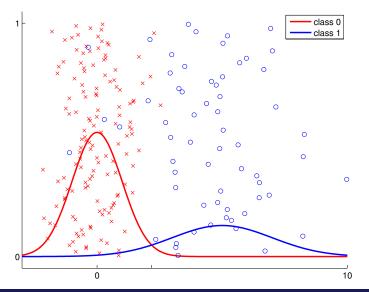
with equality if and only if $\eta(X) = 1/2$ or $f(X) = \mathbb{1}_{\eta(X) \ge 1/2}$. The first two results follow by integrating over X. Then, the excess risk is equal to

$$\mathbb{E}\left[\mathbb{1}_{f(X)\neq Y} - \mathbb{1}_{f^{\star}(X)\neq Y}\right]$$

= $\mathbb{E}\left[\mathbb{1}_{f(X)\neq f^{\star}(X)}\left(\mathbb{1}_{f(X)\neq Y} - \mathbb{1}_{f^{\star}(X)\neq Y}\right)\right]$
= $\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{f(X)\neq f^{\star}(X)}\left(\mathbb{1}_{f(X)\neq Y} - \mathbb{1}_{f^{\star}(X)\neq Y}\right) \mid X\right]\right]$
= $\mathbb{E}\left[\mathbb{1}_{f(X)\neq f^{\star}(X)}\left(\max\left\{\eta(X), 1 - \eta(X)\right\} - \min\left\{\eta(X), 1 - \eta(X)\right\}\right)\right]$
= $\mathbb{E}\left[|2\eta(X) - 1| \mathbb{1}_{f(X)\neq f^{\star}(X)}\right]$

Introduction Goals Overfitting Examples Key issues Conclusion

Classification seen as a testing problem



Classification and statistical machine learning

Introduction Goals Overfitting Examples Key issues Conclusion Conclusion accord concord conclusion concord concord conclusion concord concord

- f_i : density of $P_i = \mathcal{L}(X \mid Y = i)$ for i = 0, 1
- Regression function

$$\eta(x) = \frac{\mathbb{P}(Y=1)f_1(x)}{\mathbb{P}(Y=0)f_0(x) + \mathbb{P}(Y=1)f_1(x)}$$

Bayes predictor

$$f^{\star}(x) = \mathbb{1}_{\eta(x) \geq \frac{1}{2}} = \mathbb{1}_{\frac{f_1(x)}{f_0(x)} \geq \frac{\mathbb{P}(Y=0)}{\mathbb{P}(Y=1)}}$$

Introduction Goals Overfitting Examples Key issues Conclusion Conclusion accord concord conclusion concord concord conclusion concord concord

- f_i : density of $P_i = \mathcal{L}(X \mid Y = i)$ for i = 0, 1
- Regression function

$$\eta(x) = \frac{\mathbb{P}(Y=1)f_1(x)}{\mathbb{P}(Y=0)f_0(x) + \mathbb{P}(Y=1)f_1(x)}$$

Bayes predictor

$$f^{\star}(x) = \mathbb{1}_{\eta(x) \geq \frac{1}{2}} = \mathbb{1}_{\frac{f_1(x)}{f_0(x)} \geq \frac{\mathbb{P}(Y=0)}{\mathbb{P}(Y=1)}}$$

$$\Leftrightarrow \begin{array}{l} \mathsf{likelihood-ratio test } \mathbbm{1}_{\frac{f_1(x)}{f_0(x)} \geq t} & \mathsf{of} \\ H_0: \ ``X \sim P_0" \text{ against } H_1: \ ``X \sim P_1". \end{array}$$

Introduction 0000000000000	Goals 00000000	Overfitting 00000	Examples 000000000000000000000000000000000000	Key issues	Conclusion
Outline					

Classification and statistical machine learning

• Classification rule

$$\widehat{f}: \quad \bigcup_{n\geq 1} (\mathcal{X} \times \{0,1\})^n o \mathbb{S}$$

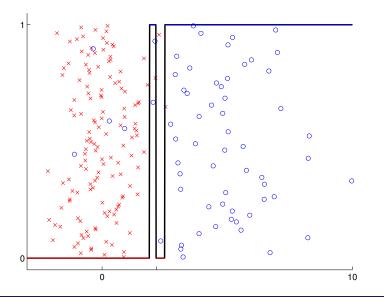
- Input: a data set D_n (of any size $n \ge 1$)
- Output: a classifier $\widehat{f}(D_n)$: $\mathcal{X} \to \{0,1\}$

Classification rule

$$\widehat{f}: \bigcup_{n\geq 1} (\mathcal{X} \times \{0,1\})^n o \mathbb{S}$$

- Input: a data set D_n (of any size $n \ge 1$)
- Output: a classifier $\widehat{f}(D_n)$: $\mathcal{X} \to \{0,1\}$
- Example: k-nearest neighbours (k-NN):
 x ∈ X → majority vote among the Y_i such that X_i is one of the k nearest neighbours of x in X₁,..., X_n

Introduction Goals Overfitting Examples Key issues Conclusion



Classification and statistical machine learning

• weak consistency:
$$\mathbb{E}\left[\mathcal{R}(\widehat{f}(D_n))\right] \xrightarrow[n \to \infty]{} \mathcal{R}(f^{\star})$$

Introduction Goals Overfitting Examples Key issues Conclusion Overfitting Over

Introduction Goals Overfitting Examples Key issues Conclusion

- weak consistency: $\mathbb{E}\left[\mathcal{R}(\widehat{f}(D_n))\right] \xrightarrow[n \to \infty]{} \mathcal{R}(f^{\star})$
 - strong consistency: $\mathcal{R}(\widehat{f}(D_n)) \xrightarrow[n \to \infty]{a.s.} \mathcal{R}(f^{\star})$
 - universal (weak) consistency: for all P, $\mathbb{E}\left[\mathcal{R}(\widehat{f}(D_n))\right] \xrightarrow[n \to \infty]{} \mathcal{R}(f^*)$

• universal strong consistency: for all P, $\mathcal{R}(\hat{f}(D_n)) \xrightarrow[n \to \infty]{a.s.} \mathcal{R}(f^*)$

Introduction Goals Overfitting Examples Key issues Conclusion

- Universal consistency
 - weak consistency: $\mathbb{E}\left[\mathcal{R}(\widehat{f}(D_n))\right] \xrightarrow[n \to \infty]{} \mathcal{R}(f^{\star})$
 - strong consistency: $\mathcal{R}(\widehat{f}(D_n)) \xrightarrow[n \to \infty]{a.s.} \mathcal{R}(f^*)$
 - universal (weak) consistency: for all P, $\mathbb{E}\left[\mathcal{R}(\widehat{f}(D_n))\right] \xrightarrow[n \to \infty]{} \mathcal{R}(f^*)$

• universal strong consistency: for all P, $\mathcal{R}(\widehat{f}(D_n)) \xrightarrow[n \to \infty]{a.s.} \mathcal{R}(f^{\star})$

• Stone's theorem [Stone, 1977]: If $\mathcal{X} = \mathbb{R}^d$ with the Euclidean distance, k_n -NN is (weakly) universally consistent if $k_n \to +\infty$ and $k_n/n \to 0$ as $n \to +\infty$.

Classification and statistical machine learning

• universal weak consistency:

$$\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \overline{\lim_{n \to +\infty}} \mathbb{E}\left[\mathcal{R}(\widehat{f}(D_n))\right] - \mathcal{R}(f^*) = 0$$

• uniform universal weak consistency:

$$\overline{\lim_{n \to +\infty}} \sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}(D_n)) \right] - \mathcal{R}(f^*) \right\} = 0$$

that is, a common learning rate for all P?

• universal weak consistency:

$$\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \overline{\lim_{n \to +\infty}} \mathbb{E}\left[\mathcal{R}(\widehat{f}(D_n))\right] - \mathcal{R}(f^*) = 0$$

• uniform universal weak consistency:

$$\overline{\lim_{n \to +\infty}} \sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}(D_n)) \right] - \mathcal{R}(f^*) \right\} = 0$$

that is, a common learning rate for all P?

- Yes if \mathcal{X} is finite.
- No otherwise (see Chapter 7 of [Devroye et al., 1996]).

53

ntroduction Goals Overfitting Examples

Key issues (

.

Classification on \mathcal{X} finite

Theorem

If \mathcal{X} is finite and \hat{f}^{maj} is the majority vote rule (for each $x \in \mathcal{X}$, majority vote among $\{Y_i | X_i = x\}$),

$$\sup_{P} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}^{\mathrm{maj}}(D_n)) \right] - \mathcal{R}(f^{\star}) \right\} \leq \sqrt{\frac{\mathsf{Card}(\mathcal{X}) \log(2)}{2n}}$$

ntroduction Goals Overfitting Examples

Conclusior

Classification on \mathcal{X} finite

Theorem

If \mathcal{X} is finite and \hat{f}^{maj} is the majority vote rule (for each $x \in \mathcal{X}$, majority vote among $\{Y_i | X_i = x\}$),

$$\sup_{P} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}^{\mathrm{maj}}(D_n)) \right] - \mathcal{R}(f^*) \right\} \leq \sqrt{\frac{\mathsf{Card}(\mathcal{X}) \log(2)}{2n}}$$

Proof: standard risk bounds (see next section) + maximal inequality

$$\mathbb{E}\left[\sup_{t\in\mathcal{T}}\left\{\sum_{i=1}^{n}\xi_{i,t}\right\}\right] \leq \sqrt{\frac{\log(\mathsf{Card}(\mathcal{T}))}{2n}}$$

if for all t, $(\xi_{i,t})_i$ are independent, centered and in [0,1]. See e.g. http://www.di.ens.fr/~arlot/2013orsay.htm

Theorem

If \mathcal{X} is finite and \widehat{f}^{maj} is the majority vote rule (for each $x \in \mathcal{X}$, majority vote among $\{Y_i | X_i = x\}$),

$$\sup_{P} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}^{\mathrm{maj}}(D_n)) \right] - \mathcal{R}(f^*) \right\} \leq \sqrt{\frac{\mathsf{Card}(\mathcal{X}) \log(2)}{2n}}$$

Constants matter: $Card(\mathcal{X})$ can be larger than $n \Rightarrow$ beware of asymptotic results and $\mathcal{O}(\cdot)$ that can hide such constants in first or second order terms.

Classification and statistical machine learning

.

Conclusion

Theorem

If \mathcal{X} is infinite, for any classification rule \hat{f} and any $n \geq 1$,

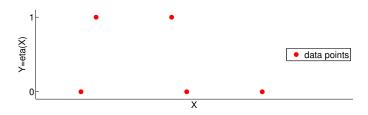
$$\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}(D_n)) \right] - \mathcal{R}(f^\star) \right\} \geq \frac{1}{2}$$

19/53 Sylvain Arlot

Theorem

If \mathcal{X} is infinite, for any classification rule \hat{f} and any $n \ge 1$, $\left(-\left[-\hat{G}(r,y)\right] - f(r,y)\right) = 1$

$$\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(f(D_n)) \right] - \mathcal{R}(f^*) \right\} \geq \frac{1}{2}$$



19/53 Sylvain Arlot

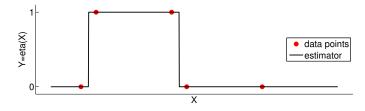
.

Classification and statistical machine learning

Introduction Goals Overfitting Examples

Theorem

If
$$\mathcal{X}$$
 is infinite, for any classification rule \widehat{f} and any $n \ge 1$,
$$\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}(D_n)) \right] - \mathcal{R}(f^*) \right\} \ge \frac{1}{2} .$$

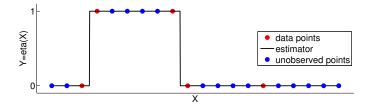


Theorem

lf

$$\mathcal{X}$$
 is infinite, for any classification rule \widehat{f} and any $n \ge 1$,

$$\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}(D_n)) \right] - \mathcal{R}(f^*) \right\} \ge \frac{1}{2} .$$



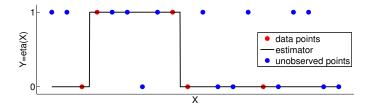
Conclusion

Introduction Goals Overfitting OCODOCOCOCOCOCO No Free Lunch Theorem

Theorem

$$f \mathcal{X}$$
 is infinite, for any classification rule \widehat{f} and any $n \ge 1$,
 $\sup \qquad \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}(D_n)) \right] - \mathcal{R}(f^\star) \right\} \ge \frac{1}{2}$.

$$\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(f(D_n)) \right] - \mathcal{R}(f^*) \right\} \geq \frac{1}{2}$$

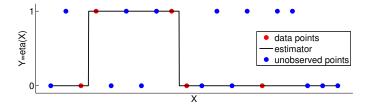


Introduction Goals Overfitting

Theorem

lf

$$\mathcal{F}_{\mathcal{X}}$$
 is infinite, for any classification rule \widehat{f} and any $n \ge 1$,
$$\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}(D_n)) \right] - \mathcal{R}(f^{\star}) \right\} \ge \frac{1}{2} .$$

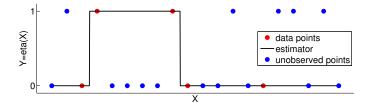


Introduction Goals Overfitting

Theorem

lf

$$\mathcal{X}$$
 is infinite, for any classification rule \widehat{f} and any $n \ge 1$,
$$\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}(D_n)) \right] - \mathcal{R}(f^{\star}) \right\} \ge \frac{1}{2} .$$



Introduction Goals Overfitting Examples Key issues

Theorem

If \mathcal{X} is infinite, for any classification rule \widehat{f} and any $n \ge 1$, $\sup_{P \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})} \left\{ \mathbb{E} \left[\mathcal{R}(\widehat{f}(D_n)) \right] - \mathcal{R}(f^*) \right\} \ge \frac{1}{2} .$

Remark: for any (a_n) decreasing to zero and any \hat{f} , some P exists such that $\mathbb{E}\left[\mathcal{R}(\hat{f}(D_n))\right] - \mathcal{R}(f^*) \ge a_n$. See Chapter 7 of [Devroye et al., 1996]. \Rightarrow impossible to have $\frac{C(P)}{\log \log n}$ as a universal risk bound!

19/53

Svlvain Arlot

Classification and statistical machine learning

No Free Lunch Theorem: proof

Goals

Assume $\mathbb{N} \subset \mathcal{X}$ and let $K \geq 1$. For any $r \in \{0,1\}^K$, define P_r by X uniform on $\{1, \ldots, K\}$ and $\mathbb{P}(Y = r_i | X = i) = 1$ for all i = 1, ..., K. Under P_r , $f^*(x) = r_x$ and $\mathcal{R}(f^*) = 0$. So, $\sup_{\mathcal{P}}\left\{\mathbb{E}_{P}\left[\mathcal{R}_{P}(\widehat{f}(D_{n}))\right]-\mathcal{R}_{P}(f^{\star})\right\}\geq \sup_{P_{\star}}\left\{\mathbb{P}_{P_{\star}}\left(\widehat{f}(X;D_{n})\neq r_{X}\right)\right\}$ $\geq \mathbb{E}_{r \sim R} \left\{ \mathbb{P}_{P_r} \left(\widehat{f}(X; D_n) \neq r_X \right) \right\}$ $\geq \mathbb{E}\left[\mathbbm{1}_{X\notin\{X_1,\ldots,X_n\}}\mathbb{E}\left[\mathbbm{1}_{\widehat{f}(X;(X_i,r_{X_i})_{i=1\ldots,n})\neq r_X}\mid X,(X_i,r_{X_i})_{i=1\ldots,n}\right]\right]$ $=\frac{1}{2}\mathbb{P}\left(X\notin\{X_1,\ldots,X_n\}\right)=\frac{1}{2}\left(1-\frac{1}{\kappa}\right)''$

Introduction 00000000000000	Goals 0000000●	Overfitting 00000	Examples 00000000000	Key issues	Conclusion
Learning ra	ates				

• How can we get a bound such as

$$\mathcal{R}\left(\widehat{f}(D_n)\right)-\mathcal{R}(f^{\star})\leq C(P)n^{-1/2}$$
?

Introduction	Goals	Overfitting	Examples	Key issues	Conclusion
0000000000000	0000000●	00000	0000000000	0000000000	
Learning ra	ates				

• How can we get a bound such as

$$\mathcal{R}\left(\widehat{f}(D_n)\right) - \mathcal{R}(f^*) \leq C(P)n^{-1/2}?$$

• No Free Lunch Theorems \Rightarrow must make assumptions on *P*

- How can we get a bound such as $\mathcal{R}\left(\widehat{f}(D_n)\right) - \mathcal{R}\left(f^{\star}\right) \leq C(P)n^{-1/2}$?
- No Free Lunch Theorems \Rightarrow must make assumptions on *P*
- Minimax rate: given a set $\mathcal{P} \subset \mathcal{M}_1(\mathcal{X} \times \{0,1\})$,

$$\inf_{\widehat{f}} \sup_{P \in \mathcal{P}} \left\{ \mathbb{E} \left[\mathcal{R} \left(\widehat{f}(D_n) \right) - \mathcal{R} \left(f^* \right) \right] \right\}$$

- How can we get a bound such as $\mathcal{R}\left(\widehat{f}(D_n)\right) - \mathcal{R}(f^*) \leq C(P)n^{-1/2}$?
- No Free Lunch Theorems \Rightarrow must make assumptions on *P*
- Minimax rate: given a set $\mathcal{P} \subset \mathcal{M}_1(\mathcal{X} \times \{0,1\})$,

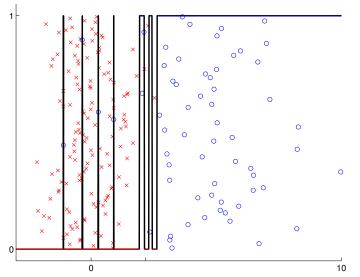
$$\inf_{\widehat{f}} \sup_{P \in \mathcal{P}} \left\{ \mathbb{E} \left[\mathcal{R} \left(\widehat{f}(D_n) \right) - \mathcal{R} \left(f^* \right) \right] \right\}$$

- Examples:
 - $\sqrt{V/n}$ when $f^* \in S$ known and $\dim_{VC}(S) = V$ [Devroye et al., 1996]
 - V/(nh) when in addition P(|η(X) − 1/2| ≤ h) = 0 (margin assumption) [Massart and Nédélec, 2006]

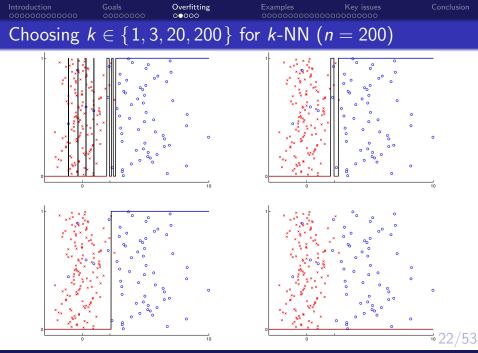
Introduction	Goals	Overfitting	Examples	Key issues	Conclusion
0000000000000	00000000	00000	000000000000	0000000000	
Outline					

2 Goals

5 Key issues



21/53



Sylvain Arlot

• Empirical risk

$$\widehat{\mathcal{R}}_n(f) := \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i)$$

• Empirical risk minimizer over a model $S \subset S$:

$$\widehat{f}_{S} \in \operatorname{argmin}_{f \in S} \left\{ \widehat{\mathcal{R}}_{n}(f) \right\}$$

• Empirical risk

$$\widehat{\mathcal{R}}_n(f) := \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i)$$

• Empirical risk minimizer over a model $S \subset S$:

$$\widehat{f}_{S} \in \operatorname{argmin}_{f \in S} \left\{ \widehat{\mathcal{R}}_{n}(f) \right\}$$

- Examples:
 - partitioning rule: $S = \left\{ \sum_{k \ge 1} \alpha_k \mathbb{1}_{A_k} / \alpha_k \in \{0, 1\} \right\}$ for some partition $(A_k)_{k \ge 1}$ of \mathcal{X}
 - linear discrimination $(\mathcal{X} = \mathbb{R}^d)$: $S = \{ x \mapsto \mathbb{1}_{\beta^\top x + \beta_0 \ge 0} \mid \beta \in \mathbb{R}^d, \beta_0 \in \mathbb{R} \}$

Example: linear discrimination

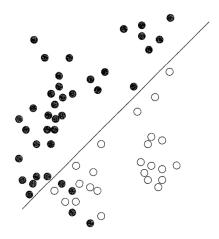


Fig. 4.3 of [Devroye et al., 1996]

24/53

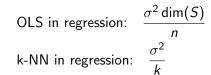
$$\mathbb{E}\left[\mathcal{R}\left(\widehat{f}_{\mathcal{S}}
ight)-\mathcal{R}\left(f^{\star}
ight)
ight]= ext{ Bias }+ ext{ Variance}$$

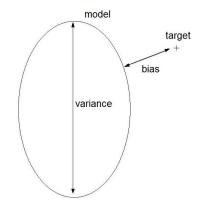
Bias or Approximation error

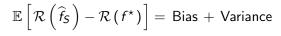
1

$$\mathcal{R}(f_{\mathcal{S}}^{\star}) - \mathcal{R}(f^{\star}) = \inf_{f \in \mathcal{S}} \mathcal{R}(f) - \mathcal{R}(f^{\star})$$

Variance or Estimation error



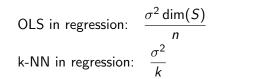


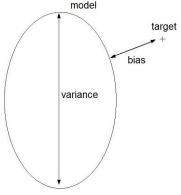


Bias or Approximation error

$$\mathcal{R}(f_{S}^{\star}) - \mathcal{R}(f^{\star}) = \inf_{f \in S} \mathcal{R}(f) - \mathcal{R}(f^{\star})$$

Variance or Estimation error





Bias-variance trade-off ⇔ avoid overfitting and underfitting

Introduction 00000000000000	Goals 00000000	Overfitting 00000	Examples	Key issues	Co
Outline					

Examples

- Plug in rules
- Empirical risk minimization and model selection
- Convexification and support vector machines
- Decision trees and forests

Idea:

$$f^{\star}(x) = \mathbb{1}_{\eta(x) \geq \frac{1}{2}}$$

 \Rightarrow if $\widehat{\eta}(D_n)$ estimates η (regression problem),

$$\widehat{f}(x; D_n) = \mathbb{1}_{\widehat{\eta}(x; D_n) \geq \frac{1}{2}}$$

• Examples: partitioning, *k*-NN, local average classifiers [Devroye et al., 1996], [Audibert and Tsybakov, 2007]...

Risk bound for plug in

Proposition (Theorem 2.2 in [Devroye et al., 1996])

For a plug in classifier \hat{f} ,

$$\mathcal{R}\left(\widehat{f}(D_n)\right) - \mathcal{R}\left(f^{\star}\right) \leq 2\mathbb{E}\left[\left|\eta(X) - \widehat{\eta}(X;D_n)\right| \mid D_n\right]$$
$$\leq 2\sqrt{\mathbb{E}\left[\left(\eta(X) - \widehat{\eta}(X;D_n)\right)^2 \mid D_n\right]}$$

Examples

(First step for proving Stone's theorem [Stone, 1977])

Proof

$$\mathcal{R}\left(\widehat{f}(D_n)\right) - \mathcal{R}\left(f^{\star}\right) = \mathbb{E}\left[\left|2\eta(X) - 1\right| \mathbb{1}_{\widehat{f}(X;D_n) \neq f^{\star}(X)} \middle| D_n\right]$$

and $\widehat{f}(X; D_n) \neq f^*(X)$ implies $|2\eta(X) - 1| \leq 2 |\eta(X) - \widehat{\eta}(X; D_n)|$. \Box

27/53

Empirical risk minimization (ERM)

• ERM over S:
$$\hat{f}_{S} \in \operatorname{argmin}_{f \in S} \left\{ \widehat{\mathcal{R}}_{n}(f) \right\}$$

 $\mathbb{E}\left[\mathcal{R}\left(\widehat{f}_{\mathsf{S}}\right) - \mathcal{R}\left(f^{\star}\right)\right] = \text{Approximation error} + \text{Estimation error}$

Examples

Empirical risk minimization (ERM)

• ERM over S: $\hat{f}_{S} \in \operatorname{argmin}_{f \in S} \left\{ \widehat{\mathcal{R}}_{n}(f) \right\}$

 $\mathbb{E}\left[\mathcal{R}\left(\widehat{f}_{\mathsf{S}}\right) - \mathcal{R}\left(f^{\star}\right)\right] = \text{Approximation error} + \text{Estimation error}$

Examples

• Approximation error $\mathcal{R}(f_{S}^{\star}) - \mathcal{R}(f^{\star})$: bounded thanks to approximation theory, or assumed equal to zero

Empirical risk minimization (ERM)

• ERM over S: $\hat{f}_{S} \in \operatorname{argmin}_{f \in S} \left\{ \widehat{\mathcal{R}}_{n}(f) \right\}$

 $\mathbb{E}\left[\mathcal{R}\left(\widehat{f}_{\mathsf{S}}\right) - \mathcal{R}\left(f^{\star}\right)\right] = \text{Approximation error} + \text{Estimation error}$

Examples

- Approximation error R (f^{*}_S) R (f^{*}): bounded thanks to approximation theory, or assumed equal to zero
- Estimation error

$$\mathbb{E}\left[\mathcal{R}\left(\widehat{f}_{S}\right) - \mathcal{R}\left(f_{S}^{\star}\right)\right] \leq \mathbb{E}\left[\sup_{f \in S}\left\{\mathcal{R}\left(f\right) - \widehat{\mathcal{R}}_{n}\left(f\right)\right\}\right]$$
Proof: $\mathcal{R}\left(\widehat{f}_{S}\right) - \mathcal{R}\left(f_{S}^{\star}\right)$

$$= \mathcal{R}\left(\widehat{f}_{S}\right) - \widehat{\mathcal{R}}_{n}\left(\widehat{f}_{S}\right) - \mathcal{R}\left(f_{S}^{\star}\right) + \widehat{\mathcal{R}}_{n}\left(f_{S}^{\star}\right) + \widehat{\mathcal{R}}_{n}\left(\widehat{f}_{S}\right) - \widehat{\mathcal{R}}_{n}\left(f_{S}^{\star}\right)$$

$$\leq \sup_{f \in S}\left\{\mathcal{R}\left(f\right) - \widehat{\mathcal{R}}_{n}\left(f\right)\right\} + \widehat{\mathcal{R}}_{n}\left(f_{S}^{\star}\right) - \mathcal{R}\left(f_{S}^{\star}\right) = 28/52$$

Goals Overfitting Examples Bounds on the estimation error (1): global approach $\mathbb{E}\left[\mathcal{R}\left(\widehat{f}_{S}\right)-\mathcal{R}\left(f_{S}^{\star}\right)\right]$ $\leq \mathbb{E}\left[\sup_{f \in S} \left\{ \mathcal{R}(f) - \widehat{\mathcal{R}}_{n}(f) \right\} \right]$ (global complexity of *S*) $\leq 2\mathbb{E} \left| \sup_{f \in S} \left\{ \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \ell(f(X_{i}), Y_{i}) \right\} \right|$ (symmetrization) $\leq \frac{2\sqrt{2}}{\sqrt{n}}\mathbb{E}\left[\sqrt{H(S;X_1,\ldots,X_n)}\right]$ (combinatorial entropy) $\leq 2\sqrt{\frac{2V(S)\log\left(\frac{en}{V(S)}\right)}{2}}$ (VC dimension)

References: Section 3 of [Boucheron et al., 2005], Chapters 12–13 of [Devroye et al., 1996]

See also lectures 1-2 of http://www.di.ens.fr/~arlot/2013orsay.htm

29/53

• $\sup_{f \in S} \{ \operatorname{var}(\mathcal{R}(f) - \widehat{\mathcal{R}}_n(f)) \} \ge Cn^{-1/2} \Rightarrow \text{ no faster rate}$

Classification and statistical machine learning

- $\sup_{f \in S} \{ \operatorname{var}(\mathcal{R}(f) \widehat{\mathcal{R}}_n(f)) \} \ge Cn^{-1/2} \Rightarrow \text{ no faster rate}$
- Margin condition: $\mathbb{P}(|\eta(X) 1/2| \le h) = 0$ with h > 0[Mammen and Tsybakov, 1999]
- Localization idea: use that \hat{f}_S is not anywhere in S

Bounds on the estimation error (2): localization

•
$$\sup_{f \in S} \{ var(\mathcal{R}(f) - \widehat{\mathcal{R}}_n(f)) \} \ge Cn^{-1/2} \Rightarrow$$
 no faster rate

Examples

- Margin condition: $\mathbb{P}(|\eta(X) 1/2| \le h) = 0$ with h > 0[Mammen and Tsybakov, 1999]
- Localization idea: use that \widehat{f}_S is not anywhere in S

$$\widehat{f}_{S} \in \{ f \in S \, / \, \mathcal{R}(f) - \mathcal{R}(f^{\star}) \leq \varepsilon \} \\ \subset \{ f \in S \, / \, \operatorname{var} \left(\ell(f(X), Y) - \ell(f^{\star}(X), Y) \right) \leq \varepsilon / h \}$$

by the margin condition.

Bounds on the estimation error (2): localization

Goals

•
$$\sup_{f \in S} \{ var(\mathcal{R}(f) - \widehat{\mathcal{R}}_n(f)) \} \ge Cn^{-1/2} \Rightarrow$$
 no faster rate

Examples

- Margin condition: $\mathbb{P}(|\eta(X) 1/2| \le h) = 0$ with h > 0[Mammen and Tsybakov, 1999]
- Localization idea: use that \hat{f}_S is not anywhere in S

$$\widehat{f}_{S} \in \{ f \in S / \mathcal{R}(f) - \mathcal{R}(f^{\star}) \leq \varepsilon \} \\ \subset \{ f \in S / \operatorname{var} (\ell(f(X), Y) - \ell(f^{\star}(X), Y)) \leq \varepsilon / h \}$$

by the margin condition. + Talagrand concentration inequality [Talagrand, 1996, Bousquet, 2002] + ...

 $\Rightarrow \text{ fast rates (depending on the assumptions), e.g.,} \\ \kappa \frac{V(S)}{nh} \left(1 + \log \left(\frac{nh^2}{V(S)} \right) \right)$

[Boucheron et al., 2005, Sec. 5], [Massart and Nédélec, 2006] 30/5

Introduction 0000000000000	Goals 00000000	Overfitting 00000	Examples	Key issues 0000000000	Conclusion
Model sele	ction				

- family of models $(S_m)_{m \in \mathcal{M}}$
- \Rightarrow family of classifiers $(\widehat{f}_m(D_n))_{m\in\mathcal{M}_n}$
- \Rightarrow choose $\widehat{m} = \widehat{m}(D_n)$ such that $\mathcal{R}\left(\widehat{f}_{\widehat{m}}(D_n)\right)$ is minimal?

- family of models $(S_m)_{m \in \mathcal{M}}$
- \Rightarrow family of classifiers $(\widehat{f}_m(D_n))_{m\in\mathcal{M}_n}$
- \Rightarrow choose $\widehat{m} = \widehat{m}(D_n)$ such that $\mathcal{R}\left(\widehat{f}_{\widehat{m}}(D_n)\right)$ is minimal?
 - Goal: minimize the risk, i.e., Oracle inequality (in expectation or with a large probability):

$$\mathcal{R}\left(\widehat{f}_{\widehat{m}}\right) - \mathcal{R}\left(f^{\star}\right) \leq C \inf_{m \in \mathcal{M}} \left\{ \mathcal{R}\left(\widehat{f}_{m}\right) - \mathcal{R}\left(f^{\star}\right) \right\} + R_{n}$$

• Interpretation of \hat{m} : the best model can be wrong / the true model can be worse than smaller ones.

31/53

Penalization:

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}_n\left(\widehat{f}_m\right) + \operatorname{pen}(m) \right\}$$

• Ideal penalty:

$$\mathsf{pen}_{\mathrm{id}}(m) = \mathcal{R}\left(\widehat{f}_m\right) - \widehat{\mathcal{R}}_n\left(\widehat{f}_m\right) \quad \Leftrightarrow \quad \widehat{m} \in \mathsf{argmin}_{m \in \mathcal{M}}\left\{\mathcal{R}\left(\widehat{f}_m\right)\right\}$$

Classification and statistical machine learning

• Penalization:

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}} \left\{ \widehat{\mathcal{R}}_n\left(\widehat{f}_m\right) + \operatorname{pen}(m) \right\}$$

• Ideal penalty:

$$\mathsf{pen}_{\mathrm{id}}(m) = \mathcal{R}\left(\widehat{f}_m\right) - \widehat{\mathcal{R}}_n\left(\widehat{f}_m\right) \quad \Leftrightarrow \quad \widehat{m} \in \mathsf{argmin}_{m \in \mathcal{M}}\left\{\mathcal{R}\left(\widehat{f}_m\right)\right\}$$

• General idea: choose pen such that $pen(m) \approx pen_{id}(m)$ or at least $pen(m) \ge pen_{id}(m)$ for all $m \in M$.

Lemma (see next slide): if $pen(m) \ge pen_{id}(m)$ for all $m \in \mathcal{M}$,

$$\mathcal{R}\left(\widehat{f}_{\widehat{m}}\right) - \mathcal{R}\left(f^{\star}\right) \leq \inf_{m \in \mathcal{M}} \left\{ \mathcal{R}\left(\widehat{f}_{m}\right) - \mathcal{R}\left(f^{\star}\right) + \operatorname{pen}(m) - \operatorname{pen}_{\operatorname{id}}(m) \right\}$$

$$\frac{32/53}{32}$$

Introduction Goals Overfitting Examples Key issues Conclus

Penalization for model selection: lemma

Lemma

If
$$orall m \in \mathcal{M}$$
, $-B(m) \leq \mathsf{pen}(m) - \mathsf{pen}_{\mathrm{id}}(m) \leq A(m)$, then,

$$\mathcal{R}\left(\widehat{f}_{\widehat{m}}\right) - \mathcal{R}\left(f^{\star}\right) - B(\widehat{m}) \leq \inf_{m \in \mathcal{M}} \left\{ \mathcal{R}\left(\widehat{f}_{m}\right) - \mathcal{R}\left(f^{\star}\right) + A(m) \right\}$$

Proof: For all $m \in \mathcal{M}$, by definition of \widehat{m} ,

$$\widehat{\mathcal{R}}_n\left(\widehat{f}_{\widehat{m}}
ight) + \operatorname{pen}(\widehat{m}) \leq \widehat{\mathcal{R}}_n\left(\widehat{f}_m
ight) + \operatorname{pen}(m)$$
 .

So,
$$\widehat{\mathcal{R}}_n\left(\widehat{f}_{\widehat{m}}\right) + \operatorname{pen}(\widehat{m}) = \mathcal{R}\left(\widehat{f}_{\widehat{m}}\right) - \operatorname{pen}_{\operatorname{id}}(\widehat{m}) + \operatorname{pen}(\widehat{m})$$

 $\geq \mathcal{R}\left(\widehat{f}_{\widehat{m}}\right) - B(\widehat{m})$
and $\widehat{\mathcal{R}}_n\left(\widehat{f}_m\right) + \operatorname{pen}(m) = \mathcal{R}\left(\widehat{f}_m\right) - \operatorname{pen}_{\operatorname{id}}(m) + \operatorname{pen}(m)$
 $\leq \mathcal{R}\left(\widehat{f}_m\right) + A(m)$.

32/53

• Structural risk minimization (Vapnik):

$$\operatorname{\mathsf{pen}}_{\operatorname{id}}(m) \leq \sup_{f \in S_m} \left\{ \mathcal{R}(f) - \widehat{\mathcal{R}}_n(f) \right\}$$

⇒ can use previous bounds [Koltchinskii, 2001, Bartlett et al., 2002, Fromont, 2007] but remainder terms $\geq Cn^{-1/2} \Rightarrow$ no fast rates.

Penalization for model selection

Goals

• Structural risk minimization (Vapnik):

Overfitting

$$\operatorname{\mathsf{pen}}_{\operatorname{id}}(m) \leq \sup_{f \in S_m} \left\{ \mathcal{R}(f) - \widehat{\mathcal{R}}_n(f) \right\}$$

Examples

 \Rightarrow can use previous bounds [Koltchinskii, 2001, Bartlett et al., 2002, Fromont, 2007] but remainder terms $\geq Cn^{-1/2} \Rightarrow$ no fast rates.

• Tighter estimates of pen_{id}(*m*) for fast rates: localization [Koltchinskii, 2006], resampling [Arlot, 2009].

See also Section 8 of [Boucheron et al., 2005].

Introduction Goals Overfitting Examples Key issues Conclusic Convexification of the classification problem

Convention: $Y_i \in \{-1, 1\}$ so that $\mathbb{1}_{y \neq y'} = \mathbb{1}_{yy' < 0} = \Phi_{0-1}(yy')$

 $\min_{f} \frac{1}{n} \sum_{i=1}^{n} \Phi_{0-1}(Y_i f(X_i)) \quad \text{computationally heavy in general.}$

Convention: $Y_i \in \{-1, 1\}$ so that $\mathbb{1}_{y \neq y'} = \mathbb{1}_{yy' < 0} = \Phi_{0-1}(yy')$

 $\min_{f} \frac{1}{n} \sum_{i=1}^{"} \Phi_{0-1}(Y_i f(X_i)) \quad \text{computationally heavy in general.}$

- Classifier $f : \mathcal{X} \to \{-1, 1\} \Rightarrow$ prediction function $f : \mathcal{X} \to \mathbb{R}$ such that $\operatorname{sign}(f(x))$ will be used to classify x
- Risk $\mathcal{R}_{0-1}(f) = \mathbb{E} \left[\Phi_{0-1} \left(Yf(X) \right) \right]$ $\Rightarrow \Phi$ -risk $\mathcal{R}_{\Phi} \left(f \right) = \mathbb{E} \left[\Phi \left(Yf(X) \right) \right]$ for some $\Phi : \mathbb{R} \to \mathbb{R}^+$

Introduction Goals Overfitting Examples Key issues

Convention: $Y_i \in \{-1,1\}$ so that $\mathbb{1}_{y \neq y'} = \mathbb{1}_{yy' < 0} = \Phi_{0-1}(yy')$

 $\min_{f} \frac{1}{n} \sum_{i=1}^{"} \Phi_{0-1}(Y_i f(X_i)) \quad \text{computationally heavy in general.}$

- Classifier $f : \mathcal{X} \to \{-1, 1\} \Rightarrow$ prediction function $f : \mathcal{X} \to \mathbb{R}$ such that $\operatorname{sign}(f(x))$ will be used to classify x
- Risk $\mathcal{R}_{0-1}(f) = \mathbb{E} \left[\Phi_{0-1} \left(Yf(X) \right) \right]$ $\Rightarrow \Phi$ -risk $\mathcal{R}_{\Phi} \left(f \right) = \mathbb{E} \left[\Phi \left(Yf(X) \right) \right]$ for some $\Phi : \mathbb{R} \to \mathbb{R}^+$

$$\Rightarrow \min_{f \in S} \frac{1}{n} \sum_{i=1}^{n} \Phi(Y_i f(X_i)) \text{ with } S \text{ and } \Phi \text{ convex.}$$

34/53

0 - 1exponential ø hinae loaistic ഹ truncated guadratic 4 ო N 0 -2 -1 0 2

Figure from [Bartlett et al., 2006].

- exponential: $\Phi(u) = e^{-u}$ $\Rightarrow AdaBoost$
- hinge: $\Phi(u) = \max\{1 - u, 0\}$ $\Rightarrow \text{ support vector machines}$
- logistic/logit: $\Phi(u) = \log(1 + \exp(-u))$ \Rightarrow logistic regression
- truncated quadratic: $\Phi(u) = (\max \{1 - u, 0\})^2$

References: [Bartlett et al., 2006] and Section 4 of [Boucheron et al., 2005].

ntroduction 00000000000000 Joals

Overfittin

Examples Key issues

Conclusion

Links between 0-1 and convex risks

Definition

 Φ is classification-calibrated if for any x with $\eta(x) \neq 1/2$,

 $\operatorname{sign}(f_{\Phi}^{\star}(x)) = f^{\star}(x) \quad \text{for any} \quad f_{\Phi}^{\star} \in \operatorname{argmin}_{f} \mathcal{R}_{\Phi}(f)$

ntroduction 00000000000000 Goals 00000000 Overfittin

Examples Key issues

Conclusion

Links between 0-1 and convex risks

Definition

 Φ is classification-calibrated if for any x with $\eta(x) \neq 1/2$,

 $\operatorname{sign}(f_{\Phi}^{\star}(x)) = f^{\star}(x) \quad \text{for any} \quad f_{\Phi}^{\star} \in \operatorname{argmin}_{f} \mathcal{R}_{\Phi}(f)$

Theorem ([Bartlett et al., 2006])

 Φ convex is classification-calibrated $\Leftrightarrow \Phi$ differentiable at 0 and $\Phi'(0) < 0$. Then, a function ψ exists such that

$$\psi\left(\mathcal{R}_{0-1}\left(f\right)-\mathcal{R}_{0-1}\left(f_{0-1}^{\star}\right)\right) \leq \mathcal{R}_{\Phi}\left(f\right)-\mathcal{R}_{\Phi}\left(f_{\Phi}^{\star}\right)$$

Examples:

- exponential loss: $\psi(\theta) = 1 \sqrt{1 \theta^2}$
- hinge loss: $\psi(\theta) = |\theta|$
- truncated quadratic: $\psi(\theta) = \theta^2$

.

Introduction Goals Overfitting Examples Key issues Conclusion Conc

$\mathcal{X} = \mathbb{R}^d$, linear classifier: sign $(\beta^\top x + \beta_0)$ with $\beta \in \mathbb{R}^d$, $\beta_0 \in \mathbb{R}$

 $\mathcal{X} = \mathbb{R}^d$, linear classifier: sign $(\beta^\top x + \beta_0)$ with $\beta \in \mathbb{R}^d$, $\beta_0 \in \mathbb{R}$

$$\operatorname{argmin}_{\beta,\beta_{0}}/\|\beta\| \leq R \left\{ \frac{1}{n} \sum_{i=1}^{n} \Phi_{\operatorname{hinge}} \left(Y_{i} \left(\beta^{\top} X_{i} + \beta_{0} \right) \right) \right\}$$

$$\Leftrightarrow \quad \operatorname{argmin}_{\beta,\beta_{0}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \Phi_{\operatorname{hinge}} \left(Y_{i} \left(\beta^{\top} X_{i} + \beta_{0} \right) \right) + \lambda \|\beta\|^{2} \right\}$$

up to some (random) reparametrization ($\lambda = \lambda(R; D_n)$).

 \Rightarrow quadratic program with 2*n* linear constraints.

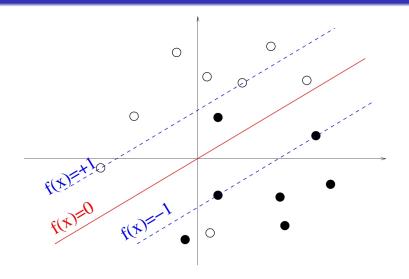


Figure from http://cbio.ensmp.fr/~jvert/svn/kernelcourse/slides/master/master.pdf

Positive definite kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ s.t. $(k(X_i, X_j))_{i,j}$ symmetric positive definite Reproducing Kernel Hilbert Space (RKHS) \mathcal{F} : space of functions $\mathcal{X} \to \mathbb{R}$ spanned by the $\Phi(x) = k(x, \cdot), x \in \mathcal{X}$.

Figure from http://cbio.ensmp.fr/~jvert/svn/kernelcourse/slides/master/master.pdf

53

Svlvain Arlot

Classification and statistical machine learning

Introduction Goals Overfitting Examples Key issues Conclusion Conc

Positive definite kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ s.t. $(k(X_i, X_j))_{i,j}$ symmetric positive definite Reproducing Kernel Hilbert Space (RKHS) \mathcal{F} : space of functions $\mathcal{X} \to \mathbb{R}$ spanned by the $\Phi(x) = k(x, \cdot), x \in \mathcal{X}$.

Theorem (Representer theorem)

For any cost function ℓ ,

$$\min_{f \in \mathcal{F}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i)) + \lambda \|f\|_{\mathcal{F}}^2 \right\}$$
is attained at some f of the form $\sum_{i=1}^{n} \alpha_i k(X_i, \cdot)$

 \Rightarrow any algorithm for $\mathcal{X} = \mathbb{R}^d$ relying only on the dot products $(\langle X_i, X_j \rangle)_{i,j}$ can be kernelized.

39/53

Korpol ovomplos

Examples Key issues

Kernel examples

- linear kernel: $\mathcal{X} = \mathbb{R}^d$, $k(x, y) = \langle x, y \rangle \Rightarrow \mathcal{F} = \mathbb{R}^d$ Euclidean
- polynomial kernel: $\mathcal{X} = \mathbb{R}^d$, $k(x, y) = (\langle x, y \rangle + 1)^r \Rightarrow \mathcal{F} = \mathbb{R}_t[X_1, \dots, X_d]$

40/53 Sylvain Arlot

Kernel examples

Goals

• linear kernel: $\mathcal{X} = \mathbb{R}^d$, $k(x, y) = \langle x, y \rangle \Rightarrow \mathcal{F} = \mathbb{R}^d$ Euclidean

Examples

- polynomial kernel: $\mathcal{X} = \mathbb{R}^d$, $k(x, y) = (\langle x, y \rangle + 1)^r \Rightarrow \mathcal{F} = \mathbb{R}_r[X_1, \dots, X_d]$
- Gaussian kernel: $\mathcal{X} = \mathbb{R}^d$, $k(x, y) = e^{-||x-y||^2/(2\sigma^2)}$
- Laplace kernel: $\mathcal{X} = \mathbb{R}$, $k(x, y) = e^{-|x-y|/2}$ $\Rightarrow \mathcal{F} = H^1$ (Sobolev space), $\|f\|_{\mathcal{F}}^2 = \|f\|_{L^2}^2 + \|f'\|_{L^2}^2$.
- min kernel: $\mathcal{X} = [0, 1]$, $k(x, y) = \min\{x, y\}$ $\Rightarrow \mathcal{F} = \{f \in \mathcal{C}^0([0, 1]), f' \in L^2, f(0) = 0\}, ||f||_{\mathcal{F}} = ||f'||_{L^2}.$

Kernel examples

Goals

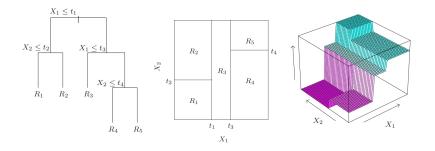
- Gaussian kernel: $\mathcal{X} = \mathbb{R}^d$, $k(x, y) = e^{-\|x-y\|^2/(2\sigma^2)}$
- Laplace kernel: $\mathcal{X} = \mathbb{R}$, $k(x, y) = e^{-|x-y|/2}$ $\Rightarrow \mathcal{F} = H^1$ (Sobolev space), $\|f\|_{\mathcal{F}}^2 = \|f\|_{L^2}^2 + \|f'\|_{L^2}^2$.
- min kernel: $\mathcal{X} = [0, 1], k(x, y) = \min \{x, y\}$ $\Rightarrow \mathcal{F} = \{f \in \mathcal{C}^0([0,1]), f' \in L^2, f(0) = 0\}, \|f\|_{\mathcal{T}} = \|f'\|_{L^2}.$
- \Rightarrow intersection kernel: $\mathcal{X} = \{ p \in [0, 1]^d / p_1 + \cdots + p_d = 1 \},\$ $k(p,q) = \sum_{i=1}^{d} \min(p_i, q_i)$, useful in computer vision [Hein and Bousquet, 2004, Maji et al., 2008].
 - other kernels on non-vectorial data (graphs, words / DNA sequences, ...): see for instance [Schölkopf et al., 2004, Mahé et al., 2005, Shervashidze et al., 2011] and http://cbio. ensmp.fr/~jvert/svn/kernelcourse/slides/master/master.pdf 40/53

Main mathematical tools for SVM analysis: probability in Hilbert spaces (RKHS), functional analysis.

Some references:

- Risk bounds: e.g., [Blanchard et al., 2008] (SVM as a penalization procedure for selecting among balls). see also [Boucheron et al., 2005, Section 4]
- Tutorials and lecture notes: [Burges, 1998], http://cbio.ensmp.fr/~jvert/svn/kernelcourse/ slides/master/master.pdf
- Books: e.g., [Steinwart and Christmann, 2008, Hastie et al., 2009, Scholkopf and Smola, 2001]

- piecewise constant predictor
- partition obtained by recursive splitting of X ⊂ ℝ^p, orthogonally to one axis (X^j < t vs. X^j ≥ t)
- empirical risk minimization



Figures from [Hastie et al., 2009]

CART [Breiman et al., 1984]:

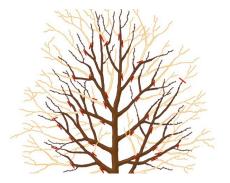
- generate one large tree by splitting recursively the data (minimization of some impurity measure),
- \Rightarrow over-adapted to data

CART [Breiman et al., 1984]:

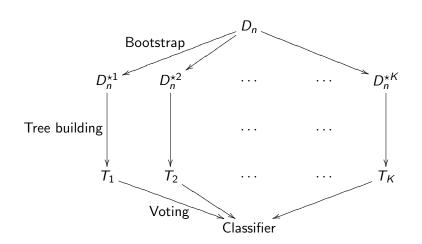
- generate one large tree by splitting recursively the data (minimization of some impurity measure),
- \Rightarrow over-adapted to data

2 pruning (\Leftrightarrow model selection)

Model selection results: e.g., [Gey and Nédélec, 2005, Sauvé and Tuleau-Malot, 2011, Gey and Mary-Huard, 2011].



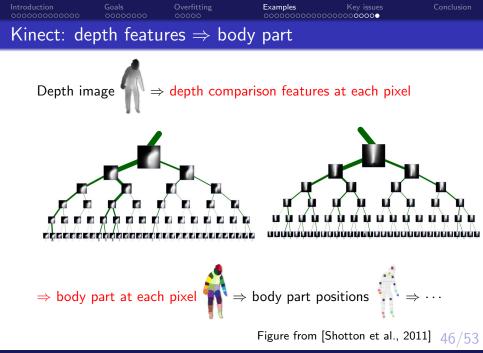
Introduction Goals Overfitting Examples Key issues Conclusion Conc



Various ways to build individual trees (subset of variables...) Purely random forests: partitions independent from training data. 44/53

- Most theoretical results on purely random forests (partitions independent from training data: by data splitting or with simpler models)
- Consistency result in classification [Biau et al., 2008]
- Convergence rate and some combination with variable selection [Biau, 2012]
- From a single tree to a large forest:
 - estimation error reduction (at least a constant factor) [Genuer, 2012]
 - approximation error reduction (A. & Genuer, work in progress)
 - \Rightarrow sometimes improvement in the learning rate

See also [Breiman, 2004, Genuer et al., 2008, Genuer et al., 2010].



Introduction 00000000000000	Goals 00000000	Overfitting 00000	Examples 0000000000	Key issues	
Outline					

1 Introduction

2 Goals

Overfitting

4 Examples

Classification and statistical machine learning

Introduction 0000000000000	Goals 00000000	Overfitting 00000	Examples 0000000000	Key issues	Conclusion	
Hyperparameter choice						

- Always one or several parameters to choose:
 - *k* for *k*-NN, model selection, λ for SVM, kernel bandwidth for SVM with Gaussian kernel, tree size in random forests, ...
- No universal choice possible (No Free Lunch Theorems apply)
 ⇒ must use some prior knowledge at some point

Introduction 0000000000000	Goals 00000000	Overfitting 00000	Examples 0000000000	Key issues	Conclusion		
Hyperparameter choice							

- Always one or several parameters to choose:
 - k for k-NN, model selection, λ for SVM, kernel bandwidth for SVM with Gaussian kernel, tree size in random forests, ...
- No universal choice possible (No Free Lunch Theorems apply)
 ⇒ must use some prior knowledge at some point
- Most general ideas: data splitting (cross-validation) [Arlot and Celisse, 2010]
- Sometimes specific approaches (penalization...): more efficient (for risk and computational cost) but also dependent on stronger assumptions

Introduction 0000000000000	Goals 00000000	Overfitting 00000	Examples 0000000000	Key issues	Conclusion		
Hyperparameter choice							

- Always one or several parameters to choose:
 - k for k-NN, model selection, λ for SVM, kernel bandwidth for SVM with Gaussian kernel, tree size in random forests, ...
- No universal choice possible (No Free Lunch Theorems apply)
 ⇒ must use some prior knowledge at some point
- Most general ideas: data splitting (cross-validation) [Arlot and Celisse, 2010]
- Sometimes specific approaches (penalization...): more efficient (for risk and computational cost) but also dependent on stronger assumptions
- Important to choose a good parametrization (e.g., for cross-validation, the optimal parameter should not vary too much from a sample to another)

Most classifiers are defined as $\widehat{f} \in \operatorname{argmin}_{f \in S} C(f)$

• Optimization algorithms: usually faster (polynomial) when C and S convex. Often NP hard with 0–1 loss. Counterexample: interval classification [Kearns et al., 1997].

Computational complexity

Goals

Examples Key issues

Most classifiers are defined as $\widehat{f} \in \operatorname{argmin}_{f \in S} C(f)$

- Optimization algorithms: usually faster (polynomial) when C and S convex. Often NP hard with 0–1 loss. Counterexample: interval classification [Kearns et al., 1997].
- General convex optimization algorithms usually too slow if n or p = dim(X) are > 10³.
- ⇒ Need for specific faster algorithms (e.g., for SVM, consider the dual problem and take advantage of the "sparsity" of the solution).

Constants matter! (e.g., dependence on *p*).

Computational complexity

Goals

Examples Key issues

Most classifiers are defined as $\widehat{f} \in \operatorname{argmin}_{f \in S} C(f)$

- Optimization algorithms: usually faster (polynomial) when C and S convex. Often NP hard with 0–1 loss. Counterexample: interval classification [Kearns et al., 1997].
- General convex optimization algorithms usually too slow if n or p = dim(X) are > 10³.
- ⇒ Need for specific faster algorithms (e.g., for SVM, consider the dual problem and take advantage of the "sparsity" of the solution).

Constants matter! (e.g., dependence on p).

• Choice of a classification learning algorithm: trade-off between statistical performances and computational cost. Also depends on the confidence in the modelling chosen.
 Introduction
 Goals
 Overfitting
 Examples
 Key issues
 Conclusion

 Optimization error
 Opti

Risk = Approximation error + Estimation error

Risk = Approximation error + Estimation error + Optimization error

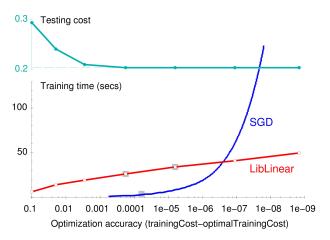


Figure from [Bottou and Bousquet, 2011]

/53

• Given $\varepsilon > 0$, what do we need to get $\mathcal{R}\left(\widehat{f}\right) - \mathcal{R}\left(f^{\star}\right) \leq \varepsilon$?

The big data setting

• Given $\varepsilon > 0$, what do we need to get $\mathcal{R}\left(\widehat{f}\right) - \mathcal{R}\left(f^{\star}\right) \leq \varepsilon$?

Key issues

• Traditional statistical learning: sample complexity, i.e., $n \ge n_0(\varepsilon)$, whatever the computational cost

The big data setting

Goals

• Given $\varepsilon > 0$, what do we need to get $\mathcal{R}\left(\widehat{f}\right) - \mathcal{R}\left(f^{\star}\right) \leq \varepsilon$?

Key issues

- Traditional statistical learning: sample complexity, i.e., $n \ge n_0(\varepsilon)$, whatever the computational cost
- Big data: n so large that exploring all data is impossible (and unnecessary) ⇒ better to throw away some data!
 [Bottou and Bousquet, 2008, Shalev-Shwartz and Srebro, 2008]
- ⇒ time complexity, i.e., minimal number of computations, whatever n

The big data setting

Goals

• Given $\varepsilon > 0$, what do we need to get $\mathcal{R}(\hat{f}) - \mathcal{R}(f^{\star}) \leq \varepsilon$?

Key issues

- Traditional statistical learning: sample complexity, i.e., $n \ge n_0(\varepsilon)$, whatever the computational cost
- Big data: n so large that exploring all data is impossible (and unnecessary) ⇒ better to throw away some data!
 [Bottou and Bousquet, 2008, Shalev-Shwartz and Srebro, 2008]
- ⇒ time complexity, i.e., minimal number of computations, whatever n
 - A very active field: Big Data Research and Development Initiative (US government), MASTODONS (CNRS), AMPLab (UC Berkeley), ...

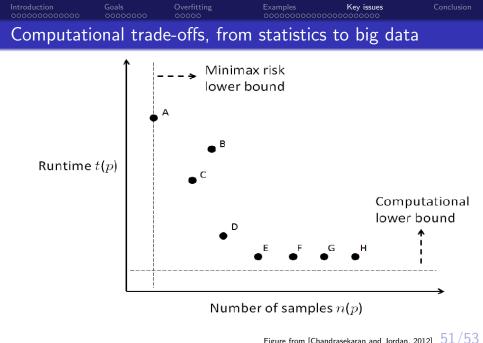


Figure from [Chandrasekaran and Jordan, 2012]

Introduction	Goals	Overfitting	Examples	Key issues	Conclusion
0000000000000	00000000	00000	000000000000	0000000000	
Conclusion					

- Learning theory: assumptions \Rightarrow learning rates (NFLT)
- Main danger: overfitting

Introduction 0000000000000	Goals 00000000	Overfitting 00000	Examples 0000000000	Key issues	Conclusion
Conclusion					

- Learning theory: assumptions \Rightarrow learning rates (NFLT)
- Main danger: overfitting
- Various ways to model the data:
 - k-NN: f* locally constant w.r.t. d
 - ERM/model selection: family of possible f^{\star}
 - SVM: kernel \Rightarrow smoothness of f^{\star} / feature space
 - random forests: weak modelling (trees) + aggregation
 - many other approaches: Bayesian statistics, neural networks, deep learning, ...

Introduction 0000000000000	Goals 00000000	Overfitting 00000	Examples 0000000000	Key issues	Conclusion
Conclusion					

- Learning theory: assumptions \Rightarrow learning rates (NFLT)
- Main danger: overfitting
- Various ways to model the data:
 - k-NN: f* locally constant w.r.t. d
 - ERM/model selection: family of possible f^{\star}
 - SVM: kernel \Rightarrow smoothness of f^{\star} / feature space
 - random forests: weak modelling (trees) + aggregation
 - many other approaches: Bayesian statistics, neural networks, deep learning, ...
- Key issues: tuning parameters & computational complexity Big data ⇒ new challenges

Introduction 0000000000000	Goals 00000000	Overfitting 00000	Examples 0000000000	Key issues	Conclusion
Conclusion					

- Learning theory: assumptions \Rightarrow learning rates (NFLT)
- Main danger: overfitting
- Various ways to model the data:
 - k-NN: f* locally constant w.r.t. d
 - ERM/model selection: family of possible f^\star
 - SVM: kernel \Rightarrow smoothness of f^{\star} / feature space
 - random forests: weak modelling (trees) + aggregation
 - many other approaches: Bayesian statistics, neural networks, deep learning, ...
- Key issues: tuning parameters & computational complexity Big data ⇒ new challenges
- Main mathematical domains involved (outside statistics): probability theory (concentration of measure, ...), approximation theory, functional analysis, optimization, ...

These slides: http://www.di.ens.fr/~arlot/

- Devroye, L., Györfi, L., and Lugosi, G. (1996).
 A probabilistic theory of pattern recognition, volume 31 of Applications of Mathematics (New York).
 Springer-Verlag, New York.
- Boucheron, S., Bousquet, O., and Lugosi, G. (2005).
 Theory of classification: a survey of some recent advances.
 ESAIM Probab. Stat., 9:323–375 (electronic).

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
 The elements of statistical learning.
 Springer Series in Statistics. Springer, New York, second edition.
 Data mining, inference, and prediction.

Arlot, S. (2009).

Model selection by resampling penalization. *Electron. J. Stat.*, 3:557–624 (electronic).

- Arlot, S. and Celisse, A. (2010).
 A survey of cross-validation procedures for model selection. Statist. Surv., 4:40–79.
- Audibert, J.-Y. and Tsybakov, A. (2007). Fast learning rates for plug-in classifiers. *Annals of Statistics*, 35(2):608–633.

Bartlett, P. L., Boucheron, S., and Lugosi, G. (2002). Model selection and error estimation. *Machine Learning*, 48:85–113.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classification, and risk bounds.

> 53/53 Sylvain Arlot

Journal of the American Statistical Association, 101(473):138–156. (Was Department of Statistics, U.C. Berkeley Technical Report number 638, 2003).

Biau, G. (2012).
 Analysis of a random forests model.
 J. Mach. Learn. Res., 13:1063–1095.

Biau, G., Devroye, L., and Lugosi, G. (2008).
 Consistency of random forests and other averaging classifiers.
 J. Mach. Learn. Res., 9:2015–2033.

Blanchard, G., Bousquet, O., and Massart, P. (2008). Statistical performance of support vector machines. *Ann. Statist.*, 36(2):489–531.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning.

53/53 Sylvain Arlot

Conclusion

 Introduction
 Goals
 Overfitting
 Examples
 Key issues
 Conclusion

 In Platt, J., Koller, D., Singer, Y., and Roweis, S., editors,
 Advances in Neural Information Processing Systems,
 volume 20, pages 161–168. NIPS Foundation
 (http://books.nips.cc).

 Image: Bottou, L. and Bousquet, O. (2011).
 The tradeoffs of large scale learning.

In Sra, S., Nowozin, S., and Wright, S. J., editors, *Optimization for Machine Learning*, pages 351–368. MIT Press.

Boucheron, S., Bousquet, O., and Lugosi, G. (2005).
 Theory of classification: a survey of some recent advances.
 ESAIM Probab. Stat., 9:323–375 (electronic).

Bousquet, O. (2002).

A Bennett concentration inequality and its application to suprema of empirical processes.

C. R. Math. Acad. Sci. Paris, 334(6):495-500.

Breiman, L. (2001).

Random forests.

Machine Learning, 45:5–32. 10.1023/A:1010933404324.

Breiman, L. (2004).

Consistency for a simple model of random forests. Technical Report Technical Report 670, U.C. Berkeley Department of Statistics. available at

http://www.stat.berkeley.edu/tech-reports/670.pdf.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984).
 Classification and Regression Trees.
 Wadsworth Statistics/Probability Series. Wadsworth Advanced Books and Software, Belmont, CA.

Burges, C. (1998).

Data Mining and Knowledge Discovery, 2(2):121–167. http://research.microsoft.com/enus/um/people/cburges/papers/SVMTutorial.pdf.

Chandrasekaran, V. and Jordan, M. I. (2012). Computational and statistical tradeoffs via convex relaxation. arXiv:1211.1073.

Devroye, L., Györfi, L., and Lugosi, G. (1996). A probabilistic theory of pattern recognition, volume 31 of Applications of Mathematics (New York). Springer-Verlag, New York.

Fromont, M. (2007).

Model selection by bootstrap penalization for classification. *Mach. Learn.*, 66(2–3):165–207.

Genuer, R. (2012).

Variance reduction in purely random forests.

roduction Goals Overfitting Examples Key issues **Conclusion**

Genuer, R., Poggi, J.-M., and Tuleau, C. (2008). Random forests: Some methodological insights. arXiv:0811.3619.

Genuer, R., Poggi, J.-M., and Tuleau-Malot, C. (2010). Variable selection using random forests. *Pattern Recognition Letters*, 31(14):2225–2236.

Gey, S. and Mary-Huard, T. (2011). Risk bounds for embedded variable selection in classification trees.

arXiv:1108.0757.

Gey, S. and Nédélec, É. (2005). Model selection for CART regression trees. IEEE Trans. Inform. Theory, 51(2):658–670.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). *The elements of statistical learning*.

Introduction 000000000		Overfitting 00000	Examples 00000000000000	Key issues 00000000	Conclusion
	Springer Series in S edition. Data mining, infer			ork, second	
	Hein, M. and Bous Hilbertian metrics measures. In <i>AISTATS</i> .			s on probability	r
	Kearns, M., Manso An Experimental a Selection Methods <i>Mach. Learn.</i> , 7:7-	nd Theoretica			
	Koltchinskii, V. (2 Rademacher penal IEEE Trans. Inform	ties and struct			
	Koltchinskii, V. (2	006).			

Ann. Statist., 34(6):2593-2656.

Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., and Vert, J.-P. (2005).
Graph kernels for molecular structure-activity relationship analysis with support vector machines.
Journal of Chemical Information and Modeling, 45(4):939–951.

Maji, S., Berg, A. C., and Malik, J. (2008).

Classification using intersection kernel support vector machines is efficient.

In CVPR.

- Mammen, E. and Tsybakov, A. B. (1999).
 Smooth discrimination analysis.
 Ann. Statist., 27(6):1808–1829.
- Massart, P. and Nédélec, É. (2006).

roduction	Goals 0000 0000000	Overfitting 00000	Examples 00000000000	Key issues	Conclusion
	Risk bounds for Ann. Statist., 34		0		
	Sauvé, M. and T Variable selection arxiv:1101.0689.				
	Scholkopf, B. an Learning with Ke Regularization, C MIT Press, Cam	ernels: Supp Optimizatior	oort Vector Mad 1, and Beyond.	chines,	
	Schölkopf, B., T <i>Kernel Methods</i> MIT Press.			editors (2004)	
	Shalev-Shwartz, Svm optimizatio In <i>25th Internati</i>	n: Inverse d	ependence on t	0	
					53/53
ssification	and statistical machine learni	ng			Sylvain Arlot

Classification and statistical machine learning

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., and Borgwardt, K. (2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):2539–2561. Shotton, J., Fitzgibbon, A. W., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. (2011). Real-time human pose recognition in parts from single depth images. In CVPR, pages 1297–1304. Steinwart, I. and Christmann, A. (2008). Support vector machines. Information Science and Statistics. Springer, New York. Stone, C. J. (1977). Consistent nonparametric regression. Ann. Statist., 5(4):595-645. With discussion and a reply by the author.

Examples

Goals

Conclusion

Examples Key issues

Talagrand, M. (1996).

New concentration inequalities in product spaces.

Invent. Math., 126(3):505-563.

