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Hand-written digit recognition (MNIST)

⇒ ? http://yann.lecun.com/exdb/mnist/
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Object recognition

American flag: · · ·

Butterfly: · · ·

Teddy bear: · · ·

⇒ American flag? Butterfly? Teddy bear? . . .

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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Kinect: body part recognition [Shotton et al., 2011]

http://research.microsoft.com/en-us/projects/vrkinect/
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Predict biochemical properties of molecules from structure

Mutagenic compounds Non-mutagenic compounds

A compound with unknown properties:

Is it likely to be mutagenic or not?

[Mahé et al., 2005, Shervashidze et al., 2011] Figure obtained from Koji Tsuda
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Many other applications

Bioinformatics:

sequencing data for diagnosis and prognosis (cancer, ...)
personalized medicine
. . .

Text classification:

Spam detection
Google ads
Automatic document classification

Action recognition in videos

Speech recognition

Credit scoring

. . .
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Classification in R: data
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Classification in R: regression function
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Classification in R: Bayes classifier
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Binary supervised classification

Data Dn : (X1,Y1), . . . , (Xn,Yn) ∈ X × {0, 1} (i.i.d. ∼ P)

Classifier: f : X → {0, 1} measurable

Cost/Loss function `(f (x), y) measures how well f (x)
“predicts” y
For this talk: `(y , y ′) = 1y 6=y ′ (0–1 loss)

Goal: learn f ∈ S = {measurable functions X → {0, 1}} s.t.
the risk

R ( f ) := E(X ,Y )∼P [`(f (X ),Y ) ] = P ( f (X ) 6= Y )

is minimal.

Remark: asymmetric cost `w (f (x), y) = w(y)1f (x)6=y with
w(0) 6= w(1) > 0 (spams, medical diagnosis).
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Bayes estimator and excess risk

Bayes classifier: f ? ∈ argminf ∈S {R(f )}

Proposition

In binary classification with the 0–1 loss,

f ?(X ) = 1η(X )≥1/2 (except maybe on {η(X ) = 1/2})

where η(X ) = P (Y = 1 | X ) is the regression function.
The Bayes risk is R(f ?) = E [min {η(X ), 1− η(X )} ]
and the excess risk of any f ∈ S is

R ( f )−R ( f ? ) = E
[
|2η(X )− 1|1f (X ) 6=f ?(X )

]
.

Remark: for the asymmetric cost `w , a similar result holds with
1/2 replaced by w(0)/(w(0) + w(1)).
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Bayes estimator and excess risk: proof

P ( f (X ) 6= Y | X ) = P (Y = 1)1f (X )6=1 + P (Y = 0)1f (X )6=0

= η(X )1f (X )=0 + (1− η(X ))1f (X )=1

≥ min {η(X ), 1− η(X )}

with equality if and only if η(X ) = 1/2 or f (X ) = 1η(X )≥1/2. The
first two results follow by integrating over X .
Then, the excess risk is equal to

E
[
1f (X )6=Y − 1f ?(X )6=Y

]
= E

[
1f (X )6=f ?(X )

(
1f (X )6=Y − 1f ?(X )6=Y

)]
= E

[
E
[
1f (X )6=f ?(X )

(
1f (X )6=Y − 1f ?(X )6=Y

) ∣∣ X
]]

= E
[
1f (X )6=f ?(X ) (max {η(X ), 1− η(X )} −min {η(X ), 1− η(X )})

]
= E

[
|2η(X )− 1|1f (X )6=f ?(X )

]
Classification and statistical machine learning Sylvain Arlot
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Classification seen as a testing problem

0 10

0

1

 

 

class 0

class 1

Classification and statistical machine learning Sylvain Arlot



13/53

Introduction Goals Overfitting Examples Key issues Conclusion

Classification seen as a testing problem

fi : density of Pi = L (X | Y = i ) for i = 0, 1

Regression function

η(x) =
P(Y = 1)f1(x)

P(Y = 0)f0(x) + P(Y = 1)f1(x)

Bayes predictor

f ?(x) = 1η(x)≥ 1
2

= 1 f1(x)
f0(x)
≥ P(Y=0)

P(Y=1)

⇔ likelihood-ratio test 1 f1(x)
f0(x)
≥t of

H0: “X ∼ P0” against H1: “X ∼ P1”.

Classification and statistical machine learning Sylvain Arlot
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Classification rule/algorithm

Classification rule

f̂ :
⋃
n≥1

(X × {0, 1})n → S

Input: a data set Dn (of any size n ≥ 1)

Output: a classifier f̂ (Dn): X → {0, 1}

Example: k-nearest neighbours (k-NN):
x ∈ X → majority vote among the Yi such that Xi is one of
the k nearest neighbours of x in X1, . . . ,Xn

Classification and statistical machine learning Sylvain Arlot
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Example: 3-nearest neighbours
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Universal consistency

weak consistency: E
[
R(f̂ (Dn))

]
−−−→
n→∞

R(f ?)

strong consistency: R(f̂ (Dn))
a.s.−−−→

n→∞
R(f ?)

universal (weak) consistency: for all P,

E
[
R(f̂ (Dn))

]
−−−→
n→∞

R(f ?)

universal strong consistency: for all P, R(f̂ (Dn))
a.s.−−−→

n→∞
R(f ?)

Stone’s theorem [Stone, 1977]: If X = Rd with the Euclidean
distance, kn-NN is (weakly) universally consistent if kn → +∞
and kn/n→ 0 as n→ +∞.

Classification and statistical machine learning Sylvain Arlot
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Uniform universal consistency?

universal weak consistency:

sup
P∈M1(X×{0,1})

lim
n→+∞

E
[
R(f̂ (Dn))

]
−R(f ?) = 0

uniform universal weak consistency:

lim
n→+∞

sup
P∈M1(X×{0,1})

{
E
[
R(f̂ (Dn))

]
−R(f ?)

}
= 0

that is, a common learning rate for all P?

Yes if X is finite.

No otherwise (see Chapter 7 of [Devroye et al., 1996]).
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Classification on X finite

Theorem

If X is finite and f̂ maj is the majority vote rule (for each x ∈ X ,
majority vote among {Yi /Xi = x }),

sup
P

{
E
[
R(f̂ maj(Dn))

]
−R(f ?)

}
≤
√

Card(X ) log(2)

2n
.

Proof: standard risk bounds (see next section) + maximal
inequality

E

[
sup
t∈T

{
n∑

i=1

ξi ,t

}]
≤
√

log(Card(T ))

2n

if for all t, (ξi ,t)i are independent, centered and in [0, 1].
See e.g. http://www.di.ens.fr/~arlot/2013orsay.htm
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Classification on X finite

Theorem

If X is finite and f̂ maj is the majority vote rule (for each x ∈ X ,
majority vote among {Yi /Xi = x }),

sup
P

{
E
[
R(f̂ maj(Dn))

]
−R(f ?)

}
≤
√

Card(X ) log(2)

2n
.

Constants matter: Card(X ) can be larger than n ⇒ beware of
asymptotic results and O(·) that can hide such constants in first or
second order terms.
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No Free Lunch Theorem

Theorem

If X is infinite, for any classification rule f̂ and any n ≥ 1,

sup
P∈M1(X×{0,1})

{
E
[
R(f̂ (Dn))

]
−R(f ?)

}
≥ 1

2
.
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No Free Lunch Theorem

Theorem

If X is infinite, for any classification rule f̂ and any n ≥ 1,

sup
P∈M1(X×{0,1})

{
E
[
R(f̂ (Dn))

]
−R(f ?)

}
≥ 1

2
.

Remark: for any (an) decreasing to zero and any f̂ , some P exists

such that E
[
R(f̂ (Dn))

]
−R(f ?) ≥ an. See Chapter 7 of

[Devroye et al., 1996].

⇒ impossible to have C(P)
log log n as a universal risk bound!
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No Free Lunch Theorem: proof

Assume N ⊂ X and let K ≥ 1. For any r ∈ {0, 1}K , define Pr by
X uniform on {1, . . . ,K } and P (Y = ri | X = i ) = 1 for all
i = 1, . . . ,K .
Under Pr , f ?(x) = rx and R(f ?) = 0. So,

sup
P

{
EP

[
RP(f̂ (Dn))

]
−RP(f ?)

}
≥ sup

Pr

{
PPr

(
f̂ (X ; Dn) 6= rX

)}
≥ Er∼R

{
PPr

(
f̂ (X ; Dn) 6= rX

)}
≥ E

[
1X /∈{X1,...,Xn }E

[
1
f̂ (X ;(Xi ,rXi )i=1...n) 6=rX

∣∣∣ X , (Xi , rXi
)i=1...n

]]
=

1

2
P (X /∈ {X1, . . . ,Xn }) =

1

2

(
1− 1

K

)n
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Learning rates

How can we get a bound such as

R
(

f̂ (Dn)
)
−R ( f ? ) ≤ C (P)n−1/2 ?

No Free Lunch Theorems ⇒ must make assumptions on P

Minimax rate: given a set P ⊂M1(X × {0, 1}),

inf
f̂

sup
P∈P

{
E
[
R
(

f̂ (Dn)
)
−R ( f ? )

]}
Examples:√

V /n when f ? ∈ S known and dimVC(S) = V
[Devroye et al., 1996]
V /(nh) when in addition P ( |η(X )− 1/2| ≤ h ) = 0 (margin
assumption) [Massart and Nédélec, 2006]
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Overfitting with k-nearest-neighbours: k = 1
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Choosing k ∈ {1, 3, 20, 200} for k-NN (n = 200)
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Empirical risk minimization

Empirical risk

R̂n ( f ) :=
1

n

n∑
i=1

` ( f (Xi ),Yi )

Empirical risk minimizer over a model S ⊂ S:

f̂S ∈ argminf ∈S

{
R̂n ( f )

}

Examples:

partitioning rule: S =
{∑

k≥1 αk1Ak
/αk ∈ {0, 1}

}
for some

partition (Ak)k≥1 of X
linear discrimination (X = Rd):
S =

{
x 7→ 1β>x+β0≥0 / β ∈ Rd , β0 ∈ R

}
...
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Example: linear discrimination

Fig. 4.3 of [Devroye et al., 1996]
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Bias-variance trade-off

E
[
R
(

f̂S

)
−R ( f ? )

]
= Bias + Variance

Bias or Approximation error

R ( f ?S )−R ( f ? ) = inf
f ∈S
R ( f )−R ( f ? )

Variance or Estimation error

OLS in regression:
σ2 dim(S)

n

k-NN in regression:
σ2

k

Bias-variance trade-off ⇔ avoid overfitting and underfitting
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Outline

1 Introduction

2 Goals

3 Overfitting

4 Examples
Plug in rules
Empirical risk minimization and model selection
Convexification and support vector machines
Decision trees and forests

5 Key issues
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Plug in classifiers

Idea:
f ?(x) = 1η(x)≥ 1

2

⇒ if η̂(Dn) estimates η (regression problem),

f̂ (x ; Dn) = 1η̂(x ;Dn)≥ 1
2

Examples: partitioning, k-NN, local average classifiers
[Devroye et al., 1996], [Audibert and Tsybakov, 2007]...
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Risk bound for plug in

Proposition (Theorem 2.2 in [Devroye et al., 1996])

For a plug in classifier f̂ ,

R
(

f̂ (Dn)
)
−R ( f ? ) ≤ 2E [ |η(X )− η̂(X ; Dn)| | Dn ]

≤ 2

√
E
[

(η(X )− η̂(X ; Dn))2
∣∣∣ Dn

]
(First step for proving Stone’s theorem [Stone, 1977])

Proof:

R
(

f̂ (Dn)
)
−R ( f ? ) = E

[
|2η(X )− 1|1

f̂ (X ;Dn)6=f ?(X )

∣∣∣ Dn

]
and f̂ (X ; Dn) 6= f ?(X ) implies |2η(X )− 1| ≤ 2 |η(X )− η̂(X ; Dn)| .
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Empirical risk minimization (ERM)

ERM over S : f̂S ∈ argminf ∈S

{
R̂n ( f )

}
E
[
R
(

f̂S

)
−R ( f ? )

]
= Approximation error + Estimation error

Approximation error R ( f ?S )−R ( f ? ): bounded thanks to
approximation theory, or assumed equal to zero
Estimation error

E
[
R
(

f̂S

)
−R ( f ?S )

]
≤ E

[
sup
f ∈S

{
R ( f )− R̂n ( f )

}]
Proof: R

(
f̂S

)
−R ( f ?S )

= R
(

f̂S

)
− R̂n

(
f̂S

)
−R ( f ?S ) + R̂n ( f ?S ) + R̂n

(
f̂S

)
− R̂n ( f ?S )

≤ sup
f ∈S

{
R ( f )− R̂n ( f )

}
+ R̂n ( f ?S )−R ( f ?S )
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Bounds on the estimation error (1): global approach

E
[
R
(

f̂S

)
−R ( f ?S )

]
≤ E

[
sup
f ∈S

{
R ( f )− R̂n ( f )

}]
(global complexity of S)

≤ 2E

[
sup
f ∈S

{
1

n

n∑
i=1

εi` ( f (Xi ),Yi )

}]
(symmetrization)

≤ 2
√

2√
n
E
[√

H(S ; X1, . . . ,Xn)
]

(combinatorial entropy)

≤ 2

√√√√2V (S) log
(

en
V (S)

)
n

(VC dimension)

References: Section 3 of [Boucheron et al., 2005], Chapters 12–13
of [Devroye et al., 1996]
See also lectures 1–2 of http://www.di.ens.fr/~arlot/2013orsay.htm
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Bounds on the estimation error (2): localization

supf ∈S{var(R( f )− R̂n ( f ))} ≥ Cn−1/2 ⇒ no faster rate

Margin condition: P ( |η(X )− 1/2| ≤ h ) = 0 with h > 0
[Mammen and Tsybakov, 1999]

Localization idea: use that f̂S is not anywhere in S

f̂S ∈ { f ∈ S /R ( f )−R ( f ? ) ≤ ε}
⊂ { f ∈ S / var (`(f (X ),Y )− `(f ?(X ),Y )) ≤ ε/h}

by the margin condition. + Talagrand concentration
inequality [Talagrand, 1996, Bousquet, 2002] + . . .

⇒ fast rates (depending on the assumptions), e.g.,

κV (S)
nh

(
1 + log

(
nh2

V (S)

))
[Boucheron et al., 2005, Sec. 5], [Massart and Nédélec, 2006].
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Classification and statistical machine learning Sylvain Arlot



30/53

Introduction Goals Overfitting Examples Key issues Conclusion

Bounds on the estimation error (2): localization

supf ∈S{var(R( f )− R̂n ( f ))} ≥ Cn−1/2 ⇒ no faster rate

Margin condition: P ( |η(X )− 1/2| ≤ h ) = 0 with h > 0
[Mammen and Tsybakov, 1999]

Localization idea: use that f̂S is not anywhere in S

f̂S ∈ { f ∈ S /R ( f )−R ( f ? ) ≤ ε}
⊂ { f ∈ S / var (`(f (X ),Y )− `(f ?(X ),Y )) ≤ ε/h}

by the margin condition. + Talagrand concentration
inequality [Talagrand, 1996, Bousquet, 2002] + . . .

⇒ fast rates (depending on the assumptions), e.g.,

κV (S)
nh

(
1 + log

(
nh2

V (S)

))
[Boucheron et al., 2005, Sec. 5], [Massart and Nédélec, 2006].
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Model selection

family of models (Sm)m∈M

⇒ family of classifiers (f̂m(Dn))m∈Mn

⇒ choose m̂ = m̂(Dn) such that R
(

f̂m̂(Dn)
)

is minimal?

Goal: minimize the risk, i.e.,
Oracle inequality (in expectation or with a large probability):

R
(

f̂m̂

)
−R ( f ? ) ≤ C inf

m∈M

{
R
(

f̂m
)
−R ( f ? )

}
+ Rn

Interpretation of m̂: the best model can be wrong / the true
model can be worse than smaller ones.
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Penalization for model selection

Penalization:

m̂ ∈ argminm∈M

{
R̂n

(
f̂m
)

+ pen(m)
}

Ideal penalty:

penid(m) = R
(

f̂m
)
−R̂n

(
f̂m
)
⇔ m̂ ∈ argminm∈M

{
R
(

f̂m
)}

General idea: choose pen such that pen(m) ≈ penid(m) or at
least pen(m) ≥ penid(m) for all m ∈M.

Lemma (see next slide): if pen(m) ≥ penid(m) for all m ∈M,

R
(

f̂m̂

)
−R ( f ? ) ≤ inf

m∈M

{
R
(

f̂m
)
−R ( f ? ) + pen(m)− penid(m)

}
.
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Penalization for model selection: lemma

Lemma

If ∀m ∈M, −B(m) ≤ pen(m)− penid(m) ≤ A(m), then,

R
(

f̂m̂

)
−R ( f ? )−B(m̂) ≤ inf

m∈M

{
R
(

f̂m
)
−R ( f ? ) + A(m)

}
.

Proof: For all m ∈M, by definition of m̂,

R̂n

(
f̂m̂

)
+ pen(m̂) ≤ R̂n

(
f̂m
)

+ pen(m) .

So, R̂n

(
f̂m̂

)
+ pen(m̂) = R

(
f̂m̂

)
− penid(m̂) + pen(m̂)

≥ R
(

f̂m̂

)
− B(m̂)

and R̂n

(
f̂m
)

+ pen(m) = R
(

f̂m
)
− penid(m) + pen(m)

≤ R
(

f̂m
)

+ A(m) .
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Penalization for model selection

Structural risk minimization (Vapnik):

penid(m) ≤ sup
f ∈Sm

{
R ( f )− R̂n ( f )

}
⇒ can use previous bounds
[Koltchinskii, 2001, Bartlett et al., 2002, Fromont, 2007]
but remainder terms ≥ Cn−1/2 ⇒ no fast rates.

Tighter estimates of penid(m) for fast rates: localization
[Koltchinskii, 2006], resampling [Arlot, 2009].

See also Section 8 of [Boucheron et al., 2005].
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Convexification of the classification problem

Convention: Yi ∈ {−1, 1} so that 1y 6=y ′ = 1yy ′<0 = Φ0−1(yy ′)

min
f

1

n

n∑
i=1

Φ0−1(Yi f (Xi )) computationally heavy in general.

Classifier f : X → {−1, 1} ⇒ prediction function f : X → R
such that sign(f (x)) will be used to classify x

Risk R0−1(f ) = E [Φ0−1 (Yf (X )) ]
⇒ Φ-risk RΦ ( f ) = E [Φ (Yf (X )) ] for some Φ : R→ R+

⇒ min
f ∈S

1

n

n∑
i=1

Φ(Yi f (Xi )) with S and Φ convex.
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Examples of functions Φ

Figure from [Bartlett et al., 2006].

exponential: Φ(u) = e−u

⇒ AdaBoost

hinge:
Φ(u) = max {1− u, 0}
⇒ support vector machines

logistic/logit:
Φ(u) = log(1 + exp(−u))
⇒ logistic regression

truncated quadratic:
Φ(u) = (max {1− u, 0})2

References: [Bartlett et al., 2006] and Section 4 of [Boucheron et al., 2005].
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Links between 0–1 and convex risks

Definition

Φ is classification-calibrated if for any x with η(x) 6= 1/2,

sign(f ?Φ(x)) = f ?(x) for any f ?Φ ∈ argminf RΦ ( f )

Theorem ([Bartlett et al., 2006])

Φ convex is classification-calibrated ⇔ Φ differentiable at 0 and
Φ′(0) < 0.
Then, a function ψ exists such that

ψ
(
R0−1 ( f )−R0−1

(
f ?0−1

))
≤ RΦ ( f )−RΦ ( f ?Φ ) .

Examples:

exponential loss: ψ(θ) = 1−
√

1− θ2

hinge loss: ψ(θ) = |θ|
truncated quadratic: ψ(θ) = θ2
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Theorem ([Bartlett et al., 2006])

Φ convex is classification-calibrated ⇔ Φ differentiable at 0 and
Φ′(0) < 0.
Then, a function ψ exists such that

ψ
(
R0−1 ( f )−R0−1

(
f ?0−1

))
≤ RΦ ( f )−RΦ ( f ?Φ ) .

Examples:

exponential loss: ψ(θ) = 1−
√

1− θ2

hinge loss: ψ(θ) = |θ|
truncated quadratic: ψ(θ) = θ2
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Support Vector Machines: linear classifier

X = Rd , linear classifier: sign(β>x + β0) with β ∈ Rd , β0 ∈ R

argminβ,β0 / ‖β‖≤R

{
1

n

n∑
i=1

Φhinge

(
Yi

(
β>Xi + β0

))}

⇔ argminβ,β0

{
1

n

n∑
i=1

Φhinge

(
Yi

(
β>Xi + β0

))
+ λ ‖β‖2

}

up to some (random) reparametrization (λ = λ(R; Dn)).

⇒ quadratic program with 2n linear constraints.
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Support Vector Machines: linear classifier

Figure from http://cbio.ensmp.fr/~jvert/svn/kernelcourse/slides/master/master.pdf

Classification and statistical machine learning Sylvain Arlot
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Support Vector Machines: kernel trick

Positive definite kernel k : X × X → R s.t. (k(Xi ,Xj))i ,j
symmetric positive definite
Reproducing Kernel Hilbert Space (RKHS) F : space of functions
X → R spanned by the Φ(x) = k(x , ·), x ∈ X .

Figure from http://cbio.ensmp.fr/~jvert/svn/kernelcourse/slides/master/master.pdf
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Support Vector Machines: kernel trick

Positive definite kernel k : X × X → R s.t. (k(Xi ,Xj))i ,j
symmetric positive definite
Reproducing Kernel Hilbert Space (RKHS) F : space of functions
X → R spanned by the Φ(x) = k(x , ·), x ∈ X .

Theorem (Representer theorem)

For any cost function `,

min
f ∈F

{
1

n

n∑
i=1

`(Yi , f (Xi )) + λ ‖f ‖2
F

}

is attained at some f of the form
n∑

i=1

αik(Xi , ·)

⇒ any algorithm for X = Rd relying only on the dot products
(〈Xi , Xj〉)i ,j can be kernelized.
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Kernel examples

linear kernel: X = Rd , k(x , y) = 〈x , y〉 ⇒ F = Rd Euclidean
polynomial kernel: X = Rd , k(x , y) = (〈x , y〉+ 1)r ⇒
F = Rr [X1, . . . ,Xd ]

Gaussian kernel: X = Rd , k(x , y) = e−‖x−y‖
2/(2σ2)

Laplace kernel: X = R, k(x , y) = e−|x−y |/2

⇒ F = H1 (Sobolev space), ‖f ‖2
F = ‖f ‖2

L2 + ‖f ′‖2
L2 .

min kernel: X = [0, 1], k(x , y) = min {x , y }
⇒ F = {f ∈ C0([0, 1]), f ′ ∈ L2, f (0) = 0}, ‖f ‖F = ‖f ′‖L2 .

⇒ intersection kernel: X =
{

p ∈ [0, 1]d / p1 + · · ·+ pd = 1
}

,

k(p, q) =
∑d

i=1 min(pi , qi ), useful in computer vision
[Hein and Bousquet, 2004, Maji et al., 2008].

other kernels on non-vectorial data (graphs, words / DNA
sequences, ...): see for instance [Schölkopf et al., 2004,
Mahé et al., 2005, Shervashidze et al., 2011] and http://cbio.

ensmp.fr/~jvert/svn/kernelcourse/slides/master/master.pdf
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Support Vector Machines: results / references

Main mathematical tools for SVM analysis: probability in Hilbert
spaces (RKHS), functional analysis.

Some references:

Risk bounds: e.g., [Blanchard et al., 2008] (SVM as a
penalization procedure for selecting among balls).
see also [Boucheron et al., 2005, Section 4]

Tutorials and lecture notes: [Burges, 1998],
http://cbio.ensmp.fr/~jvert/svn/kernelcourse/

slides/master/master.pdf

Books: e.g., [Steinwart and Christmann, 2008,
Hastie et al., 2009, Scholkopf and Smola, 2001]
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Decision / classification tree

piecewise constant predictor

partition obtained by recursive splitting of X ⊂ Rp,
orthogonally to one axis (X j < t vs. X j ≥ t)

empirical risk minimization

Figures from [Hastie et al., 2009]
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CART (Classification And Regression Trees)

CART [Breiman et al., 1984]:

1 generate one large tree by
splitting recursively the data
(minimization of some
impurity measure),

⇒ over-adapted to data

2 pruning (⇔ model selection)

Model selection results: e.g.,
[Gey and Nédélec, 2005,
Sauvé and Tuleau-Malot, 2011,
Gey and Mary-Huard, 2011].
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Random forests [Breiman, 2001]
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Classifier

Various ways to build individual trees (subset of variables...)
Purely random forests: partitions independent from training data.
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Results on random forests (classification and regression)

Most theoretical results on purely random forests (partitions
independent from training data: by data splitting or with
simpler models)

Consistency result in classification [Biau et al., 2008]

Convergence rate and some combination with variable
selection [Biau, 2012]

From a single tree to a large forest:

estimation error reduction (at least a constant factor)
[Genuer, 2012]
approximation error reduction (A. & Genuer, work in progress)

⇒ sometimes improvement in the learning rate

See also [Breiman, 2004, Genuer et al., 2008, Genuer et al., 2010].
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Kinect: depth features ⇒ body part

Depth image ⇒ depth comparison features at each pixel

⇒ body part at each pixel ⇒ body part positions ⇒ · · ·

Figure from [Shotton et al., 2011]
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Outline

1 Introduction

2 Goals

3 Overfitting

4 Examples

5 Key issues
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Hyperparameter choice

Always one or several parameters to choose:
k for k-NN, model selection, λ for SVM, kernel bandwidth for
SVM with Gaussian kernel, tree size in random forests, ...

No universal choice possible (No Free Lunch Theorems apply)
⇒ must use some prior knowledge at some point

Most general ideas: data splitting (cross-validation)
[Arlot and Celisse, 2010]

Sometimes specific approaches (penalization...): more efficient
(for risk and computational cost) but also dependent on
stronger assumptions

Important to choose a good parametrization (e.g., for
cross-validation, the optimal parameter should not vary too
much from a sample to another)

Classification and statistical machine learning Sylvain Arlot
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Computational complexity

Most classifiers are defined as f̂ ∈ argminf ∈S C (f )

Optimization algorithms: usually faster (polynomial) when C
and S convex. Often NP hard with 0–1 loss. Counterexample:
interval classification [Kearns et al., 1997].

General convex optimization algorithms usually too slow if n
or p = dim(X ) are > 103.

⇒ Need for specific faster algorithms (e.g., for SVM, consider
the dual problem and take advantage of the “sparsity” of the
solution).
Constants matter! (e.g., dependence on p).

Choice of a classification learning algorithm: trade-off between
statistical performances and computational cost.
Also depends on the confidence in the modelling chosen.
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Optimization error

Risk = Approximation error + Estimation error

+ Optimization error

Figure from [Bottou and Bousquet, 2011]
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The big data setting

Given ε > 0, what do we need to get R
(

f̂
)
−R ( f ? ) ≤ ε?

Traditional statistical learning: sample complexity, i.e.,
n ≥ n0(ε), whatever the computational cost

Big data: n so large that exploring all data is impossible (and
unnecessary) ⇒ better to throw away some data!
[Bottou and Bousquet, 2008,
Shalev-Shwartz and Srebro, 2008]

⇒ time complexity, i.e., minimal number of computations,
whatever n

A very active field: Big Data Research and Development
Initiative (US government), MASTODONS (CNRS), AMPLab
(UC Berkeley), ...
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Computational trade-offs, from statistics to big data

Figure from [Chandrasekaran and Jordan, 2012]
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Conclusion

Learning theory: assumptions ⇒ learning rates (NFLT)

Main danger: overfitting

Various ways to model the data:
k-NN: f ? locally constant w.r.t. d
ERM/model selection: family of possible f ?

SVM: kernel ⇒ smoothness of f ? / feature space
random forests: weak modelling (trees) + aggregation
many other approaches: Bayesian statistics, neural networks,
deep learning, ...

Key issues: tuning parameters & computational complexity
Big data ⇒ new challenges

Main mathematical domains involved (outside statistics):
probability theory (concentration of measure, ...),
approximation theory, functional analysis, optimization, ...
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More references

These slides: http://www.di.ens.fr/~arlot/

Devroye, L., Györfi, L., and Lugosi, G. (1996).
A probabilistic theory of pattern recognition, volume 31 of
Applications of Mathematics (New York).
Springer-Verlag, New York.

Boucheron, S., Bousquet, O., and Lugosi, G. (2005).
Theory of classification: a survey of some recent advances.
ESAIM Probab. Stat., 9:323–375 (electronic).

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The elements of statistical learning.
Springer Series in Statistics. Springer, New York, second
edition.
Data mining, inference, and prediction.
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Arlot, S. (2009).
Model selection by resampling penalization.
Electron. J. Stat., 3:557–624 (electronic).

Arlot, S. and Celisse, A. (2010).
A survey of cross-validation procedures for model selection.
Statist. Surv., 4:40–79.

Audibert, J.-Y. and Tsybakov, A. (2007).
Fast learning rates for plug-in classifiers.
Annals of Statistics, 35(2):608–633.

Bartlett, P. L., Boucheron, S., and Lugosi, G. (2002).
Model selection and error estimation.
Machine Learning, 48:85–113.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006).
Convexity, classification, and risk bounds.
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Journal of the American Statistical Association,
101(473):138–156.
(Was Department of Statistics, U.C. Berkeley Technical
Report number 638, 2003).

Biau, G. (2012).
Analysis of a random forests model.
J. Mach. Learn. Res., 13:1063–1095.

Biau, G., Devroye, L., and Lugosi, G. (2008).
Consistency of random forests and other averaging classifiers.
J. Mach. Learn. Res., 9:2015–2033.

Blanchard, G., Bousquet, O., and Massart, P. (2008).
Statistical performance of support vector machines.
Ann. Statist., 36(2):489–531.

Bottou, L. and Bousquet, O. (2008).
The tradeoffs of large scale learning.

Classification and statistical machine learning Sylvain Arlot



53/53

Introduction Goals Overfitting Examples Key issues Conclusion

In Platt, J., Koller, D., Singer, Y., and Roweis, S., editors,
Advances in Neural Information Processing Systems,
volume 20, pages 161–168. NIPS Foundation
(http://books.nips.cc).

Bottou, L. and Bousquet, O. (2011).
The tradeoffs of large scale learning.
In Sra, S., Nowozin, S., and Wright, S. J., editors,
Optimization for Machine Learning, pages 351–368. MIT
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